
An FPTAS for scheduling with piecewise linear

decreasing processing times to minimize makespan

Min Ji∗

College of Computer Science & Information Engineering,
Zhejiang Gongshang University, Hangzhou 310035, P.R. China

T. C. E. Cheng†

Department of Logistics, The Hong Kong Polytechnic University,
Kowloon, Hong Kong

Abstract

We study the problems of scheduling a set of nonpreemptive jobs on a single machine and
identical parallel machines, where the processing time of a job is a piecewise linear nonincreasing
function of its start time. The objective is to minimize makespan. We first give a fully polynomial-
time approximation scheme (FPTAS) for the case with a single machine. We then generalize the
result to the case with m identical machines.

Keywords. Machine scheduling; Start time dependent processing times; Makespan

1 Introduction

Machine scheduling problems with jobs having start-time dependent processing times have received
increasing attention from the scheduling community over the last decade. For a survey of the research
in this area, we refer the reader to Alidaee and Womer [1], and Cheng, Ding and Lin [7].

Recently Cheng et al. [6] considered the following scheduling problem with time-dependent
processing times: There are n independent nonpreemptive jobs J = {J1, J2, · · · , Jn}, which are
simultaneously available, to be scheduled for processing on m parallel machines. Each job can be
completely processed by any machine. Each machine can handle at most one job at a time. A
schedule is characterized by the sequences of jobs arranged in order of processing on the machines.
The processing time of job Jj scheduled on machine k depends on its start time sj in the following
way:

pk
j =

ak
j , if sj < d,

ak
j − bk

j (sj − d), if d ≤ sj ≤ D,

ak
j − bk

j (D − d), if sj > D.

On machine k, each job Jj thus has a normal processing time ak
j , a common initial decreasing date

d, after which the processing time starts to decrease linearly with a decreasing rate bk
j and a common

final decreasing date D (D ≥ d), after which it decreases no further. It is assumed that 0 < bk
j < 1

and ak
j > bk

j (min{D,
∑n

i=1 ak
i − ak

j } − d) hold for each job Jj and machine k. The first condition

∗Email: jimkeen@163.com
†Corresponding author. Email: LGTcheng@polyu.edu.hk

1

2

ensures that the decrease of each jobs processing time is less than one unit for every unit delay in its
starting moment. The second condition ensures that all the job processing times are positive in a
feasible schedule (see also Ho, Leung and Wei [10] for detailed explanations). Given a schedule, the
completion time Cj of job Jj , j = 1, 2, · · · , n, is easily determined. The objectives in Cheng et al.
[6] are to minimize the makespan Cmax = maxj=1,2,···,n Cj and the total completion time

∑n
j=1 Cj .

These criteria are related to throughput time and total work-in-process inventories of a production
system, respectively. Without loss of generality, it is assumed that all ak

j , d, and D are integral and
all bk

j are rational so that bk
j = vk

j /L, where vk
j are integers and L is a natural number, j = 1, 2, · · · , n,

k = 1, 2, · · · ,m. For the case with a single machine or identical parallel machines, the index k is
dropped in the corresponding notation.

For the makespan problem on a single machine, Cheng et al. [6] proved it was NP-hard in the
ordinary sense if d = 0 (see Theorem 1 in [6]). And from the parameters in their proof, we can
deduce that bj ≤ aj/(2D) for all j. So Theorem 1 in [6] is in fact valid if bj ≤ aj/(2D) for all j. This
model can provide a better approximation for some real-life situations where job processing times
decrease with their start times. For example, in environments where learning effect takes place, the
productivity of an operator is at a low level initially, and it gradually increases to a stable level after
some time because of physical and safety limitations. And a job’s stable processing time is usually
not much less than its normal processing time. The assumption bj ≤ aj/(2D) indicates that the ratio
is not less than a half, i.e., (aj − bjD)/aj ≥ 1/2. In this paper we present a fully polynomial-time
approximation scheme (FPTAS) for both the single-machine and identical parallel-machine cases,
when d = 0 and bj ≤ aj/(2D) for all j. Using the three-field notation of Graham et al. [8], we denote
such scheduling models as 1|pj = aj − bj min{sj , D}|Cmax and Pm|pj = aj − bj min{sj , D}|Cmax,
respectively.

Work on scheduling problems with start time dependent processing times was initiated by Brown
and Yechiali [4], and Gupta and Gupta [9]. Since then, scheduling problems with time-dependent
processing times have received increasing attention. There are many applications of the model
where the job processing time is an increasing function of the job start time. These include the
control of queues and communication systems, shops with deteriorating machines, and/or delay of
maintenance or cleaning, fire fighting, and hospital emergency wards, scheduling steel rolling mills,
etc. [2, 4, 6, 9, 14, 15, 16]. If the job processing time is a decreasing function of the job start time,
examples can be found in learning effect, national defense, and aerial threats etc., in which a task
consists of destroying an aerial threat and its execution time decreases with time as the threat gets
closer. For a list of applications of this scheduling model, the reader is referred to [3, 5, 10, 11, 17, 18].

The presentation of this paper is organized as follows. In Section 2 we propose a fully polynomial-
time approximation scheme for the problem 1|pj = aj−bj min{sj , D}|Cmax, and prove its correctness
and establish its time complexity. We then generalize the result to m identical parallel machines in
Section 3. Finally, we conclude the paper in Section 4.

2 An FPTAS for the single-machine problem

An algorithm A is called a (1+ε)-approximation algorithm for a minimization problem if it produces
a solution that is at most 1+ε times as big as the optimal value, running in time that is polynomial in
the input size. A family of approximation algorithms {Aε} is a fully polynomial-time approximation

3

scheme if, for each ε > 0, the algorithm Aε is a (1 + ε)-approximation algorithm that is polynomial
in the input size and in 1/ε. From now on we assume, without loss of generality, that 0 < ε ≤ 1. If
ε > 1, then a 2-approximation algorithm can be taken as a (1 + ε)-approximation algorithm.

Ho, Leung and Wei [10] showed that the nonincreasing order of aj/bj is optimal for the problem
1|pj = aj − bjsj |Cmax, which leads to the following property.

Property 1 There exists an optimal solution for the problems 1|pj = aj − bj min{sj , D}|Cmax and
Pm|pj = aj − bj min{sj , D}|Cmax such that on each machine the jobs are sequenced in nonincreasing
order of aj/bj if these jobs’ start times are all less than D.

The following Remark 1 and Property 2 are trivial.

Remark 1 It is trivial that there exists an optimal solution for the problems 1|pj = aj −
bj min{sj , D}|Cmax and Pm|pj = aj − bj min{sj , D}|Cmax such that the sequence of the jobs is im-
material if these jobs’ start times are no less than D.

Property 2 There is no idle time on each machine in an optimal solution for the problems 1|pj =
aj − bj min{sj , D}|Cmax and Pm|pj = aj − bj min{sj , D}|Cmax.

Following Property 1, let the jobs be indexed in nonincreasing order of aj/bj so that a1/b1 ≥
a2/b2 ≥ · · · ≥ an/bn. We define the 0-1 variables xj , j = 1, 2, · · · , n, where xj = 1 if the start time of
job Jj is less than D, and xj = 0 otherwise. Let X be the set of all the 0-1 vectors x = (x1, x2, · · · , xn).
Let fj(x) be the total processing time when the jobs {J1, · · · , Jj} have been processed. Let gj(x)
be min{D, the total processing time of those jobs whose start times are less than D} when the jobs
{J1, · · · , Jj} have been processed. We define the following initial and recursive functions on X:

f0(x) = 0,
g0(x) = 0,
fj(x) = fj−1(x) + xj(aj − bjgj−1(x)) + (1− xj)(aj − bjD),
gj(x) = min{gj−1(x) + xj(aj − bjgj−1(x)), D}.

Thus, due to the definition of fj(x) and Property 2, we conclude that the problem 1|pj = aj −
bj min{sj , D}|Cmax reduces to the following problem:

Minimize fn(x) for x ∈ X.

We first introduce procedure Partition(A, e, δ) proposed by Kovalyov and Kubiak [12, 13], where
A ⊆ X, e is a nonnegative integer function on X, and 0 < δ ≤ 1. This procedure partitions A into
disjoint subsets Ae

1, A
e
2, · · · , Ae

ke
such that |e(x) − e(x′)| ≤ δ min{e(x), e(x′)} for any x, x′ from the

same subset Ae
j , j = 1, 2, · · · , ke. The following description provides the details of Partition(A, e, δ).

Procedure Partition(A, e, δ)

Step 1. Arrange vectors x ∈ A in order x(1), x(2), · · · , x(|A|) such that 0 ≤ e(x(1)) ≤ e(x(2)) ≤
· · · ≤ e(x(|A|)).

Step 2. Assign vectors x(1), x(2), · · · , x(i1) to set Ae
1 until i1 is found such that e(x(i1)) ≤ (1 +

δ)e(x(1)) and e(x(i1+1)) > (1 + δ)e(x(1)). If such i1 does not exist, then take Ae
ke

= Ae
1 = A, and

stop.

4

Assign vectors x(i1+1), x(i1+2), · · · , x(i2) to set Ae
2 until i2 is found such that e(x(i2)) ≤ (1 +

δ)e(x(i1+1)) and e(x(i2+1)) > (1+δ)e(x(i1+1)). If such i2 does not exist, then take Ae
ke

= Ae
2 = A−Ae

1,
and stop.

Continue the above construction until x(|A|) is included in Ae
ke

for some ke.

Procedure Partition requires O(|A| log |A|) operations to arrange the vectors of A in nondecreas-
ing order of e(x), and O(|A|) operations to provide a partition. The main properties of Partition

that will be used in the development of our FPTAS Aε were presented in Kovalyov and Kubiak
[12, 13] as follows.

Property 3 |e(x)− e(x′)| ≤ δ min{e(x), e(x′)} for any x, x′ ∈ Ae
j, j = 1, 2, · · · , ke.

Property 4 ke ≤ log e(x(|A|))/δ + 2 for 0 < δ ≤ 1 and 1 ≤ e(x(|A|)).

A formal description of the FPTAS Aε for the problem 1|pj = aj − bj min{sj , D}|Cmax is given
below.

Algorithm Aε

Step 1. (Initialization) Number the jobs in nonincreasing order of aj/bj so that a1/b1 ≥ a2/b2 ≥
· · · ≥ an/bn (Property 1). Set Y0 = {(0, 0, · · · , 0)} and j = 1.

Step 2. (Generation of Y1, Y2, · · · , Yn) For set Yj−1, generate Y ′
j by adding 0 and 1 in position

j of each vector from Yj−1, i.e., Y ′
j = Yj−1 ∪ {x + (0, 0, · · · , xj = 1, 0, · · · , 0) | x ∈ Yj−1}. Calculate

the following for any x ∈ Y ′
j .

fj(x) = fj−1(x) + xj(aj − bjgj−1(x)) + (1− xj)(aj − bjD),
gj(x) = min{gj−1(x) + xj(aj − bjgj−1(x)), D}.

If j = n, then set Yn = Y ′
n, and go to Step 3.

If j < n, then set δ = ε/(2(n + 1)), and perform the following computations.
Call Partition(Y ′

j , fj , δ) to partition set Y ′
j into disjoint subsets Y f

1 , Y f
2 , · · · , Y f

kf
.

Call Partition(Y ′
j , gj , δ) to partition set Y ′

j into disjoint subsets Y g
1 , Y g

2 , · · · , Y g
kg

.
Divide set Y ′

j into disjoint subsets Yab = Y f
a ∩ Y g

b , a = 1, 2, · · · , kf , b = 1, 2, · · · , kg. For each
nonempty subset Yab, choose a vector x(ab) such that

fj(x(ab)) = min{fj(x) | x ∈ Yab}.

Set Yj := {x(ab) | a = 1, 2, · · · , kf , b = 1, 2, · · · , kg, and Y f
a ∩ Y g

b 6= ∅}, and j = j + 1.
Repeat Step 2.
Step 3. (Solution) Select vector x0 ∈ Yn such that fn(x0) = min{fn(x) | x ∈ Yn}.

Let x∗ = (x∗1, x∗2, · · · , x∗n) be an optimal solution for the problem 1/pj = aj − bj min{sj , D}/Cmax

and L = log(max{n, 1/ε, amax}), where amax = maxj=1,2,···,n{aj}. We show the main result of this
section in the following.

Theorem 1 When bj ≤ aj

2D for all j, Algorithm Aε finds x0 ∈ X for the problem 1|pj = aj −
bj min{sj , D}|Cmax such that fn(x0) ≤ (1 + ε)fn(x∗) in O(n3L3/ε2).

5

Proof. Suppose that (x∗1, · · · , x∗j , 0, · · · , 0) ∈ Yab ⊆ Y ′
j for some j and a, b. By the definition of

Aε, such j always exists, for instance j = 1. Algorithm Aε may not choose (x∗1, · · · , x∗j , 0, · · · , 0) for
further construction; however, for a vector x(ab) chosen instead of it, we have

|fj(x∗)− fj(x(ab))| ≤ δfj(x∗),

and
|gj(x∗)− gj(x(ab))| ≤ δgj(x∗),

due to Property 3. We consider vector (x∗1, · · · , x∗j , x∗j+1, 0, · · · , 0) and x̃(ab) =

(x(ab)
1 , · · · , x(ab)

j , x∗j+1, 0, · · · , 0). We have

|fj+1(x∗)− fj+1(x̃(ab))|
=

∣∣∣
[
fj(x∗) + x∗j+1(aj+1 − bj+1gj(x∗)) + (1− x∗j+1)(aj+1 − bj+1D)

]

−
[
fj(x(ab)) + x∗j+1(aj+1 − bj+1gj(x(ab))) + (1− x∗j+1)(aj+1 − bj+1D)

]∣∣∣
≤ |fj(x∗)− fj(x(ab))|+ x∗j+1bj+1|gj(x∗)− gj(x(ab))|
≤ δfj(x∗) + δx∗j+1bj+1gj(x∗).

Since gj(x∗) ≤ D and bk ≤ ak/(2D) for all k, we obtain bj+1gj(x∗) ≤ aj+1 − bj+1gj(x∗). Combining
this with the above formula, and setting δ1 = δ, we have

|fj+1(x∗)− fj+1(x̃(ab))|
≤ δ(fj(x∗) + x∗j+1(aj+1 − bj+1gj(x∗))) ≤ δ1fj+1(x∗). (1)

Consequently,
fj+1(x̃(ab)) ≤ (1 + δ1)fj+1(x∗).

We now show that
|gj+1(x∗)− gj+1(x̃(ab))| ≤ δ1gj+1(x∗). (2)

It is easy to verify (2) if D ≤ min{gj(x∗) + x∗j+1(aj+1 − bj+1gj(x∗)), gj(x(ab)) + x∗j+1(aj+1 −
bj+1gj(x(ab)))}. If D ≥ max{gj(x∗)+x∗j+1(aj+1−bj+1gj(x∗)), gj(x(ab))+x∗j+1(aj+1−bj+1gj(x(ab)))},
then

|gj+1(x∗)− gj+1(x̃(ab))|
= |[gj(x∗) + x∗j+1(aj+1 − bj+1gj(x∗))]− [gj(x(ab)) + x∗j+1(aj+1 − bj+1gj(x(ab)))]|
≤ x∗j+1(1− bj+1)|gj(x∗)− gj(x(ab))| ≤ δx∗j+1(1− bj+1)gj(x∗) ≤ δ1gj+1(x∗). (3)

So, (2) is satisfied. If (gj(x∗)+x∗j+1(aj+1−bj+1gj(x∗))−D)∗(gj(x(ab))+x∗j+1(aj+1−bj+1gj(x(ab)))−
D) ≤ 0, then we have |gj+1(x∗) − gj+1(x̃(ab))| ≤ |[gj(x∗) + x∗j+1(aj+1 − bj+1gj(x∗))] − [gj(x(ab)) +
x∗j+1(aj+1 − bj+1gj(x(ab)))]|. Thus, similar to (3), (2) is satisfied, too. Therefore (2) is always true,
and (2) implies

gj+1(x̃(ab)) ≤ (1 + δ1)gj+1(x∗).

Assume that x̃(ab) ∈ Yde ⊆ Y ′
j+1 and that Algorithm Aε chooses x(de) ∈ Yde instead of x̃(ab) in

the (j + 1)st iteration. We have

|fj+1(x̃(ab))− fj+1(x(de))| ≤ δfj+1(x̃(ab)) ≤ δ(1 + δ1)fj+1(x∗), (4)

6

and
|gj+1(x̃(ab))− gj+1(x(de))| ≤ δgj+1(x̃(ab)) ≤ δ(1 + δ1)gj+1(x∗).

From (1) and (4), we obtain

|fj+1(x∗)− fj+1(x(de))|
≤ |fj+1(x∗)− fj+1(x̃(ab))|+ |fj+1(x̃(ab))− fj+1(x(de))|
≤ (δ1 + δ(1 + δ1))fj+1(x∗) = (δ + δ1(1 + δ))fj+1(x∗). (5)

Similarly, we have
|gj+1(x∗)− gj+1(x(de))| ≤ (δ + δ1(1 + δ))gj+1(x∗).

Set δl = δ + δl−1(1 + δ), l = 2, 3, · · · , n− j + 1. From (5), we obtain

|fj+1(x∗)− fj+1(x(de))| ≤ δ2fj+1(x∗).

Repeating the above argument for j + 2, · · · , n, we show that there exists x′ ∈ Yn such that

|fn(x∗)− fn(x′)| ≤ δn−j+1fn(x∗).

Since

δn−j+1 ≤ δ
n∑

j=0

(1 + δ)j

= (1 + δ)n+1 − 1

=
n+1∑

j=1

(n + 1)n · · · (n− j + 2)
j!(n + 1)j

(
ε

2
)j

≤
n+1∑

j=1

1
j!

(
ε

2
)j ≤

n+1∑

j=1

(
ε

2
)j ≤ ε

n+1∑

j=1

(
1
2
)j ≤ ε.

Therefore, we have
|fn(x∗)− fn(x′)| ≤ εfn(x∗).

Then in Step 3, vector x0 will be chosen such that

fn(x0) ≤ fn(x′) ≤ (1 + ε)fn(x∗).

The time complexity of Algorithm Aε can be established by noting that the most time-consuming
operation is iteration j in Step 2, i.e., a call of procedure Partition, which requires O(|Y ′

j | log |Y ′
j |)

time to complete. To estimate |Y ′
j |, recall that |Y ′

j+1| ≤ 2|Yj | ≤ 2kfkg. By Property 4, we have
kf ≤ 2(n + 1) log(namax)/ε + 2 ≤ 2(n + 1)L/ε + 2, and the same for kg. Thus, |Y ′

j | = O(n2L2/ε2),
and |Y ′

j | log |Y ′
j | = O(n2L3/ε2). Therefore, the time complexity of Algorithm Aε is O(n3L3/ε2).

3 An FPTAS for the problem with m identical parallel machines

In this section we generalize the result to the case with m identical parallel machines. We introduce
variables xj , j = 1, 2, 3, 4, · · · , 2m − 1, 2m, where xj = 2k − 1 if job Jj is processed on machine
k, k ∈ {1, 2, · · · ,m}, and its start time is less than D, xj = 2k if job Jj is processed on machine

7

k, k ∈ {1, 2, · · · ,m}, and its start time is no less than D. Let X be the set of all the vectors
x = (x1, x2, · · · , xn) with xj = k, j = 1, 2, · · · , n, k = 1, 2, · · · , 2m. We define the following initial
and recursive functions on X:

f i
0(x) = 0, i = 1, 2, · · · ,m,

gi
0(x) = 0, i = 1, 2, · · · ,m,

fk
j (x) = fk

j−1(x) + (aj − bjg
k
j−1(x)), if xj = 2k − 1,

fk
j (x) = fk

j−1(x) + (aj − bjD), if xj = 2k,

f i
j(x) = f i

j−1(x), if xj = 2k − 1 or xj = 2k, i 6= k,

gk
j (x) = min{gk

j−1(x) + (aj − bjg
k
j−1(x)), D}, if xj = 2k − 1,

gi
j(x) = gi

j−1(x), if xj = 2k − 1 or xj = 2k, i 6= k.

Thus, the problem Pm|pj = aj − bj min{sj , D}|Cmax reduces to the following problem:

Minimize Q(x) for x ∈ X, where Q(x) = max
i=1,2,···,m

f i
n(x).

A formal description of the FPTAS Am
ε for the problem Pm|pj = aj−bj min{sj , D}|Cmax is given

below.

Algorithm Am
ε

Step 1. (Initialization) Number the jobs in nonincreasing order of aj/bj so that a1/b1 ≥ a2/b2 ≥
· · · ≥ an/bn (Property 1). Set Y0 = {(0, 0, · · · , 0)} and j = 1.

Step 2. (Generation of Y1, Y2, · · · , Yn) For set Yj−1, generate Y ′
j by adding k, k = 1, 2, · · · , 2m,

in position j of each vector from Yj−1. Calculate the following for any x ∈ Y ′
j , assuming xj = k.

fk
j (x) = fk

j−1(x) + (aj − bjg
k
j−1(x)), if xj = 2k − 1,

fk
j (x) = fk

j−1(x) + (aj − bjD), if xj = 2k,

f i
j(x) = f i

j−1(x), if xj = 2k − 1 or xj = 2k, i 6= k,

gk
j (x) = min{gk

j−1(x) + (aj − bjgj−1k(x)), D}, if xj = 2k − 1,

gi
j(x) = gi

j−1(x), if xj = 2k − 1 or xj = 2k, i 6= k.

If j = n, then set Yn = Y ′
n, and go to Step 3.

If j < n, then set δ = ε/(2(n + 1)), and perform the following computations.
Call Partition(Y ′

j , f i
j , δ) (i = 1, 2, · · · ,m) to partition set Y ′

j into disjoint subsets

Y f i

1 , Y f i

2 , · · · , Y f i

kfi
.

Call Partition(Y ′
j , gi

j , δ) (i = 1, 2, · · · ,m) to partition set Y ′
j into disjoint subsets

Y gi

1 , Y gi

2 , · · · , Y gi

ki
g
.

Divide set Y ′
j into disjoint subsets Ya1···amb1···,bm = Y f1

a1
∩ · · · ∩ Y fm

am
∩ Y g1

b1
∩ · · · ∩ Y gm

gm
, a1 =

1, 2, · · · , kf1 ; · · ·; am = 1, 2, · · · , kfm ; b1 = 1, 2, · · · , kg1 ; · · ·; bm = 1, 2, · · · , kgm . For each nonempty
subset Ya1···amb1···bm , choose a vector x(a1···amb1···bm) such that

max
i=1,2,···,m

f i
j(x

(a1···amb1···,bm)) = min{ max
i=1,2,···,m

f i
j(x) | x ∈ Ya1···amb1···,bm}.

8

Set Yj := {x(a1···amb1···bm) | a1 = 1, 2, · · · , kf1 ; · · · ; am = 1, 2, · · · , kfm ; b1 = 1, 2, · · · , kg1 ; · · · ; bm =
1, 2, · · · , kgm ; and Y f1

a1
∩ · · · ∩ Y fm

am
∩ Y g1

b1
∩ · · · ∩ Y gm

bm
6= ∅}, and j = j + 1.

Repeat Step 2.
Step 3. (Solution) Select vector x0 ∈ Yn such that Q(x0) = min{Q(x) | x ∈ Yn} =

min{maxi=1,2,···,m f i
n(x) | x ∈ Yn}.

Let x∗ = (x∗1, x∗2, · · · , x∗n) be an optimal solution for the problem Pm/pj = aj −
bj min{sj , D}/Cmax. Let L = log(max{n, 1/ε, amax}), where amax = maxj=1,2,···,n{aj}. We have
the following result.

Theorem 2 When bj ≤ aj

2D for all j, Algorithm Am
ε finds x0 ∈ X for the problem Pm|pj = aj −

bj min{sj , D}|Cmax such that Q(x0) ≤ (1 + ε)Q(x∗) in O(n2m+1L2m+1/ε2m).

Proof. Using an argument similar to that used to establish Theorem 1, we can show that there
exists x′ ∈ Yn such that

|f i
n(x∗)− f i

n(x′)| ≤ εf i
n(x∗), i = 1, 2, · · · , n.

It implies
| max
i=1,2,···,m

f i
n(x′)− max

i=1,2,···,m
f i

n(x∗)| ≤ ε max
i=1,2,···,m

f i
n(x∗).

Then, in Step 3, vector x0 will be chosen such that

| max
i=1,2,···,m

f i
n(x0)− max

i=1,2,···,m
f i

n(x∗)|

≤ | max
i=1,2,···,m

f i
n(x′)− max

i=1,2,···,m
f i

n(x∗)|

≤ ε max
i=1,2,···,m

f i
n(x∗).

Therefore we have Q(x0) ≤ (1 + ε)Q(x∗)
Similar to Theorem 1, we can show that the computational complexity of Algorithm Am

ε is
O(n2m+1L2m+1/ε2m).

4 Conclusions

This paper studied the scheduling problem in which the processing time of a job is a piecewise linear
nonincreasing function of its start time to minimize makespan. We first gave a fully polynomial-time
approximation scheme for the single-machine case, then generalized the result to the case with m

machines, where m is fixed. Future research may focus on other objectives.

Acknowledgment
Cheng was supported in part by The Hong Kong Polytechnic University under a grant from the
Area of Strategic Development in China Business Services.

References

[1] B. Alidaee, N.K. Womer, Scheduling with time dependent processing times: Review and exten-
sions, Journal of Operational Research Society, 50 (1999) 711-720.

9

[2] A. Bachman, A. Janiak, M.Y. Kovalyov, Minimizing the total weighted completion time of
deteriorating jobs, Information Processing Letters, 81 (2002) 81-84.

[3] A. Bachman, T.C.E. Cheng, A. Janiak, C.T. Ng, Scheduling start time dependent jobs to
minimize the total weighted completion time, Journal of the Operational Research Society, 53
(2002) 688-693.

[4] S. Brown, U. Yechiali, Scheduling deteriorating jobs on a single process, Operations Research,
38 (1990) 495-498.

[5] Z.L. Chen, A note on single-processor scheduling with time dependent execution times, Opera-
tions Research Letters, 17 (1995) 127-129.

[6] T.C.E. Cheng, Q. Ding, M.Y. Kovalyov, A. Bachman, A. Janiak, Scheduling jobs with piecewise
linear decreasing processing times, Naval Research Logistics, 50 (2003) 531-554.

[7] T.C.E. Cheng, Q. Ding, B.M.T. Lin, A concise survey of scheduling with time-dependent pro-
cessing times, European Journal of Operational Research, 152 (2004) 1-13.

[8] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approxima-
tion in deterministic sequencing and scheduling: a survey, Annals of Discrete Mathematics, 5
(1979) 287-326.

[9] J.N.D. Gupta, S.K. Gupta, Single facility scheduling with nonlinear processing times, Computers
and Industrial Engineering, 14 (1988) 387-393.

[10] K.I.J. Ho, J.Y.T. Leung, W.D. Wei, Complexity of scheduling tasks with time-dependent exe-
cution times, Information Processing Letters, 48 (1993) 315-320.

[11] M. Ji, Y. He, T.C.E. Cheng, A simple linear time algorithm for scheduling with step-improving
processing times, Computers and Operations Research, in press.

[12] M.Y. Kovalyov, W. Kubiak, A fully polynomial approximation scheme for minimizing makespan
of deteriorating jobs, Journal of Heuristics, 3 (1998) 287-297.

[13] M.Y. Kovalyov, W. Kubiak, A fully polynomial approximation scheme for the weighted
earliness-tardiness problem, Operations Research, 47 (1999) 757-761.

[14] W. Kubiak, S.L. van de Velde, Scheduling deteriorating jobs to minimize makespan, Naval
Research Logistics, 45 (1998) 511-523.

[15] A.S. Kunnathur, S.K. Gupta, Minimizing the makespan with late start penalties added to pro-
cessing times in a single facility scheduling problem, European Journal of Operational Research,
47 (1990) 56-64.

[16] G. Mosheiov, V-shaped policies for scheduling deteriorating jobs, Operations Research, 39 (1991)
979-991.

[17] C.T. Ng, T.C.E. Cheng, A. Bachman, A. Janiak, Three scheduling problems with deteriorating
jobs to minimize the total completion time, Information Processing Letters, 81 (2002) 327-333.

[18] G.J. Woeginger, Scheduling with time-dependent execution times, Information Processing Let-
ters, 54 (1995) 155-156.

