Hamilton-Connectivity of 3-Domination Critical Graphs with $\alpha = \delta + 1 \geq 5$

Yaojun Chena,b, T.C. Edwin Chengb and C.T. Ngb

aDepartment of Mathematics, Nanjing University, Nanjing 210093, P.R. CHINA
bDepartment of Logistics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. CHINA

Abstract: A graph G is 3-domination critical if its domination number γ is 3 and the addition of any edge decreases γ by 1. Let G be a 3-domination critical graph with toughness more than one. It was proved G is Hamilton-connected for the cases $\alpha \leq \delta$ (Discrete Mathematics 271 (2003) 1-12) and $\alpha = \delta + 2$ (European Journal of Combinatorics 23(2002) 777-784). In this paper, we show G is Hamilton-connected for the case $\alpha = \delta + 1 \geq 5$.

Key words: Domination-critical graph, Hamilton-connectivity

1. Introduction

Let $G = (V(G), E(G))$ be a graph. A graph G is said to be t-tough if for every cutset $S \subseteq V(G)$, $|S| \geq \omega(G - S)$, where $\omega(G - S)$ is the number of components of $G - S$. The toughness of G, denoted by $\tau(G)$, is defined to be $\min\{|S|/\omega(G - S) \mid S$ is a cutset of $G\}$. Let $u, v \in V(G)$ be any two distinct vertices. We denote by $p(u, v)$ the length of a longest path connecting u and v. The codiameter of G, denoted by $d^*(G)$, is defined to be $\min\{p(u, v) \mid u, v \in V(G)\}$. A graph G of order n is said to be Hamilton-connected if $d^*(G) = n - 1$, i.e., every two distinct vertices are joined by a hamiltonian path. A graph G is called k-domination critical, abbreviated as k-critical, if $\gamma(G) = k$ and $\gamma(G + e) = k - 1$ holds for any $e \in E(\overline{G})$, where \overline{G} is the complement of G. The concept of domination critical graphs was introduced by Sumner and Blitch in [11]. Given three vertices u, v and x such that $\{u, x\}$ dominates $V(G) - \{v\}$ but not v, we will write $[u, x] \rightarrow v$. It was observed in [11] that if u, v are any two nonadjacent vertices of a 3-critical graph G, then since $\gamma(G + uv) = 2$, there exists a vertex x such that either $[u, x] \rightarrow v$ or $[v, x] \rightarrow u$. If $U, V \subseteq V(G)$ and U dominates V, that is, V is contained in the closed neighborhood of U, we write $U \succ V$; otherwise we write $U \not\succ V$. For notations not defined here, we follow [5].
It was conjectured in [10] that every connected 3-critical graph of order more than 6 has a hamiltonian path. This was proved by Wojcicka [13] who in turn conjectured that every connected 3-critical graph G with $\delta(G) \geq 2$ has a hamiltonian cycle. Wojcicka’s conjecture has now been proved completely, see [8, 9, 12] or [2]. It is well known that if a graph G has a hamiltonian cycle, then $\tau(G) \geq 1$ and the converse does not hold in general. However, this is not the case when G is 3-critical. Noting that $\tau(G) < 1$ if G is a connected 3-critical graph with $\delta(G) = 1$, we see that the following theorem is a direct consequence of the validity of Wojcicka’s conjecture.

Theorem 1. Let G be a connected 3-critical graph. Then G has a hamiltonian cycle if and only if $\tau(G) \geq 1$.

For Hamilton-connectivity, it is known that if a graph G is Hamilton-connected, then $\tau(G) > 1$ and the converse need not hold. However, motivated by Theorem 1, Chen et al. [5] posed the following.

Conjecture 1 (Chen et al. [5]). A connected 3-critical graph G is Hamilton-connected if and only if $\tau(G) > 1$.

In the same paper, they proved that the conjecture is true when $\alpha(G) \leq \delta(G)$.

Theorem 2 (Chen et al. [5]). Let G be a connected 3-critical graph with $\alpha(G) \leq \delta(G)$. Then G is Hamilton-connected if and only if $\tau(G) > 1$.

Let G be a 3-connected 3-critical graph. It is shown in [6] that $\tau(G) \geq 1$ and $\tau(G) = 1$ if and only if G belongs to a special infinite family \mathcal{G} described in [6]. Since $\alpha(G) = \delta(G) = 3$ for each $G \in \mathcal{G}$, it is easy to obtain that $\tau(G) > 1$ if $\alpha(G) \geq \delta(G) + 1$.

In [7], Chen et al. showed that the conjecture holds when $\alpha(G) = \delta(G) + 2$.

Theorem 3 (Chen et al. [7]). Let G be a 3-connected 3-critical graph with $\alpha(G) = \delta(G) + 2$. Then G is Hamilton-connected.

By a result of Favaron et al. [8] that $\alpha(G) \leq \delta(G) + 2$ for any connected 3-critical graph G, we can see the conjecture has only one case $\alpha(G) = \delta(G) + 1$ unsolved. In this paper, we will show that the conjecture is true when $\alpha(G) = \delta(G) + 1 \geq 5$. The main result of this paper is the following.

Theorem 4. Let G be a 3-connected 3-critical graph with $\alpha(G) = \delta(G) + 1 \geq 5$. Then G is Hamilton-connected.

Noting that $\tau(G) > 1$ implies $\delta(G) \geq 3$, we can see that the conjecture is still open for the case $\alpha(G) = \delta(G) + 1 = 4$.

Now, we restate a result due to Chen et al. for later use.
Theorem 5 (Chen et al. [3]). Let G be a 3-connected 3-critical graph of order n. Then $d^*(G) \geq n - 2$.

2. Properties of Maximum Independent Set

In order to prove Theorem 4, we need to use a classical tool — closure operation in hamiltonian theory. In 1976, Bondy and Chvátal defined a (Hamilton-connected) closure operation of a graph.

Theorem 6 (Bondy and Chvátal [1]). Let G be a graph of order n. Let a and b be nonadjacent vertices of G such that $d(a) + d(b) \geq n + 1$. Then for any two distinct vertices x, y, $p(x, y) = n - 1$ in G if and only if $p(x, y) = n - 1$ in $G + ab$.

Now, given a graph G of order n, repeat the following recursive operation, named Bondy-Chvátal closure operation, as long as possible: For each pair of nonadjacent vertices a and b, if $d(a) + d(b) \geq n + 1$, then add the edge ab to G. We denote by $cl(G)$ the resulting graph and call it the Bondy-Chvátal (Hamilton-connected) closure of G.

By Theorem 6 we get the following.

Theorem 7 (Bondy and Chvátal [1]). Let G be a graph of order n. Then for any two distinct vertices x, y, $p(x, y) = n - 1$ in G if and only if $p(x, y) = n - 1$ in $cl(G)$.

Let G be a 3-critical graph of order n, $\alpha(G) = \delta(G) + 1$ and $v_0 \in V(G)$ with $d(v_0) = \delta(G) = k \geq 3$. Suppose $N(v_0) = \{v_1, \ldots, v_k\}$ and $I = \{v_0, w_1, \ldots, w_k\}$ is an independent set. In this section, we will give some properties of I in G and $G^* = cl(G)$.

The following lemma restates a lemma due to Sumner and Blitch [11], which has proven to be of considerable use in dealing with 3-critical graphs. In [11] they considered the case $l \geq 4$, which guarantees $P(U) \cap U = \emptyset$. For the cases $l = 2$ and $l = 3$, Lemma 2.1 can be easily verified since G is a 3-critical graph.

Lemma 2.1. Let G be a connected 3-critical graph and U an independent set of $l \geq 2$ vertices. Then there exist an ordering u_1, u_2, \ldots, u_l of the vertices of U and a sequence $P(U) = (y_1, y_2, \ldots, y_{l-1})$ of $l - 1$ distinct vertices such that $[u_i, y_i] \rightarrow u_{i+1}$, $1 \leq i \leq l - 1$.

The next lemma is a useful consequence of Lemma 2.1.

Lemma 2.2 (Favaron et al. [8]). Let U be an independent set of $l \geq 3$ vertices of a 3-critical graph G such that $U \cup \{v\}$ is independent for some $v \notin U$. Then the sequence $P(U)$ defined in Lemma 2.1 is contained in $N(v)$.

Since I is an independent set of order at least 4, by Lemmas 2.1 and 2.2, we may assume without loss of generality that
\[[w_i, v_i] \rightarrow w_{i+1} \text{ for } 1 \leq i \leq k - 1. \] (2-1)

By (2-1), it is easy to obtain the following.

\[v_j v_{j+1} \in E(G) \text{ for } 1 \leq j \leq k - 2. \] (2-2)

Lemma 2.3. If \(w_i v_k \notin E(G) \) with \(i \neq 1 \), then \(G[N(v_0) - \{v_{i-1}, v_k\}] \) is a clique. If \(w_1 v_k \notin E(G) \), then \(G[N(v_0) - \{v_k\}] \) is a clique.

Proof. Let \(v_1, v_m \in N(v_0) - \{v_{i-1}, v_k\} \) with \(l \leq m - 1 \). If \(l = m - 1 \), then \(v_l v_m \in E(G) \) by (2-2). If \(l \leq m - 2 \), then since \(w_{l+1} w_{m+1} \notin E(G) \), there is some vertex \(z \) such that \([w_{l+1}, z] \rightarrow w_{m+1} \) or \([w_{m+1}, z] \rightarrow w_{l+1} \). Since \(k \geq 3 \), by Lemma 2.2 we have \(z \in N(v_0) \). Since \(w_l v_k \notin E(G) \), we have \(z \neq v_k \). By (2-1), either \([w_{l+1}, v_m] \rightarrow w_{m+1} \) or \([w_{m+1}, v_l] \rightarrow w_{l+1} \). In both cases, we have \(v_l v_m \in E(G) \) and hence \(G[N(v_0) - \{v_{i-1}, v_k\}] \) is a clique. As for the latter part, the proof is similar. \(\Box \)

Lemma 2.4. If \(w_i v_k \notin E(G) \) with \(i \neq 1 \), then \([w_1, v_{j-1}] \rightarrow w_j \) for \(j \geq 3 \) and \(j \neq i \).

Proof. Since \(w_1 w_j \notin E(G) \), by Lemma 2.2, there is some \(z \in N(v_0) \) such that \([w_1, z] \rightarrow w_{j+1} \) or \([w_{j+1}, z] \rightarrow w_1 \). By (2-1) and the assumption, we can see that \([w_j, z] \rightarrow w_1 \) is impossible for any \(z \in N(v_0) \) and hence \([w_1, v_{j-1}] \rightarrow w_j \). \(\Box \)

Lemma 2.5. If \([v_0, z] \rightarrow w_i \) for some \(i \) with \(1 \leq i \leq k - 1 \), then \(z \notin N(v_0) \) and if \([v_0, v_i] \rightarrow w_k \) for some \(v_i \in N(v_0) \), then \(l = k - 1 \).

Proof. If \(i = 1 \) and \(z \in N(v_0) \), then \(z = v_k \) by (2-1). Thus, we have \(\{v_2, v_k\} \succ V(G) \) by Lemma 2.3, a contradiction. If \(i \geq 2 \) and \(z \in N(v_0) \), then by (2-1) we have \(z = v_{i-1} \) or \(v_k \) and \(N(v_0) - \{v_{i-1}, v_k\} \subseteq N(v_i) \). If \(z = v_{i-1} \), then \(w_i v_k \notin E(G) \) for otherwise \(\{v_{i-1}, w_i\} \succ V(G) \). Since \([w_i, v_i] \rightarrow w_{i+1} \), \(v_i v_k \in E(G) \). By Lemma 2.4, we have \([w_1, v_i] \rightarrow w_{i+1} \), which implies \(v_i w_i \in E(G) \). Thus by Lemma 2.3, we have \(\{v_{i-1}, v_i\} \succ V(G) \), a contradiction. If \(z = v_k \) and \(i \neq 2 \), then by Lemma 2.3 we have \(\{v_{i-2}, v_k\} \succ V(G) \), a contradiction. If \(z = v_k \) and \(i = 2 \), then by Lemma 2.4 we have \([w_1, v_2] \rightarrow w_3 \), which implies \(v_2 w_2 \in E(G) \) and hence \(\{v_2, v_k\} \succ V(G) \) by Lemma 2.3, also a contradiction. Thus, \(z \notin N(v_0) \).

If \([v_0, v_i] \rightarrow w_k \) for some \(v_i \in N(v_0) \), then by (2-1), we have \(l = k - 1 \) or \(k \). If \(l = k \), then by Lemma 2.3, we have \(\{v_{k-2}, v_k\} \succ V(G) \), a contradiction. \(\Box \)

Lemma 2.6. If \([v_0, v_{k-1}] \rightarrow w_k \), then \(N(v_k) \cap \{v_1, \ldots, v_{k-1}, w_k\} = \emptyset \) and \(\{v_1, \ldots, w_{k-1}\} \subseteq N(v_k) \).

Proof. By (2-1), we have \(N(v_0) - \{v_{k-1}, v_k\} \subseteq N(v_k) \). If \(w_k v_k \notin E(G) \), then since \([v_0, v_{k-1}] \rightarrow w_k \), we have \(\{v_{k-1}, w_k\} \succ V(G) \) and hence \(w_k v_k \notin E(G) \). By Lemma 2.3, \(G[N(v_0) - \{v_{k}, v_k\}] \) is a clique. Thus, if \(v_{k-1} v_k \in E(G) \), then \(\{v_{k-1}, v_1\} \succ V(G) \) and if \(v_1 v_k \in E(G) \) for some \(i \) with \(1 \leq i \leq k - 2 \), then \(\{v_{k-1}, v_i\} \succ V(G) \), a contradiction. Since \(N(v_k) \cap \{v_1, \ldots, v_{k-1}\} = \emptyset \), by (2-1) we have \(\{w_1, \ldots, w_{k-1}\} \subseteq N(v_k) \). \(\Box \)
Lemma 2.7. If \([v_0, v_{k-1}] \rightarrow w_k\), then \(G[N(v_0) - \{v_k\}]\) is a clique and \(N(w_k) \cap N(v_k) = \emptyset\).

Proof. By Lemma 2.6, \(v_kw_k \notin E(G)\). By Lemma 2.3, \(G[N(v_0) - \{v_k, v_k\}]\) is a clique. By (2-1), \(v_{k-2}v_{k-1} \in E(G)\). For \(1 \leq i \leq k - 3\), there is some \(z \in N(v_0)\) such that \([w_{i+1}, z] \rightarrow w_k\) or \([w_k, z] \rightarrow w_{i+1}\) by Lemma 2.2. By (2-1) and Lemma 2.6, we can see that \(\{w_{i+1}, v_k\} \neq v_i\) and \(\{w_k, v_k\} \neq v_{k-1}\), which implies \(z \neq v_k\) and hence \(z = v_i\) or \(v_{k-1}\). In both cases, we have \(v_iv_{k-1} \in E(G)\), which implies \(G[N(v_0) - \{v_k\}]\) is a clique. If \(N(w_k) \cap N(v_k) \neq \emptyset\), then since \([v_0, v_{k-1}] \rightarrow w_k\) and \(G[N(v_0) - \{v_k\}]\) is a clique, we can see that \(\{v_{k-1}, z\} \rightarrow V(G)\) for any \(z \in N(w_k) \cap N(v_k)\), a contradiction.

Lemma 2.8. If \(k \geq 4\), \([v_0, v_{k-1}] \rightarrow w_k\) and for each \(w_i\) with \(1 \leq i \leq k - 1\), there is no vertex \(z\) such that \([v_0, z] \rightarrow w_i\), then \(N^*[w_1] = N_G, [w_1] = V(G)\).

Proof. Let \(U = V(G) - (I \cup N(v_0))\), \(N(w_1) \cap U = U_1\) and \(U_2 = U - U_1\). In order to prove the result, we need the following claims.

Claim 2.1. \(N(w_i) \cap N(v_i) \cap U \neq \emptyset\) for \(1 \leq i \leq k - 2\).

Proof. By the assumption, there is some vertex \(z\) such that \([w_{i+1}, z] \rightarrow v_0\). Obviously \(z \in U\). By (2-1), we have \(z \in N(w_i) \cap N(v_i)\) and hence \(z \in N(w_i) \cap N(v_i) \cap U\).

By Lemmas 2.4 and 2.6, we have \([w_1, v_i] \rightarrow w_{i+1}\) for \(2 \leq i \leq k - 2\) and hence
\[w_iw_i \in E(G)\] for \(2 \leq i \leq k - 2\). (2-3)

Claim 2.2. \(d(w_2) \geq \delta + 1\) and if \(d(w_2) = \delta + 1\), then \(d(v_2) \geq n - \delta\).

Proof. By the assumption, we may assume \([w_3, z] \rightarrow v_0\), which implies \(z \in N(v_2) \cap N(w_2) \cap U\). If \(d(w_2) = \delta\), then \(N_U(w_2) = \{z\}\) by (2-3). Since \([w_3, z] \rightarrow v_0\), by (2-1) and Lemma 2.7 we have \(V(G) - \{w_3, v_k\} \subseteq N[v_2]\). By Lemma 2.6, \(w_3v_k \in E(G)\).

Thus, \(v_2, v_3\) \(\rightarrow V(G)\), a contradiction. Since \(k \geq 4\) and \([w_2, v_2] \rightarrow w_3\), by (2-1) and Claim 2.1, we have \(|N(w_2) \cap N(v_2)| \geq 2\). By (2-3), \(w_2v_2 \in E(G)\). Thus, we have \(d(w_2) + d(v_2) \geq n + 1\) and the conclusion follows.

Claim 2.3. For any \(u \in N_U(w_k)\), either \(uw_2 \in E(G)\) or \(uw_3 \in E(G)\).

Proof. Suppose \(u \in N_U(w_k)\) and \(w_2, w_3 \notin N(u)\). By Lemma 2.2, there is some vertex \(z \in N(v_0)\) such that \([w_3, z] \rightarrow u\) or \([u, z] \rightarrow w_3\). If \([u, z] \rightarrow w_3\), then we must have \(z = v_2\), which is impossible since \(u, v_2 \neq v_k\) by Lemmas 2.6 and 2.7. If \([w_3, z] \rightarrow u\), then since \([w_2, v_2] \rightarrow w_3\) and \(uw_2 \notin E(G)\), we have \(z \neq v_2\). By (2-1) and Lemma 2.6, we can see \(z \in N(v_0) - \{v_2\}\) is also impossible, a contradiction.

Claim 2.4. \(v_{k-1} \in N^*(w_k)\).

Proof. Since \([v_0, v_{k-1}] \rightarrow w_k\), by Lemma 2.7 we have \(d(v_{k-1}) = n - 3\). Noting that
\[d(w_k) \geq \delta \geq 4, \text{ we have } d(v_{k-1}) + d(w_k) \geq n + 1 \text{ and hence } v_{k-1} \in N^*(w_k).\]

Claim 2.5. If \(d(w_2) = \delta + 1\) and \(d(w_3) = \delta\), then \(v_k \in N^*(w_k)\).

Proof. Let \(N(w_k) \cap U = U_3\) and \(U_4 = U - U_3\). By (2-1) and Lemma 2.6, we have \(v_{k-1}, v_k \notin N(w_k)\) and hence \(|U_3| \geq 2\). By the assumption, there are some \(z_i \in U\) such that \([w_i, z_i] \to v_0\) for \(i = 1, 2\). If \(z_1 \neq z_2\), then \(d_U(w_3) \geq 2\). If \(k = 4\), then \(w_3v_3 \in E(G)\) by the assumption and if \(k \geq 5\), then \(w_3v_3 \in E(G)\) by (2-3). By (2-1) and Lemma 2.6, \(N(v_0) \setminus \{v_2, v_3\} \subseteq N(w_3)\). Thus we have \(d(w_3) \geq \delta + 1\) and hence we may assume \(z_1 = z_2 = u_1\). Obviously, \(u_1 \in U_3\). Since \(d(w_2) = \delta + 1\) and \(d(w_3) = \delta\), by Claim 2.3, we have \(|U_3| = 2\) and \(U_4 = U_3\). Since \([w_2, u_1] \to v_0, v_{k-1} \in N(w_2) \cap N(u_1)\) and \(w_2u_1 \in E(G)\), we have \(d(u_1) + d(w_2) \geq n\), which implies \(d(u_1) \geq n - \delta - 1\). We now show \([w_k, v_k] \to v_{k-1}\). If \(U_4 = \emptyset\), then by (2-1) and Lemma 2.6, \([w_k, v_k] \to v_{k-1}\). If \(U_4 \neq \emptyset\), then since \(u_1w_3 \in E(G)\) and \(d(w_3) = \delta\), we have \(N(w_3) \cap U_4 = \emptyset\). For any \(u \in U_4\), by Lemma 2.2, there is some vertex \(z \in N(v_0)\) such that \([u, z] \to w_3\) or \([w_3, z] \to u\). If \([w_3, z] \to u\), then since \([w_2, v_2] \to w_3\) and \(u \notin N(w_2)\), we have \(z \neq v_2\). By (2-1) and Lemma 2.6, \(z \notin N(v_0) \setminus \{v_2\}\), a contradiction. If \([u, z] \to w_3\), then by (2-1) and Lemma 2.6, \(z = v_2\). Since \(v_2v_k \notin E(G)\) by Lemma 2.6, we have \(v_ku \in E(G)\) and hence \(U_4 \subseteq N(v_k)\). Thus, \([w_k, v_k] \to v_{k-1}\). Since \(d(v_{k-1}) = n - 3\), \(d(v_2) \geq n - \delta\) by Claim 2.2 and \(d(v_1) \geq n - \delta - 1\), we have \(v_{k-1}, v_2, u_1 \in N^*(v_k)\). By Claim 2.4, \(v_{k-1} \in N^*(w_k)\). By Lemmas 2.6 and 2.7, \(v_{k-1}, v_2, u_1 \notin N(v_k)\). Thus, we have \(d^*(w_k) + d^*(v_k) \geq n + 1\) and hence \(v_k \in N^*(w_k)\).

Claim 2.6. For any \(u \in U_2\), we have \([u, v_1] \to w_1\).

Proof. Since \(uw_1 \notin E(G)\), there exists some vertex \(z\) such that \([w_1, z] \to u\) or \([u, z] \to w_1\). In order to dominate \(v_0\), we have \(z \in N[v_0]\). Thus by (2-1) and Lemma 2.6, it is easy to see \([w_1, z] \to u\) is impossible. If \([u, z] \to w_1\), then by the assumption we have \(z \neq v_0\). By (2-1) and Lemma 2.6, we have \(z = v_1\), that is, \([u, v_1] \to w_1\).

Claim 2.7. For any \(u \in U_2\), \(N(v_0) \subseteq N(u)\).

Proof. Since \([w_1, v_1] \to w_2\) and \(u \in U_2\), we have \(v_1 \in N(u)\). By Lemmas 2.4 and 2.6, we have \(v_i \in N(u)\) for \(2 \leq i \leq k - 2\). By Lemma 2.6 and Claim 2.6, we have \(v_k \in N(u)\). We now show \(v_{k-1} \in N(u)\). Since \(w_1w_k \notin E(G)\), by Lemma 2.2, there exists some vertex \(z \in N(v_0)\) such that \([w_1, z] \to w_k\) or \([w_k, z] \to w_1\). By (2-1) and Lemma 2.6, we can see \([w_k, z] \to w_1\) is impossible. Thus we have \([w_1, z] \to w_k\). By Claim 2.6 we have \(w_1v_1 \notin E(G)\). By Lemma 2.6, we have \(z \neq v_k\) since \(\{w_1, v_k\} \neq v_1\). By (2-1), we have \(z = v_{k-1}\) which implies \(v_{k-1} \in N(u)\).

Claim 2.8. If \(U_2 \neq \emptyset\), then \(N_U(w_k) \subseteq N(w_1) \cap N(w_2)\).

Proof. Let \(u \in N_U(w_k)\) and \(w \in \{w_1, w_2\}\). If \(uw \notin E(G)\), then there is some vertex \(z\) such that \([u, z] \to w\) or \([w, z] \to u\). If \([w, z] \to u\), then \(z \in N(v_0)\). By Claim 2.6,
\(v_1w_1 \notin E(G)\), which implies \([w_2, v_1] \to u\) cannot occur. Thus, by (2-1) and Lemma 2.6 we see that \([w, z] \to u\) is impossible. If \([u, z] \to w\), then by the assumption, \(z \neq v_0\).

By Lemma 2.6, \(z \neq v_k\). If \(z \in N(v_0) - \{v_k\}\), then \(\{u, z\} \neq v_k\) by Lemmas 2.6 and 2.7. Thus, \(z \notin N(v_0)\), a contradiction.

We first show that \(w_1v_1 \in E(G^*)\).

If \(w_1v_1 \in E(G)\), then \(w_1v_1 \in E(G^*)\). If \(\delta \geq 5\), then by Lemma 2.7, Claim 2.1 and \([w_1, v_1] \to w_2\), we have \(d(w_1) + d(v_1) \geq n + 1\) and hence \(w_1v_1 \in E(G^*)\). Thus, we may assume that \(w_1v_1 \notin E(G)\) and \(\delta = 4\).

If \(|N(w_1) \cap N(v_1) \cap U| \geq 2\), then by Lemma 2.7 and \([w_1, v_1] \to w_2\), we have \(d(w_1) + d(v_1) \geq n + 1\) and hence \(w_1v_1 \in E(G^*)\). Thus by Claim 2.1 we may assume

\[N(w_1) \cap N(v_1) \cap U = \{u_1\}\]
(2-4)

By the assumption, we let \([w_1, z] \to v_0\). If \(z \neq u_1\), then \(z \in U_2\) by (2-4). This is impossible since \(\{w_1, z\} \neq w_k\) by Claim 2.8 and hence we have

\([w_1, u_1] \to v_0\).
(2-5)

If \(U_2 \neq \emptyset\), we let \(u \in U_2\). If \(u' \in U_2\) and \(uu' \notin E(G)\), then there is some vertex \(z\) such that \([u, z] \to u'\) or \([u', z] \to u\). By symmetry we may assume \([u, z] \to u'\). By Claim 2.7, \(z \notin N(v_0)\). If \(z = v_0\), then \(\{u, z\} \neq w_1\), a contradiction. Hence \(U_2\) is a clique. If \(u' \in U_1\) and \(uu' \notin E(G)\), then by Claim 2.6 we have \(u' \in N(v_1)\), which implies \(u' = u_1\) by (2-4). By (2-5), \(u_1u \in E(G)\). Thus, \(U \subseteq N[u]\) for any \(u \in U_2\). By Claim 2.6, \(U_2 \subseteq N(w_2)\). Thus by Claim 2.7, we have \(d(u) \geq n - \delta - 1\). If \(d(w_1) \geq \delta + 2\), then \(uu_1 \in E(G^*)\), which implies \(w_1v_1 \in E(G^*)\). If \(d(w_1) \leq \delta + 1\), then by (2-1) and Lemma 2.6 we have \(|U_1| \leq 2\). By Lemma 2.6 and the assumption, we have \(d_U(w_k) \geq 2\). Thus by Claim 2.8 we have \(U_1 = N_U(w_k) \subseteq N(w_2)\) and hence \(U \subseteq N(w_2)\). In this case, we have \([v_1, w_2] \to w_1\). By Lemma 2.7, Claim 2.7 and (2-4), \(|N(v_1) \cap N(w_2)| \geq 4\). Thus we have \(v_1w_2 \in E(G^*)\) and hence \(w_1v_1 \in E(G^*)\).

If \(U_2 = \emptyset\), then since \(w_1v_1 \notin E(G)\), there is some vertex \(z\) such that \([w_1, z] \to v_1\) or \([v_1, z] \to w_1\). If \([w_1, z] \to v_1\), then \(z \neq v_0\) and hence \(z \in N(v_0)\). By Lemma 2.7, \(z = v_k\). This is impossible since \(\{v_1, v_k\} \neq w_1\) by Lemma 2.6. Thus we have \([v_1, z] \to w_1\). Since \(U_2 = \emptyset\) and \(N(v_0) - \{v_k\} \subseteq N(w_1)\), we have \(z \in \{w_2, \ldots, w_k\}\). In this case, \(z = w_2\), that is, \([w_2, v_1] \to w_1\). By (2-5), \(u_1w_2 \in E(G)\). Thus by (2-4), we have \(U \subseteq N(w_2)\). By (2-1) and Lemmas 2.4 and 2.6, \(v_2, v_3, v_4 \in N(w_1) \cap N(w_2)\). Thus, if \(|U| \geq 4\), then \(d(w_1) + d(w_2) \geq n + 1\), which implies \(w_1w_2 \in E(G^*)\) and hence \(w_1v_1 \in E(G^*)\). If \(|U| \leq 3\), then \(n \leq 12\). After an easy but tedious check, we can show \(w_1v_1 \in E(G^*)\).

Next, we show \(U \subseteq N^*(w_1)\). If \(U_2 = \emptyset\), then \(U \subseteq N(w_1) \subseteq N^*(w_1)\) and hence we assume \(U_2 \neq \emptyset\). Let \(u \in U_2\). Suppose \(u' \in V(G - N[v_0])\) and \(u' \notin N^*(u)\). Obviously, \(uu' \notin E(G)\) and hence there is some \(z\) such that \([u', z] \to u\) or \([u, z] \to u'\). If \([u', z] \to u\), then \(z \notin N(v_0)\) by Claim 2.7 and hence \(z = v_0\). In this case, \(u' \notin U\).
Since \([v_0, v_{k-1}] \rightarrow w_k, v_{k-1} \in N(u')\). By Claim 2.6, \(v_1u' \in E(G)\). Thus we have \(d(u') \geq n - \delta - 1\). By the assumption, there exists some \(z'\) such that \([u_1, z'] \rightarrow v_0\). By Lemma 2.7 and Claim 2.7, \(z' \in U_1\) and hence \(N_{U_1}(u) \neq \emptyset\). By Claim 2.6, \(w_2 \in N(u)\). Thus, by Claim 2.7 we have \(d(u) \geq \delta + 2\), which implies \(u' \in N^*(u)\) and hence \([u', z] \rightarrow u\) is impossible. Thus we always have \([u, z] \rightarrow u'\). By Claim 2.8, \(w_k \notin N(u)\). Thus we have \(z \neq v_0\) since \([u, v_0] \neq \{w_1, w_k\}\) and hence \(z \in N(v_0)\). If \(V(G) - N[v_0]\) contains \(\delta\) vertices, say \(u'_1, u'_2, \ldots, u'_k\), that are not adjacent to \(u\) in \(G^*\), then there are \(z_{u'_i} \in N(v_0)\) such that \([u, z_{u'_i}] \rightarrow u'_i\) for \(1 \leq i \leq k\). Clearly, if \(i \neq j\), then \(z_{u'_i} \neq z_{u'_j}\) since \(u'_i \neq u'_j\). This is impossible since \([u, v_{k-1}] \neq w_k\) and \([u, v_k] \neq w_k\). Therefore, \(V(G) - N[v_0]\) contains at most \(\delta - 1\) vertices that are not adjacent to \(u\) in \(G^*\) and hence \(d^*(u) \geq n - \delta - 1\) since \(N(v_0) \subseteq N(u)\) by Claim 2.7. By Claim 2.6, \(w_1v_1 \notin E(G)\). By Lemma 2.6 and the assumption, \(d_U(w_k) \geq 2\) which implies \(d_U(w_1) \geq 2\) by Claim 2.8. Thus by (2-1) and Lemma 2.6 we have \(d(w_1) \geq \delta + 1\) and hence \(d^*(w_1) \geq \delta + 2\) since \(w_1v_1 \in E(G^*)\). This implies \(d^*(w_1) + d^*(u) \geq n + 1\) and thus \(U \subseteq N^*(w_1)\).

Finally, we show \(N^*[w_1] = V(G)\). Since \(w_1v_1 \in E(G^*)\) and \(U \subseteq N^*(w_1)\), by (2-1), we have \(d^*(w_1) \geq n - \delta - 1\). By Claim 2.2, \(d(w_2) \geq \delta + 1\). If \(d(w_2) \geq \delta + 2\), then by Claim 2.4, we have \(w_2, w_k \in N^*(w_1)\), which implies \(d^*(w_1) \geq n - \delta + 1\) and hence \(N^*[w_1] = V(G)\). If \(d(w_2) = \delta + 1\) and \(d(w_3) \geq \delta + 1\), then by Claim 2.2 we have \(d^*(w_3) \geq \delta + 2\). Thus \(w_3, w_2 \in N^*(w_1)\) and hence \(N^*[w_1] = V(G)\). If \(d(w_2) = \delta + 1\) and \(d(w_4) = \delta\), then \(d^*(w_4) \geq \delta + 2\) by Claims 2.4 and 2.5. Thus, \(w_k, w_2 \in N^*(w_1)\) and hence \(N^*[w_1] = V(G)\).

3. Some Lemmas

Let \(G\) be a graph of order \(n\), and \(x, y\) vertices of \(G\) such that the longest \((x, y)\)-path is of length \(n - 2\). Let \(P = P_{xy}\) be an \((x, y)\)-path of length \(n - 2\) and suppose the orientation of \(P\) is from \(x\) to \(y\). We denote by \(x_P\) the only vertex not in \(P\) and let \(d(x_P) = k \geq 2\) with

\[
\begin{align*}
N(x_P) &= X = \{x_1, x_2, \ldots, x_k\}, \\
A &= X^+ = \{a_1, a_2, \ldots, a_s\}, \quad \text{indices following the orientation of } P; \\
B &= X^- = \{b_1, b_2, \ldots, b_t\}, \quad \text{where } a_i = x_i^+, x_i^- \in V(P) \text{ and } s \geq k - 1; \\
P_i &= a_iPb_{i+1}, \quad \text{where } 1 \leq i \leq k - 1.
\end{align*}
\]

Furthermore, we let \(P_0 = xPb_1\) if \(x \notin X\) and \(P_k = a_KPy\) if \(y \notin X\). In this section, we will establish some lemmas. It is worth noting that all lemmas in this section except the last one do not depend on the 3-critical property of \(G\).

Definition. A vertex \(v \in P_i\) (\(1 \leq i \leq k\)) is called an \(A\)-vertex if \(G[V(P_i) \cup \{x_{i+1}\}]\) contains a hamiltonian \((v, x_{i+1})\)-path, and \(v \in P_i\) (\(0 \leq i \leq k - 1\)) a \(B\)-vertex if \(G[V(P_i) \cup \{x_i\}]\) contains a hamiltonian \((x_i, v)\)-path, where \(x_{k+1} = y\) and \(x_0 = x\).
From the definition, we can see that each a_i is an A-vertex and each b_i is a B-vertex. Let $u_i \in P_i$ be an A-vertex and Q_i a given Hamiltonian (u_i, x_{i+1})-path in $G[V(P_i) \cup \{x_{i+1}\}]$. Suppose the orientation of Q_i is from u_i to x_{i+1}. We have the following two lemmas.

Lemma 3.1. If $u_i \in P_i$ and $u_j \in P_j$ are two A-vertices (B-vertices, respectively) with $i \neq j$, then $x_P u_i \notin E(G)$ and $u_i u_j \notin E(G)$. In particular, both $A \cup \{x_P\}$ and $B \cup \{x_P\}$ are independent sets.

Proof. If $x_P u_i \in E(G)$, then $x_P x_i x_P u_i \bar{Q}_i x_{i+1} \bar{P} y$ is a Hamiltonian (x, y)-path. Assume $i < j$. If $u_i u_j \in E(G)$, then the (x, y)-path $x_P x_i x_P x_j \bar{P} x_{i+1} \bar{Q}_i u_i u_j \bar{Q}_j x_{j+1} \bar{P} y$ is Hamiltonian, a contradiction.

Lemma 3.2. Let $u_i \in P_i$, $u_j \in P_j$ be A-vertices with $i < j$, $Q = u_i \bar{Q}_i x_{i+1} \bar{P} x_j$ and $R = u_j \bar{Q}_j x_{j+1} \bar{P} y$. If $v \in N_Q(u_i)$, then $v^{-} \notin N(u_j)$ and if $v \in N(u_i) \cap (x_P x_i \cup R)$, then $v^{+} \notin N(u_j)$. In particular, let $a_i, a_j \in A$ with $i < j$ and $v \in N(a_i)$, then $v^{-} \notin N(a_j)$ if $v \in a_i \bar{P} x_j$ and $v^{+} \notin N(a_j)$ if $v \in x_P x_i \cup a_j \bar{P} y$.

Proof. If $v \in N_Q(u_i)$ and $v^{-} \notin N(u_j)$, then the (x, y)-path $x_P x_i x_P x_j \bar{Q} v u_i \bar{Q} v^{-} u_j \bar{R} y$ is Hamiltonian, a contradiction. As for the latter case, the proof is similar.

By symmetry of A and B, Lemma 3.2 still holds if we exchange A and B.

Lemma 3.3. Let $u, v \in a_i \bar{P} b_j$ with $j \geq i + 1$ and $G[a_i \bar{P} b_j]$ contain a Hamiltonian (u, v)-path Q. Suppose that $w \in x_P x_i \cup x_j \bar{P} y$ and $uw \in E(G)$. Then $w^{-} v \notin E(G)$ if $w^{-} \in x_P x_i \cup x_j \bar{P} y$, and $w^{+} v \notin E(G)$ if $w^{+} \in x_P x_i \cup x_j \bar{P} y$. In particular, let $a_i \in A$ and $b_j \in B$ with $j \geq i + 1$. Suppose that $v \in x_P x_i \cup x_j \bar{P} y$ and $a_i v \in E(G)$. Then $v^{-} b_j \notin E(G)$ if $v^{-} \in x_P x_i \cup x_j \bar{P} y$ and $v^{+} b_j \notin E(G)$ if $v^{+} \in x_P x_i \cup x_j \bar{P} y$.

Proof. Suppose that $w \in x_P x_i$. If $w^{-} \in x_P x_i$ and $w^{-} v \in E(G)$, then the (x, y)-path $x_P w^{-} v \bar{Q} w u \bar{P} x_i x_P x_j \bar{P} y$ is Hamiltonian, and if $w^{+} \in x_P x_i$ and $w^{+} v \in E(G)$, then the (x, y)-path $x_P w u \bar{Q} v w^{+} \bar{P} x_i x_P x_j \bar{P} y$ is Hamiltonian, a contradiction. As for the case $w \in x_P \bar{P} y$, the proof is similar.

Lemma 3.4. Let $u, u^{+} \in V(P_i)$. If $u^{+} a_l \in E(G)$ for some $l \geq i + 1$, then $b_j u \notin E(G)$ for all $j \leq i$.

Proof. If $b_j u \in E(G)$ for some $j \leq i$, then the (x, y)-path $x_P b_j u \bar{P} x_j x_P x_i \bar{P} u^{+} a_l \bar{P} y$ is Hamiltonian, a contradiction.

Lemma 3.5. Let $z \in V(G) - N[x_P]$. If $|N(z) \cap A| \geq 2$, then $z^{-} z^{+} \notin E(G)$.

Proof. Let $a_l, a_m \in N(z)$ with $l < m$ and $z \in P_j$. If $z^{-} z^{+} \in E(G)$, then the (x, y)-path $x_P z^{-} z^{+} \bar{P} x_i x_P x_m \bar{P} a_l z a_m \bar{P} y$ is Hamiltonian if $j < l$, $x_P x_i x_P x_m \bar{P} z^{+} z^{-} \bar{P} a_l z a_m \bar{P} y$ is Hamiltonian if $l < j < m$, and $x_P x_i x_P x_m \bar{P} a_l z a_m \bar{P} z^{-} z^{+} \bar{P} y$ is Hamiltonian if $m \leq j$, and so on.
Lemma 3.6. Let $z, z^- \in P_i, w, w^- \in P_j$ with $i, j \geq 1$ and $k \geq 4$. If $|A - N(z)| \leq 1$ and $A \subseteq N(w)$, then $z^-w^- \notin E(G)$.

Proof. Suppose to the contrary $z^-w^- \in E(G)$. If $i = j$ and $w \in xPz$, then $a_iw \notin E(G)$ for otherwise w is an A-vertex, which contradicts Lemma 3.1 since $A \subseteq N(w)$. Hence we have $A - \{a_i\} \subseteq N(z)$. Noting that $A \subseteq N(w)$ and $k \geq 4$, we have $w \neq z$ by Lemma 3.2. Thus, the (x, y)-path $xPw^-z^-Pwa_2Px_2Pw_2Pz_3P$ is hamiltonian if $i = 1$, $xPx_1Pz_1Pz_2Pw^-z^-Pwa_3P$ is hamiltonian if $i = 2$, and $xPx_1Pz_1Pz_2Pwa_2Pz^-w^-Pz_3P$ is hamiltonian if $i \geq 3$, a contradiction. If $i = j$ and $z \in xPw$, then since $a_iw \in E(G)$, z is an A-vertex, which contradicts Lemma 3.1 since $|A - N(z)| \leq 1$. If $i \neq j$, then since $a_jw \in E(G)$, w is an A-vertex. Since $z^-w^- \in E(G)$, by Lemma 3.1, $za_i \notin E(G)$. Thus, $xPz_1Pz_2Pz_3Pw^-z^-Pz_4P$ is a hamiltonian (x, y)-path if $i < j$, and $xPz_1Pz_2Pw_1Pz^-w^-Pz_4P$ is a hamiltonian (x, y)-path if $i > j$, also a contradiction.

Lemma 3.7. Let $z, z^- \in P_i, w, w^- \in P_j$ with $i, j \geq 1$ and $k \geq 4$. If $|A \cup B - N(z)| \leq 1$ and $|A - N(w)| \leq 1$, then $w^-z^- \notin E(G)$.

Proof. We first show the following claim.

Claim 3.1. Let $u, v \in P_l, v^- \in P_m$ and $h \neq l, m$. If $u^-v^- \in E(G)$, then either $ua_h \notin E(G)$ or $vb_{h+1} \notin E(G)$.

Proof. Assume without loss of generality $v \in uP$. If $ua_h, vb_{h+1} \in E(G)$, then $u \neq v^-$ by Lemma 3.3. Thus the (x, y)-path $xPu^-v^-Pua_hPvb_{h+1}vP$ is hamiltonian if $h < l$, $xPu^-v^-Pua_hPvb_{h+1}vP$ is hamiltonian if $l < h < m$, and $xPu^-v^-Pua_hPvb_{h+1}vP$ is hamiltonian if $m < h$, a contradiction.

By Lemma 3.6, we may assume $B \subseteq N(z)$. If $w^-z^- \in E(G)$, then by Claim 3.1, $a_jw \notin E(G)$ for $l \neq i, j$. Noting $k \geq 4$ and $|A - N(w)| \leq 1$, we have $i \neq j$ and $wa_i, wa_j \in E(G)$. Since $wa_j \in E(G)$, w is an A-vertex. If $za_i \in E(G)$, then z is also an A-vertex which contradicts Lemma 3.1 since $i \neq j$ and $w^-z^- \in E(G)$. Hence, $za_i \notin E(G)$, which implies $za_j \in E(G)$ since $|A \cup B - N(z)| \leq 1$. If $j < k$, then $w^-P_{a_jw}w^-Pb_{j+1}v$ is a hamiltonian path in $G[V(P_j)]$, which contradicts Lemma 3.3 since $w^-z^-w^-z^-P_{a_iw}w^-Pb_{j+1}vP$ is a hamiltonian, a contradiction.

Lemma 3.8 (Chen et al. [4]). Let $z \in V(P) - X$ and $v \in A \cup B$. If $d(xP) = k \geq 4$ and $A \cup B - \{v\} \subseteq N(z)$, then $A \cup \{z^+\}$ is an independent set if $z^+ \in V(P)$ and $B \cup \{z^-\}$ is an independent set if $z^- \in V(P)$.

Lemma 3.9 (Chen et al. [5]). Let $u, v \notin V(P_i)$ and $\{u, v\} \supseteq V(P_i)$. If $ua_i, vb_{h+1} \in E(G)$, where $b_{k+1} = y$ if $i = k$, then there is some $w \in V(P_i)$ such that $uw, vw^+ \in E(G)$.

10
Let $z \in P_j$ and $[a_i, z] \rightarrow x_P$. We have the following five lemmas (3.10-3.14).

Lemma 3.10. If $2 \leq i \leq j$ and $z^+ \in V(P)$, then $A \cup \{x_P, z^+\}$ is an independent set.

Proof. Since $za_1 \in E(G)$, we have $a_1z^+ \notin E(G)$ for $2 \leq l \leq j$ by Lemma 3.2. If $a_1z^+ \in E(G)$ or $a_1z^+ \in E(G)$ for some $l \geq j + 1$, then by Lemmas 3.3 or 3.4 we have $b_2z \notin E(G)$ and hence $b_2a_i \in E(G)$. By Lemma 3.9, there is some $w \in P_l$ such that $wz, w^+ a_i \in E(G)$. Thus, the (x, y)-path $x \overrightarrow{P} x_1 x_P x_i \overrightarrow{P} w^+ a_i \overrightarrow{P} zw \overrightarrow{P} a_1 z^+ \overrightarrow{P} y$ is hamiltonian if $a_1z^+ \in E(G)$, and $x \overrightarrow{P} w z \overrightarrow{P} a_i w^+ \overrightarrow{P} x_i x_P x_1 \overrightarrow{P} z^+ a_i \overrightarrow{P} y$ is hamiltonian if $a_1z^+ \in E(G)$ for some $l \geq j + 1$, a contradiction. If $z \in B$, then $z = b_{j+1}$. By Lemma 3.1 we have $a_1 b_{j+1}, b_2 a_i \in E(G)$. By Lemma 3.9, there is some $w \in P_l$ such that $w b_{j+1}, w^+ a_i \in E(G)$, which contradicts Lemma 3.3. Thus, $z \notin B$ and hence $z^+ x_P \notin E(G)$, which implies $A \cup \{x_P, z^+\}$ is an independent set.

Lemma 3.11. If $2 \leq i \leq j$ and $|A| \geq 3$, then $B \cup \{z^-, x_P\}$ is an independent set.

Proof. Since $A - \{a_i\} \subseteq N(z)$ and $2 \leq i \leq j$, we have $b_l z^- \notin E(G)$ for $l \neq 1, j + 1$ by Lemma 3.3. If $b_l z^- \in E(G)$ or $z^- b_{j+1} \in E(G)$, then by Lemmas 3.2 or 3.1, we have $b_l \notin N(z)$. Since $[a_i, z] \rightarrow x_P$, we have $b_2 a_i \in E(G)$. By Lemma 3.9, there is some $u \in P_l$ such that $uz, u^+ a_i \in E(G)$. Thus, the (x, y)-path $x \overrightarrow{P} b_l z^- \overrightarrow{P} a_i u^+ \overrightarrow{P} x_i x_P x_1 \overrightarrow{P} uz \overrightarrow{P} y$ is hamiltonian if $b_l z^- \in E(G)$, and $x \overrightarrow{P} u z \overrightarrow{P} b_{j+1} z^- \overrightarrow{P} a_i u^+ \overrightarrow{P} x_i x_P x_{j+1} \overrightarrow{P} y$ is hamiltonian if $b_{j+1} z^- \in E(G)$, a contradiction. Since $|A| \geq 3$ and $[a_i, z] \rightarrow x_P$, by Lemma 3.1 we have $z \notin A$ which implies $z^- x_P \notin E(G)$. Thus, by Lemma 3.1 we can see that $B \cup \{z^-, x_P\}$ is an independent set.

Lemma 3.12. If $j + 1 < i$, then $A \cup \{z^+, x_P\}$ is an independent set.

Proof. Since $a_{j+1} z \in E(G)$, by Lemma 3.2 we have $a_1 z^+ \notin E(G)$ for all l with $l \neq j + 1$. If $a_{j+1} z^+ \in E(G)$, then by Lemma 3.3 we have $b_{j+2} z \notin E(G)$ and hence $a_{j+2} \in E(G)$. By Lemma 3.9, there is some $u \in P_{j+1}$ such that $uz, u^+ a_i \in E(G)$. Thus, the (x, y)-path $x \overrightarrow{P} u z \overrightarrow{P} a_{j+1} z^+ \overrightarrow{P} x_{j+1} x_P x_i \overrightarrow{P} u^+ a_i \overrightarrow{P} y$ is hamiltonian, a contradiction. If $z \in B$, then $z = b_{j+1}$. Since $[a_i, z] \rightarrow x_P$ and $j + 1 < i$, there is some $u \in P_{j+1}$ such that $uz, u^+ a_i \in E(G)$, which contradicts Lemma 3.4. Hence $z \notin B$ which implies $z^+ x_P \notin E(G)$. Thus, $A \cup \{z^+, x_P\}$ is an independent set by Lemma 3.1.

Lemma 3.13. Let $|A| \geq 3$. If $j + 1 < i$ and $z^- \in V(P)$, then $B \cup \{z^-, x_P\}$ is an independent set.

Proof. Since $a_{j+1} z \in E(G)$, we have $b_l z^- \notin E(G)$ for $l \neq j + 1$ by Lemmas 3.3 and 3.4. If $b_{j+1} z^- \in E(G)$, then z is a B-vertex. By Lemma 3.1 we have $z b_{j+2} \notin E(G)$, which implies $a_i b_{j+2} \in E(G)$. By Lemma 3.9, there is some $w \in P_{j+1}$ such that $zw, w^+ a_i \in E(G)$. Thus, the (x, y)-path $x \overrightarrow{P} z^- b_{j+1} \overrightarrow{P} w \overrightarrow{P} x_{j+1} x_P x_i \overrightarrow{P} w^+ a_i \overrightarrow{P} y$ is hamiltonian, a contradiction. Since $|A| \geq 3$ and $[a_i, z] \rightarrow x_P$, we have $z \notin A$ by Lemma 3.1 and hence $z^- x_P \notin E(G)$. Thus, $B \cup \{z^-, x_P\}$ is an independent set.
The following two lemmas can be extracted from [5]: Lemma 3.14 is extracted from the Case 2 of Lemma 2.8(2) and Lemma 3.15 from Lemma 2.9 in [5].

Lemma 3.14 (Chen et al. [5]). If \(j = i - 1 \geq 1 \), \(d(x_P) = k \geq 4 \) and \(\{x, y\} \subseteq N(x_Q) \) for any longest \((x, y)\)-path \(Q \), then \(B \cup \{z^-, x_P\} \) is an independent set.

Lemma 3.15 (Chen et al. [5]). Suppose that \(P \) is a longest \((x, y)\)-path such that \(|X \cap \{x, y\}| \) is as small as possible and that for this path, \(d(x_P) = k \geq 4 \). If \(G \) is 3-critical, then there exists an independent set \(I \) such that either \(\{x_P\} \cup A \subseteq I \) or \(\{x_P\} \cup B \subseteq I \) and \(|I| \geq k + 1 \).

4. Proof of Theorem 4

Let \(G \) be a 3-connected 3-critical graph with \(\alpha(G) = \delta(G) + 1 \geq 5 \). If \(G \) is not Hamilton-connected, then by Theorem 5, there are two vertices \(x, y \in V(G) \) such that \(p(x, y) = n - 2 \). Among all the longest \((x, y)\)-paths, we choose \(P \) such that \(|\{x, y\} \cap N(x_P)| \) is as small as possible. Choose an orientation of \(P \) such that \(|A| \geq |B| \). Assume without loss of generality that the orientation is from \(x \) to \(y \). We still use the notations given in Section 3.

Since \(\alpha(G) = \delta(G) + 1 \geq 5 \), by the choice of \(P \) and Lemma 3.15, \(d(x_P) = k = \delta \geq 4 \). We first show the following claims.

Claim 4.1. Let \(z \in P_j \) and \([a_i, z] \rightarrow x_P\). If \(|A| = k \) and \(j = i - 1 \geq 1 \), then \(B \cup \{z^-, x_P\} \) is an independent set.

Proof. Let \(U = N[x_P] \cup A \). By Lemmas 2.1 and 2.2, we may assume that \([a_i, x_j] \rightarrow a_{i+1} \) for \(1 \leq l \leq k - 1 \). Thus, noting that \(|A| = k \), we have

\[
d_U(x_l) \geq \delta \text{ for any } x_l \in N(x_P).
\]

(4-1)

Assume \(b_i \in B \) and \(b_iz^- \in E(G) \). Since \(A - \{a_i\} \subseteq N(z) \), by Lemma 3.3, \(l \in \{1, j + 1, i + 1\} \). If \(j = 1 \), then \(i = 2 \). Since \(a_3z \in E(G) \), by Lemma 3.4, \(l \neq 1 \) and hence \(l \in \{2, 3\} \). If \(l = 2 \) or \(3 \), then by Lemma 3.2 we have \(b_iz \notin E(G) \) and hence \(a_2b_1 \in E(G) \). Since \(za_3, a_2b_4 \in E(G) \), by Lemma 3.1 we have \(|P_1| \geq 2 \) and \(|P_2| \geq 2 \), which implies \(b_2, b_3 \notin U \). Thus we have \(d(x_2) \geq \delta + 1 \) and \(d(x_3) \geq \delta + 1 \) by (4-1).

If \(l = 2 \), then \(Q = xPz^-b_2Pza_3Pb_4a_2P_{x_3x_4P}y \) is an \((x, y)\)-path of length \(n - 2 \) with \(d(x_Q) = d(x_2) \geq \delta + 1 \) and if \(l = 3 \), then \(R = xPz^-b_3Pb_2a_3P_{x_2x_3x_4P}y \) is an \((x, y)\)-path of length \(n - 2 \) with \(d(x_R) = d(x_3) \geq \delta + 1 \). Since \(\alpha(G) = \delta(G) + 1 \), by Lemma 3.1 we have \(y \in N(x_2) \) if \(l = 2 \) and \(y \in N(x_3) \) if \(l = 3 \). If \(y \neq a_k \), then \(d(x_2) \geq \delta + 2 \) if \(l = 2 \) and \(d(x_3) \geq \delta + 2 \) if \(l = 3 \), which implies \(\alpha(G) \geq \delta(G) + 2 \) by Lemma 3.1, a contradiction. Hence \(y = a_k \). Thus, \(xPz^-b_2P_{x_3x_4P}x_3a_3P_{x_2a_k} \) is a hamiltonian \((x, y)\)-path if \(l = 2 \) and \(xPz^-b_3P_{x_2a_3x_3a_k} \) is a hamiltonian \((x, y)\)-path if \(l = 3 \), a contradiction. Hence we have \(j \geq 2 \). Since \(l \in \{1, j + 1, i + 1\} \), we have
contains a vertex $b_2z \notin E(G)$ by Lemma 3.2 and hence $b_2a_i \in E(G)$. If $l = 1$, then since $[a_i, z] \rightarrow x_P$, we have $zz_1 \in E(G)$ or $a_ix_1 \in E(G)$. Thus, $xPb_1z\overline{P}x_2px_3\overline{P}x_1\overline{P}b_2a_i\overline{P}y$ is a hamiltonian (x, y)-path if $zz_1 \in E(G)$ and $xPb_1z\overline{P}a_iz\overline{P}x_3px_1a_i\overline{P}y$ is a hamiltonian (x, y)-path if $a_ix_1 \in E(G)$. If $j + 1$, then $Q = xPb_1x_2x_3z\overline{P}a_iz\overline{P}b_2a_i\overline{P}y$ is a hamiltonian (x, y)-path of length $n - 2$ with $x_Q = x_{j + 1}$. Since $|P_j| \geq 2$, $b_{j + 1} \notin U$ which implies $d(x_{j + 1}) \geq 3 + 1$ by (4.1). Since $a(G) = \delta(G) + 1$, by Lemma 3.1 we have $xx_{j + 1} \in E(G)$ and $x = x_1$. In this case, $xx_{j + 1}xp_{x_2}z\overline{P}a_iz\overline{P}b_2a_i\overline{P}y$ is a hamiltonian (x, y)-path. If $l = i + 1$, then since $[a_i, z] \rightarrow x_P$, we have $zz_{i + 1} \in E(G)$ or $a_ix_{i + 1} \in E(G)$. Thus, $xPb_2a_i\overline{P}b_{i + 1}z\overline{P}x_2px_1z\overline{P}a_{i + 1}\overline{P}y$ in the former case and $xPb_1x_2p_{x_1}z\overline{P}a_iz\overline{P}b_2a_i\overline{P}y$ in the latter case, is a hamiltonian (x, y)-path, a contradiction. Therefore, $B \cup \{z\}$ is an independent set. On the other hand, since $k \geq 4$ and $[a_i, z] \rightarrow x_P$, by Lemma 3.1, we have $z \notin A$ and hence $z^- \notin E(G)$. Thus by Lemma 3.1, $B \cup \{z, x_P\}$ is an independent set.

Claim 4.2. Let $I = \{x_P\} \cup W$ with $|I| = k + 1 \geq 5$ be an independent set. If $W = A$ or I is obtained by one of the Lemmas 3.8 and 3.10-3.15, then $[x_P, x_1] \rightarrow w$ is impossible for any $x_1 \in X$ and $w \in W$.

Proof. If $[x_P, x_1] \rightarrow w$ for some $w \in W$ and $x_1 \in X$, then by Lemmas 2.5 and 2.8, W contains a vertex w' such that $V(G) \subseteq N[w']$. If $W = A$, then by Lemma 3.1, G^* contains a hamiltonian (x, y)-path and hence $p(x, y) = n - 1$ by Theorem 7, a contradiction. If I is obtained by one of the Lemmas 3.8 and 3.10-3.15, then by the proofs of these lemmas, we can see that G^* contains a hamiltonian (x, y)-path, which implies $p(x, y) = n - 1$ by Theorem 7, also a contradiction.

If $N(x_P) \cap \{x, y\} = \emptyset$, then $|A| = |B| = k$. By Lemmas 2.1 and 2.2, we may assume $[a_i, x_j] \rightarrow a_{i + 1}$ for $1 \leq l \leq k - 1$. Since $k \geq 4$, by Lemma 2.5 there is some a_i with $i \geq 2$ and a vertex $z \in V(G) - N[x_P]$ such that $[x_P, z] \rightarrow a_i$ or $[a_i, z] \rightarrow x_P$. If $[x_P, z] \rightarrow a_i$, then $\gamma \geq \delta + 2$ by Lemma 3.8 and if $[a_i, z] \rightarrow x_P$, then $\gamma \geq \delta + 2$ by Lemmas 3.10-3.14 and Claim 4.1, a contradiction. Thus, $|N(x_P) \cap \{x, y\}| \geq 1$. By the choice of the orientation of P, we have $x = x_1$.

Claim 4.3. For any $a_i \in A$ and any $z \in V(G) - N[x_P]$, $[x_P, z] \rightarrow a_i$ is impossible.

Proof. Suppose to the contrary there is some $z \in V(G) - N[x_P]$ such that $[x_P, z] \rightarrow a_i$. Since $x = x_1$, by Lemma 3.8, $B \cup \{x_P, z^-\}$ is an independent set, and if $|A| = k - 1$, then $A \cup \{x_P, z^+\}$ is also an independent set. Noting that $A \cup \{x_P\}$ or $A \cup \{x_P, z^+\}$ is a maximum independent set and $k \geq 4$, by Claim 4.2, there are some $a_j \in A$ with $j \neq 1, i$ and $w \in V(G) - N[x_P]$ such that $[x_P, w] \rightarrow a_j$ or $[a_j, w] \rightarrow x_P$. In both cases, we have $w \neq z$ and $|A - N(w)| \leq 1$. By Lemma 3.8 or Lemmas 3.11, 3.13, 3.14 and Claim 4.1, $B \cup \{x_P, w^-\}$ is an independent set. By Lemma 3.7, $w^-z^- \notin E(G)$. Thus, $B \cup \{x_P, z^-, w^-\}$ is an independent set of order $k + 2$, a contradiction.
If $|A| = k - 1$, then Lemma 3.15 and the symmetry of A and B, we may assume that G contains an independent set I such that $A \cup \{x_P\} \subseteq I$ and $|I| = k + 1$. If $|A| = k$, then $A \cup \{x_P\}$ is a maximum independent set. Thus, by Claim 4.2, $[x_P, x_l] \rightarrow a$ is impossible for any $a \in A$ and $x_l \in X$. Since $A \cup \{x_P\}$ is an independent set by Lemma 3.1 and G is 3-critical, by Claim 4.3 we may assume in the following proof that $[a_i, z_i] \rightarrow x_P$ for all $a_i \in A$.

We now consider the following two cases separately.

Case 1. $|N(x_P) \cap \{x, y\}| = 1$

Let $w \in P_l$ and $wa_i \in E(G)$. If $a_i \overline{P}w \not\subset N[a_i]$, say, $v \in a_i \overline{P}w$ is the last vertex that is not adjacent to a_i along $a_i \overline{P}w$, then since $wa_i \in E(G)$, v is an A-vertex. Thus, $A \cup \{x_P, v\}$ is an independent set of order $k + 2$ by Lemma 3.1 and hence we have

$$a_i \overline{P}w \subseteq N[a_i] \text{ if } w \in P_l \text{ and } wa_i \in E(G). \quad (4-2)$$

Since $\alpha = \delta + 1$, by Lemmas 3.10-3.14 and Claim 4.1, we have $z_i \in P_{l-1}$ or $z_i = y$ for $2 \leq i \leq k$. If there are two vertices z_i and z_j such that $z_i \in P_{l-1}$ and $z_j \in P_{j-1}$, then both $B \cup \{x_P, z_i^+\}$ and $B \cup \{x_P, z_j^+\}$ are independent sets by Claim 4.1. Since $a_{i-1}z_i, a_{j-1}z_j \in E(G)$, z_i^+ and z_j^+ are A-vertices and hence $z_i^+z_j^+ \notin E(G)$ by Lemma 3.1, which implies $B \cup \{x_P, z_i^+, z_j^+\}$ is an independent set of order $k + 2$, a contradiction. Thus, noting that $k \geq 4$, there exist at least two vertices z_i, z_j with $i, j \neq k$ such that $z_i = z_j = y$, which implies $A \subseteq N(y)$ and $B \cup \{y^-\}$ is an independent set by Lemma 3.11. If there is some z_i with $i \geq 2$ such that $z_i \neq y$, then $z_i y^- \notin E(G)$ by Lemma 3.6 and hence $B \cup \{x_P, z_i^-, y^-\}$ is an independent set of order $k + 2$, a contradiction. Thus, we have $z_i = y$ for $2 \leq i \leq k$. By (4-2), $P_k \subseteq N[a_k]$, which implies each vertex of $P_k - \{y\}$ is an A-vertex. Let $z_1 \in P_j$. If $z_1 \neq y$, then $j \leq k - 1$. Since $a_{j+1}z_1 \in E(G)$, we have $b_jz_1^- \notin E(G)$ for $l \neq j + 1$ by Lemmas 3.3 and 3.4. Since $z_1 \notin N(y)$ and $[a_1, z_1] \rightarrow x_P$, by Lemma 3.10 there is some vertex $w \in P_k$ such that $wz_1, w^+a_1 \in E(G)$, which implies $z_1^{-}b_jz_{j+1} \in E(G)$ by Lemma 3.3. By Lemma 3.6, $z_1^+y^- \notin E(G)$ and hence $B \cup \{x_P, z_1^-, y^-\}$ is an independent set of order $k + 2$, a contradiction. Thus, $z_i = y$ and hence we have

$$z_i = y \text{ for } 1 \leq i \leq k. \quad (4-3)$$

Since $A \subseteq N(y)$, by Lemma 3.1, we have $y \neq a_k$ and hence $y^-x_P \notin E(G)$. If there is some $z \in V(G) \setminus N[x_P]$ such that $[x_P, z] \rightarrow y^-$, then $z \neq y$. By Lemma 3.8, $A \cup \{x_P, z^+\}$ is an independent set of order $k + 2$, a contradiction. Since $B \cup \{y^-, x_P\}$ is a maximum independent set, by Claim 4.2, there is no vertex $x_l \in X$ such that $[x_P, x_l] \rightarrow y^-$. Thus, there is some vertex $z \in P_l$ such that $[y^-, z] \rightarrow x_P$. If $z \neq y$, then since $a_k y \in E(G)$, all vertices of $a_k \overline{P}y^-$ are A-vertices by (4-2), which implies $z \notin P_k$ since otherwise $\{y^-, z\} \neq A - \{a_k\}$ by Lemma 3.1. Since y^- is an A-vertex, we have $A - \{a_k\} \subseteq N(z)$, which implies $b_lz^- \notin E(G)$ for $l \neq i + 1$. If $z^-b_{i+1} \in E(G), \quad 14$
then z is a B-vertex. Thus, noting that $B \cup \{y^\ast\}$ is an independent set, we can see $\{y^\ast, z\} \not\subseteq B - \{b_{i+1}\}$, a contradiction. Thus we have $z - b_i \not\subseteq E(G)$ for $2 \leq l \leq k$. Since y^\ast is an A-vertex, $k \geq 4$ and $[y^\ast, z] \rightarrow x_P$, we have $z \not\subseteq A$ and hence $z - x_P \not\subseteq E(G)$.

By Lemma 3.6, $y^\ast - z \not\subseteq E(G)$. Thus, $B \cup \{x_P, y^\ast, z\}$ is an independent set of order $k + 2$, also a contradiction. Thus we have $z = y$, that is,

$$[y, y^\ast] \rightarrow x_P. \quad (4-4)$$

By Lemma 3.1, (4-2) and (4-3), $P_k \subseteq N[y]$. By Lemma 3.11, (4-3) and (4-4), $A \cup B \subseteq N[y]$. For $1 \leq i \leq k - 1$, if there is some $u \in P_i$ such that $uy \not\subseteq E(G)$, then $u^+, u^- \in P_i$ since $A \cup B \subseteq N(y)$. By (4-3), $A \subseteq N(u)$. By Lemma 3.5, we have $u^\ast - u^+ \not\subseteq E(G)$. By Lemma 3.6, $u^\ast - y^\ast \not\subseteq E(G)$. If $u^\ast + y^\ast \not\subseteq E(G)$, then the (x, y)-path $xP_ixPxkPu^+y^\astP_a\bar{k}u\bar{P}a_iy$ is hamiltonian and hence $u^\ast + y^\ast \not\subseteq E(G)$. By Lemma 3.3, $u^\ast - b_i, u^\ast + b_i \not\subseteq E(G)$ for $l \neq i + 1$, which implies $B \cup \{x_P, u^\ast, u^+, y^\ast\} - \{b_{i+1}\}$ is an independent set of order $k + 2$, a contradiction. Thus, we have $P_i \subseteq N[y]$ for $1 \leq i \leq k - 1$ and hence $\{x_P, y\} \not\subseteq V(G)$, a contradiction.

Case 2. $|N(x_P) \cap \{x, y\}| = 2$

In this case, we let $z_2 \in P_i$.

Suppose $i = 1$, $l \geq 3$ and $z_l \in P_j$. Assume $z_l \neq z_2$. If $j \neq 1$, then $z_2^\ast z_l^\ast \not\subseteq E(G)$ for otherwise the (x, y)-path $xP_ixP\bar{x}Pz_2Pz_2^\astPz_l^\ast\bar{P}z_lP\bar{y}$ is hamiltonian. If $j = 1$ and $z_2^\ast z_l^\ast \subseteq E(G)$, then z_l is an A-vertex if $z_l \in xPz_2$ and z_2 an A-vertex if $z_2 \in xPz_l$. By Lemma 3.1, $z_2a_2, z_2a_l \not\subseteq E(G)$, which is impossible since $[a_2, z_2] \rightarrow x_P$ and $[a_l, z_l] \rightarrow x_P$.

Thus, $z_2^\ast z_l^\ast \not\subseteq E(G)$ and hence $B \cup \{x_P, z_2^\ast, z_l^\ast\}$ is an independent set of order $k + 2$ by Lemmas 3.11, 3.13 and 3.14. Therefore, we have

$$z_l = z_2 \text{ for } 3 \leq l \leq k - 1 \text{ if } i = 1. \quad (4-5)$$

If $i \geq 2$, then $A \cup \{x_P, z_2^\ast\}$ is an independent set by Lemma 3.10. If $i = 1$, then by (4-5) and Lemma 3.12, $A \cup \{x_P, z_2^\ast\}$ is an independent set. By Lemmas 3.11 and 3.14, $B \cup \{x_P, z_2^\ast\}$ is an independent set. Thus, both $B \cup \{x_P, z_2^-\}$ and $A \cup \{x_P, z_2^\ast\}$ are independent sets.

If there is some $w \in V(G) - N[x_P]$ such that $[x_P, w] \rightarrow z_2^\ast$ ([x_P, w] \rightarrow z_2^\ast$, respectively), then $w \neq z_2$. By Lemma 3.8, $B \cup \{x_P, w^\ast\}$ is an independent set. By Lemma 3.7 we have $z_2^\ast w^\ast \not\subseteq E(G)$ and hence $B \cup \{x_P, w^\ast, z_2^\ast\}$ is an independent set of order $k + 2$, a contradiction. Thus, noting that both $B \cup \{x_P, z_2^-\}$ and $A \cup \{x_P, z_2^\ast\}$ are maximum independent sets, by Claim 4.2, we may assume $[z_2^\ast, w_1] \rightarrow x_P$ and $[z_2^\ast, w_2] \rightarrow x_P$.

Let $w_1 \in P_j$. If $w_1 \neq z_2$, then since $k \geq 4$, $A \cup \{z_2^-\}$ is an independent set and $[z_2^\ast, w_1] \rightarrow x_P$, we have $w_1 \not\subseteq A$, which implies $w_1^\ast x_P \not\subseteq E(G)$, and $A \subseteq N(w_1)$, which implies $w_1^\ast b_l \not\subseteq E(G)$ for $l \neq j + 1$ by Lemma 3.3. If $w_1^\ast b_{j+1} \in E(G)$, then w_1 is a B-vertex. Thus by Lemma 3.1 we have $B - \{b_{j+1}\} \subseteq N(z_2^-)$. If $j = 2$, then since $k \geq 4$,
there is some l with $l \neq 2, i$ such that $z_2a_l \in E(G)$, which implies $z_2^+b_{l+1} \notin E(G)$ by Lemma 3.3, a contradiction. If $j \neq 2$, then by Lemma 3.5 we have $z_2^+z_2^j \notin E(G)$, which implies $w_1z_2^j \in E(G)$. Since $a_jz_2 \in E(G)$, by Lemma 3.3 we have $i = j$. Thus, since $k \geq 4$, there is some l with $l \neq j$ such that $z_2a_l \in E(G)$, which implies $z_2^+b_{l+1} \notin E(G)$ by Lemma 3.3, also a contradiction. Hence, $B \cup \{x_P, w_1^-\}$ is an independent set. By Lemma 3.6, $z_2^-w_1^- \notin E(G)$. Thus by Lemma 3.1, $B \cup \{x_P, z_2^-, w_1^-\}$ is an independent set of order $k + 2$, a contradiction. Hence we have $w_1 = z_2$, that is,

$$[z_2^+, z_2] \to x_P. \quad (4-6)$$

If $w_2 \neq z_2$, then since $B \cup \{z_2^-, x_P\}$ is an independent set, we have $B \subseteq N(w_2)$. By (4-6), we have $A \subseteq N(z_2) \in E(G)$, which implies z_2^- is an A-vertex. Thus, $A = \{a_1\} \subseteq N(w_2)$, which implies $|A \cup B - N(w_2)| \leq 1$. By Lemmas 3.7 and 3.8, we can see that $B \cup \{x_P, z_2^-, w_2\}$ is an independent set of order $k + 2$, a contradiction. Hence we have $w_2 = z_2$, that is,

$$[z_2^-, z_2] \to x_P. \quad (4-7)$$

By (4-6) and (4-7), $A \cup B \subseteq N(z_2)$. If there is some vertex $v \in a_1\overline{P}z_2$ such that $va_i \notin E(G)$ and $v^+a_i \in E(G)$, then v is an A-vertex. If $vz_2^+ \in E(G)$, then z_2 is an A-vertex, which contradicts Lemma 3.1. Thus, $A \cup \{x_P, v, z_2^+\}$ is an independent set of order $k + 2$, a contradiction. Noting that $z_2 \in N(a_i)$, we have $a_i\overline{P}z_2 \subseteq N[a_i]$. By symmetry, we have $z_2\overline{P}b_{i+1} \subseteq N[b_{i+1}]$. If $N(z_2^+) \cap a_i\overline{P}z_2^- \neq \emptyset$, then since $a_i\overline{P}z_2 \subseteq N[a_i], z_2$ is an A-vertex and if $N(z_2^-) \cap z_2^+\overline{P}b_{i+1} \neq \emptyset$, then since $z_2\overline{P}b_{i+1} \subseteq N[b_{i+1}], z_2$ is a B-vertex, which contradicts Lemma 3.1 since $A \cup B \subseteq N(z_2)$. Thus, we have

$$N(z_2^+) \cap a_i\overline{P}z_2^- = \emptyset \text{ and } N(z_2^-) \cap z_2^+\overline{P}b_{i+1} = \emptyset. \quad (4-8)$$

Assume $z_1 \in P_3$ and $z_1 \neq z_2$. Since $[a_1, z_1] \to x_P$ and $k \geq 4$, by Lemma 3.1 we have $z_1 \notin A$, which implies $z_1^-x_P \notin E(G)$. If $j \neq k - 1$, then since $z_1a_{j+1} \in E(G)$, we have $b_1z_1^- \notin E(G)$ for $l \neq j + 1$ by Lemmas 3.3 and 3.4. If $b_{j+1}z_1^- \in E(G)$, then z_1 is a B-vertex. Thus, by Lemmas 3.1 and 3.9, there is some vertex $w \in P_{k-1}$ such that $w^+a_1, z_1w \in E(G)$, which contradicts Lemma 3.3. Hence, $B \cup \{x_P, z_1^-\}$ is an independent set. If $j = k - 1$, then $i \neq k - 1$ for otherwise $\{a_1, z_1\} \neq z_2^j$ if $z_1 \in a_{k-1}\overline{P}z_2^j$ by Lemma 3.10 and (4-8), and $\{a_1, z_1\} \neq z_2^j$ if $z_1 \in z_2^+\overline{P}b_k$ by (4-8) and Lemma 3.1 since z_2^j is an A-vertex. Since $a_2z_1 \in E(G)$, we have $b_1z_1^- \notin E(G)$ for $l \neq 2, k$ by Lemma 3.3. If $b_2z_1^- \in E(G)$, then $b_3z_1 \notin E(G)$ by Lemma 3.2 which implies $a_1b_3 \in E(G)$. Since $[a_1, z_1] \to x_P$, we can see that either $a_1x_3 \in E(G)$ or $z_1x_3 \in E(G)$. Thus, the (x, y)-path $x_Px_2^+\overline{P}a_1^+b_3 \overline{P}a_3z_1 \overline{P}y$ is hamiltonian in the former case, and $xx_Px_2^+\overline{P}a_1^+b_3 \overline{P}a_3z_1 \overline{P}y$ is hamiltonian in the latter case, a contradiction. If $z_1^-b_k \in E(G)$, then z_1 is a B-vertex. By (4-8), z_2^j is a B-vertex, which implies $z_2^+z_1 \notin E(G)$ by Lemma 3.1 and hence $\{a_1, z_1\} \neq z_2^j$, a contradiction. Thus, $B \cup \{x_P, z_1^-\}$ is an independent set. By (4-6) and (4-7), we have $A \cup B \subseteq N(z_2)$,
which implies $z_l^{-}z_2^{-} \notin E(G)$ by Lemma 3.7. Thus, $B \cup \{x_P, z_l^{-}, z_2^{-}\}$ is an independent set of order $k + 2$ and hence we have $z_1 = z_2$. By (4-5), we have $z_l = z_2$ for $l \geq 3$ if $i = 1$. If $i \geq 2$ and there is some z_l with $l \geq 3$ such that $z_l \neq z_2$, then $B \cup \{x_P, z_l^{-}\}$ is an independent set by Lemmas 3.11, 3.13 and 3.14. By (4-6), $A \subseteq N(z_2)$ and hence $z_2^{-}z_l^{-} \notin E(G)$ by Lemma 3.6. Thus, $B \cup \{x_P, z_2^{-}, z_l^{-}\}$ is an independent set of order $k + 2$, a contradiction. Thus we have

$$z_l = z_2 \text{ for } l \neq 2.$$ \hspace{1cm} (4-9)

By (4-6), (4-7) and (4-8), we have $P_l \subseteq N[z_2]$ and $A \cup B \subseteq N(z_2)$. Let $l \neq i$. If there is some $u \in P_l$ such that $uz_2 \notin E(G)$, then $u^+, u^- \notin N(x_P)$ and $A \subseteq N(u)$ by (4-9). By Lemma 3.3, $b_mu^+, b_mu^- \notin E(G)$ for $m \neq l + 1$. By Lemma 3.5, $u^+u^- \notin E(G)$. By Lemma 3.7, $u^-z_2^- \notin E(G)$. If $u^+z_2^- \in E(G)$, then the (x, y)-path $xP_1xp_1Px_1Pz_2^-P_2a_1PuP_2a_1P_1y$ is hamiltonian if $l < i$ and if $l > i$, then $xP_1xp_1Pz_2^-P_2a_1PuP_2a_1P_1Pz_2^-u^+P_1y$ is hamiltonian, a contradiction. Thus, we have $u^+z_2^- \notin E(G)$, which implies $B \cup \{x_P, u^+, u^-, z_2^-\} - \{b_{l+1}\}$ is an independent set of order $k + 2$, a contradiction. Therefore, we have $P_l \subseteq N[z_2]$ for $l \neq i$, which implies $\{x_P, z_2\} \succ V(G)$, a contradiction.

The proof of Theorem 4 is complete. \hfill \blacksquare

Acknowledgements

We are grateful to the referees for their many careful comments on our earlier version of this paper, which have considerably improved the presentation of the paper. This research was supported in part by The Hong Kong Polytechnic University under the Grant Number G-YX04. The first author was also supported by the National Natural Science Foundation of China under the Grant Number 10671090.
References

