New parameters of geometrically best fitting lunar figures

H. Bâki Iz

Abstract. The parameters of various lunar figures are of interest to the scientific community working on lunar exploration. In this study, the size of the geometrically best fitting triaxial and rotational ellipsoids, and spheres, are estimated using the method of condition equations with common unknown parameters from the coordinates of 271,610 control points of the newly available lunar control, ULCN 2005. In the first set of solutions, the origin of the figures is calculated with respect to the center of mass of the Moon. Their origins are set to coincide with the lunar center of mass in the second set of solutions. The new estimates are the most up-to-date values for the triaxial and rotational ellipsoidal and spherical parameters of the lunar figures and are significantly different up to half a km as compared to the most recent solutions.

Keywords. Lunar ellipsoid, lunar sphere, lunar topography, ULCN2005.

Introduction

I wake, and moonbeams play around my bed, Glittering like hoar-frost to my wandering eyes; Up towards the glorious moon I raise my head, Then lay me down – and thoughts of home arise. Night Thoughts by Li Bai.

The parameters of the various lunar figures are of interest to the scientific community working on lunar exploration. As in the case of the Earth, a mathematical reference surface is required for horizontal lunar control for lunar mapping. The determination of lunar figure parameters has a long history. Analysis of current selenodetic and selenochronological data indicates that the present lunar figure was formed $3.0 \pm 0.5 \times 10^9$ years ago at an earth-moon distance of 20.4 ± 2.3 earth radii (Binder 1982). As early as 350 BC, Aristotile argued that the shape of the moon is a sphere because the boundary of the Sun’s light on the moon was always a circular arc. Aristarchus (310–230 BC) also estimated the radius of the moon as $1/3$ the radius of the Earth (Schimerman 1973). Extensive information about the history of selenodasy and lunar mapping can be found in Schimerman (1973).

Recent approaches in determining the lunar figure parameters use a spherical harmonic representation of the lunar topography. In an early study, Bills and Ferrari (1977) calculated the axes of a triaxial lunar ellipsoid using a spherical harmonic analysis of lunar topography to degree 12 from Earth based and orbital observations (a, b, and c triaxial ellipsoid lunar axes are 1738.43, 1737.50, 1736.66 km long, respectively, and the mean radius is 1737.53 \pm 0.03$ km). They determined the offset of the center of the lunar figure from the lunar center of mass to be 1.98 ± 0.06 km toward $(19 \pm 2)^\circ$S, $(194 \pm 1)^\circ$E. In a follow up study, Smith et al. (1997) derived a Goddard Lunar Topography Model (GLTM 2) up to degree and order 72 based on a spherical harmonic expansion of the mass-centered radii deduced from the Clementine radar altimetry measurements. Their analysis of the topographic model with different degree and order long wavelengths (degree and order 2–16) resulted in a number of alternative estimates for the parameters of the lunar figure as a rotational ellipsoid.

Other techniques for determining the lunar figure involve a lunar orbiting satellite moving in the lunar gravitational field with one of its foci at the center of mass of the moon. Its orbit is determined using the earth-based radar tracking. Pictures, such as Lunar Orbiter, of the lunar surface taken from the spacecraft are then related to the position of the spacecraft at the time of exposure using photogrammetric techniques (Ruben 1969), and positions of prominent lunar topographic features that appear on the pictures are calculated. The position information is subsequently used to calculate the lunar figure.

The approach used to calculate the lunar figures in this study exhibits similarities with the later method. A fortuitous byproduct of the recent Unified Lunar Control, known as ULCN 2005 solution, is the availability of densely distributed 3D lunar control, which were photogrammetrically determined, and improved with the fusion of 2D ULCN 1994, and Clementine Lunar Control Networks (CLCN). In this study, the best fitting lunar figure parameters for selenocentric and non-selenocentric triaxial and rotation ellipsoids and spheres (a total of six figures) were estimated by solving the condition equations for each one of 271,610 control points, while accounting for the least-square adjustment of the 814,830 Cartesian coordinates of the ULCN 2005 control stations.

Lunar Control Networks

The recent lunar control networks include the Unified Lunar Control Network (ULCN 1994) and the Clementine Lunar Control Network (CLCN), both derived at RAND (Davies, et al. 1994), and ULCN 2005 at USGS (Archinal et al. 2005, 2006). The ULCN 1994 was based on the images from the Apollo, Mariner 10, and Galileo missions, and Earth-based photographs whereas the CLCN was
derived from Clementine images and measurements on Clementine 750-nm images (Edwards, et al. 1996). Further information about these solutions can be found in USGS Astrogeology site (USGS, Control Networks 2008).

ULCN 2005 is the fusion of the ULCN 1994 and CLCN improving greatly upon the accuracy of the CLCN. The primary significant feature of the ULCN 2005 in comparison to the previous networks is due to the radii of the control points being included in the solution. Hence, the resulting ULCN 2005 is a unified three dimensional photogrammetrically determined network, which consists of 272,931 control points with an average of one point for every approximately 46 km² (Archinal et al. 2006). Comparison by Archinal et al. (2006) revealed that the radii derived from the images show no systematic difference between the Clementine LIDAR values (Smith et al. 1997), which implies that the radii must be of a few hundred meters accuracy of LIDAR. The horizontal accuracy of the ULCN is also reported to be a few hundred meters (Archinal et al. 2006).

The lunar control networks can be referenced to two slightly different lunar body-fixed coordinate systems: a mean Earth/rotation system, and a principal axis system (Roncoli 2005). The mean Earth/polar axis system (also called the mean Earth/rotation system) is a lunar body-fixed coordinate system based upon a mean direction to the Earth and a mean axis of rotation of the Moon. The principal axis system is also a lunar body-fixed coordinate system aligned with the principal axes of the Moon. The principal axes and the mean Earth/rotation axes of the Moon do not coincide but differ by less than 1 km because the Moon is not really a synchronously rotating triaxial ellipsoid (ibid). In this system, the mean Earth equator is defined at J2000 with the origin at the center of mass of the Moon. The selenocentric latitudes are measured from the center of the Moon relative to the equator and longitudes are measured from 0–360 degrees, positive to the east with the exception that nearly all of the lunar maps depict longitudes as both east and west longitudes. Data fusion CLCN in ULCN 2005 solution with ULCN 1994, and the use of Clementine a priori spacecraft position data in the mean Earth/polar axis system ensures that ULCN 2005 is referenced to the same mean Earth/polar axis system reported in Davies et al. (1994), Archinal et al. (2005).

Solutions

Three variants of lunar figures were considered: A triaxial spheroid with figure semi-axes a, b, and c is represented with the following condition equation, which include the unknown non-selenocentric lunar figure parameters,

$$
\frac{(x-x_c)^2}{a^2} + \frac{(y-y_c)^2}{b^2} + \frac{(z-z_c)^2}{c^2} - 1 = 0. \tag{1}
$$

A special case of (1) with semi-major axis $a = b$, and semi-minor axis c represents a rotational ellipsoid (no a priori constraints are to be used to ensure that $a > c$ in estimating the lunar figure parameters. Hence, the model represents a rotationally oblate as well as a prolate ellipsoid), and a sphere with a radius, $a = b = c = R$. The origins of all of the above geometric figures are located at x_c, y_c, z_c with respect to the underlying coordinate system. If $x_c = y_c = z_c = 0$, then the geometric centers of the figures are constrained to coincide with the origin of the coordinate system. In this case the lunar figure parameters refer to the selenocentric lunar shapes. The lunar figure parameters a, b, c are the semi-axes, towards the Earth, in the plane of the sky perpendicular to, and along the polar axis respectively.

Condition equation (1) and all its variants are nonlinear and contain 3D coordinates of control stations as observations. The observations are adjusted due to the observation error, together with the unknown lunar figure parameters were estimated by minimizing the Lagrangian target function with condition equations using an iterative algorithm (Pope 1972). Although the number of unknown lunar figure parameters in each formulation are small (largest being 6, 3 for size, and 3 for the origin of a triaxial ellipsoid), there are 271,610 control points and the same number of condition equations – one for each control point – to be formulated, and 814,830 observations (three coordinate components for each control) to be adjusted – substantially large in number. A partitioned computational formulation (Appendix A) significantly reduced the storage requirements during the computations. The viable sub-matrices for partitioned numerical solutions consist of 10 control points leading to 30 linearized condition equations with common unknown parameters within each partition. The vector norm of the vector of the estimated corrections to the unknown parameters converged to less than a mm after the third iteration for all the solutions for the non-selenocentric and selenocentric best fitting triaxial, rotational ellipsoids and spheres. In all these solutions, an identity matrix was used for the weigh matrix. An alternative set of solutions were also obtained using an iteratively weight least squares version of the least squares solution. The weight matrix for each iteration is calculated from the inverse residual squares of the adjusted control points’ Cartesian coordinates of an earlier iterative solution. This solution methodology is more robust to the influence of the large topographical features on the moon because the control points located in these areas are down weighted by their correspondingly large residuals.

Table 1 lists all the estimated parameters for selenocentric lunar and non-selenocentric lunar figures. The differences between the parameters of the selenocentric and non-selenocentric parameters for the same figures are not significantly different despite the
estimated geometric center offsets being as large as 1.7 km for the \(x \) components. The estimated offsets are only few meters different for the lunar figures. The uncertainties of the estimated parameters remain within the 4–10 m range for all the solutions. The \(\text{Cartesian} \) coordinate components’ residuals of the control points exhibit a bell-shaped distribution, which can be observed in the histogram for the non-selenocentric rotational ellipsoid solution in Figure 1. All the coordinate components are distributed similarly within each bin with close to 22 percent of them falling within ±200 m interval. Note that the large tail values are the cumulative effect of open-ended bin intervals at the tail bins – not a property of the solution.

The RMS residuals for each \(\text{Cartesian} \) component are close to one km (Table 2), and show a balanced distribution of residuals among the station coordinates. However, RMS values are considerably large (up to 1 km) because of the lunar topography. All the lunar mathematical figures favor intrinsically the radial component of the topography. Consider for instance the formulation of the selenocentric spherical lunar figure for which the corresponding condition equation reduces to \((x^2 + y^2 + z^2) - R^2 = 0\). Its least-squares solution is tantamount to minimizing

Table 1: Units are in meters. The values within parentheses are the standard errors of the estimated parameters. The first set of values of each lunar figure parameters belongs to the non-selenocentric best fitting lunar figure, whereas the second sets are calculated using iteratively reweighted least squares solution. The third set of values is the corresponding parameters reported by the most recent solutions by Smith et al. (1997). The last set of values is the selenocentric solutions. Hyphens are for the missing values of earlier solutions. Because iteratively reweighted solutions use inverse residual squares as weights, the variance factor (a posteriori variance of unit weight) is always close to unity; hence, the standard errors of the parameters are not precisely represented. N/A stands for not applicable.

<table>
<thead>
<tr>
<th>Figure</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(x_c)</th>
<th>(y_c)</th>
<th>(z_c)</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triaxial</td>
<td>1737899(9)</td>
<td>1737570(9)</td>
<td>1735742(7)</td>
<td>–1658(6)</td>
<td>–681(6)</td>
<td>133(5)</td>
<td>1754</td>
</tr>
<tr>
<td>Ellipsoid</td>
<td>1737900(–)</td>
<td>1737570(–)</td>
<td>1735743(–)</td>
<td>–1657(–)</td>
<td>–681(–)</td>
<td>133(–)</td>
<td>1842</td>
</tr>
<tr>
<td>1737811(10)</td>
<td>1737595(10)</td>
<td>1735710(8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>1738056(17)</td>
<td>1737843(17)</td>
<td>1735485(72)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Rotational</td>
<td>1737737(5)</td>
<td>N/A</td>
<td>1735741(7)</td>
<td>–1653(6)</td>
<td>–682(6)</td>
<td>133(5)</td>
<td>1756</td>
</tr>
<tr>
<td>Ellipsoid</td>
<td>1737738(–)</td>
<td>N/A</td>
<td>1735742(–)</td>
<td>–1652(–)</td>
<td>–681(–)</td>
<td>134(–)</td>
<td>1844</td>
</tr>
<tr>
<td>1737705(6)</td>
<td>N/A</td>
<td>1736710(8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>1738208(–)*</td>
<td>N/A</td>
<td>1736261(–)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Sphere</td>
<td>1736965(6)</td>
<td>N/A</td>
<td>N/A</td>
<td>–1645(6)</td>
<td>–696(7)</td>
<td>142(6)</td>
<td>1868</td>
</tr>
<tr>
<td>1736966(–)</td>
<td>N/A</td>
<td>N/A</td>
<td>–1644(–)</td>
<td>–696(–)</td>
<td>142(–)</td>
<td>1963</td>
<td></td>
</tr>
<tr>
<td>1736934(4)</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2117</td>
<td></td>
</tr>
<tr>
<td>1737103(15)</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

(16 × 16) degree and order harmonic solution of Smith et al. (1997).
the difference between the square of the unknown spherical radius parameter, \(R \), and the square of the radial distance calculated from the Cartesian components, \(x, y, z \) of a control station. Consequently, the RMS residuals cannot be effectively reduced to a level to reflect the accuracy or precision of the solutions based solely on the observational errors in the coordinates because of the presence of the lunar topography in the radial values. The histogram of the radial residuals (Figure 2), which are calculated from the Cartesian coordinate components using the relationships given in Appendix B, shows that approximately 70\% of them fall within \([-1, 1]\) km interval. This ambiguity is also observed in the determination of the lunar figure from the harmonic representation of topography in earlier solutions. The determination of lunar figure parameters using different wavelengths, for instance, led to different estimates of the lunar figure parameters in Smith et al. (1997).

For the current solutions, the RMS residuals range within 1.7–2.1 km interval (Table 1), which is mostly a summary measure of the roughness of the lunar topography. Nonetheless, all the solutions can still be contrasted for the best fitting lunar figure as long as they use the same data.

Table 2 also lists the RMS residuals of the station positions in the latitudinal, longitudinal and in the radial directions, which are calculated from the residuals of the Cartesian station coordinates. The RMS residuals in the radial directions now quantify the prominence of the topography in this direction, as discussed previously, which are larger than the latitudinal and longitudinal residual components by an order of 1000, as shown in Figure 1 by different bin scales.

Figure 3 shows the misclosures (scaled by the radius of the moon in order to quantify otherwise the unitless values) calculated using the condition equation for the non-selenocentric rotational ellipsoid. Misclosures, as opposed to radial residuals, also include the effect of the latitudinal and longitudinal residual components albeit their negligibly small contributions. Again, the topography, as reflected in Figure 3, is the main source of variability in misclosures.

Conclusion

Although a meaningful statistical testing of the solution results to identify the best fitting lunar figure is not possible because of the presence of the lunar topography in the residuals (unless a stochastic process to the lunar topography is justifiably prescribed), it is observed that the RMS residuals favor systematically the non-selenocentric rotational ellipsoid. Whereas the RMS differences within the three non-selenocentric solutions are negligibly small, especially between the triaxial and rotation ellipsoid solu-

![Figure 2: Distribution of the Cartesian residuals of the control points projected in the latitudinal, longitudinal, and radial directions. Bin intervals are in meters for the latitudinal, longitudinal and in kilometers for the radial residuals. The solution model is the non-selenocentric rotational ellipsoid.](image-url)
tions (about 2 m). Hence, in conclusion, the non-
selenocentric rotational ellipsoid, which oﬀers a sim-
pler lunar figure, is preferable.

All the solutions presented in this study provide the
most updated parameters about the lunar figures
and serve as a mean of summarizing the properties
of the lunar surface shape as revealed by the control
network. The new estimates are also signiﬁcantly dif-
ferent as compared to the most recent solutions by
Smith et al. (1997). The diﬀerence is about 170 m in
the spherical radius for the selenocentric solutions.
The triaxial selenocentric solutions diﬀerences are
much larger, 157, 258 and 225 m for the axial param-
eters a, b, and c respectively. The largest diﬀerences
are obtained for the rotational ellipsoid parameter
reaching 503 and 449 m for the semi-major and
semi-minor axes (Table 1).

The oﬀsets of the lunar ﬁgures geometric centers
from the center of mass of the Moon by several hun-
dred meters (Table 1) are more likely due to the vari-
ation in crustal thickness and density of the Moon.
Large topographic features such as nearside maria in
the northern hemisphere and the large South Pole
Aitken Basin on the far side of the moon, do not
contribute signiﬁcantly to the oﬀsets as evidenced
by small changes between regular and iteratively re-
weighted solutions. The latter down weights the con-
trol points with large residuals due to the topography
in the solutions.

Although the data used in this study are not indepen-
dent of the data used in the earlier solutions, the
changes are because of the complete coverage of the
ULCN 2005 solutions, hence a better geometry and
the density of the ULCN 2005 data a result of the
fusion of larger number of data in its construction.
For the very same reason, the inclusion of the new
data from the new missions will have predictable im-
 pact on the current solution precisions because of the
already overwhelming number of data used in esti-
mating the lunar ﬁgure parameters (the square root
effect). The solution statistics will change signiﬁcantly
only if the existing control point coordinates are
projected onto an adopted smooth reference equipo-
tential surface, an adopted geoid-like equipotential
surface for the vertical lunar control, as demon-
strated by varying estimates in the solutions gener-
ated by Smith et al. (1995) using diﬀerent harmonic
representations of the lunar topography. None-
theless, the calibration of the ULCN 2005 control
networks using the $Chang’E-1$, $SELENE$ and
$Chandrayaan-1$ missions’ data will contribute to the
accuracy of the estimated parameters, or better, they
will signiﬁcantly improve the density of the current
lunar control.

As pointed out by the reviewers, additional solutions,
which account for the orientation of best ﬁtting lunar
ﬁgures with respect to the mean Earth/rotation sys-
tem, are also desirable to gain insight about the geo-
physical properties of the Moon. These new solutions
are underway using the newly acquired $Chang’E-1$
laser altimetry measurements.
Appendix A: Condition equations with common unknown parameters and their weighted and iteratively reweighted least squares solutions

We consider the following non-linear mathematical model that contains observations \(y \), as well as the unknown parameter \(x \):

\[
F(y, x) = 0.
\]

A linear model is obtained using Taylor’s series expansion and omitting all higher than the first order terms,

\[
\frac{\partial F}{\partial y} v + \frac{\partial F}{\partial x} \delta x + F(y, x^0) = 0
\]

where \(x, \tilde{x}, x^0 \) denote the theoretical, estimated and nominal (approximate) values of the unknown parameters, \(y, \tilde{y}, y^0 \) are the observed, adjusted and approximate values of the observations with residuals \(v \) and,

\[
\tilde{y} = y + v, \quad \tilde{x} = x^0 + \delta x,
\]

\[
B := \frac{\partial F}{\partial y} |_{y^0, x^0}, \quad A := \frac{\partial F}{\partial x} |_{y^0, x^0}.
\]

The partials are evaluated using the observed values for the observations and the approximate values for the parameters \(y^0 \) and \(x^0 \) respectively. Hence, the misclosure vector \(w \) is given by

\[
w := F(y, x^0) - Bv
\]

for \(y^0 = y \). The partials given by (6) are evaluated by using the observations and the nominal values for the unknown parameters. However, because the solution to the above linearized condition equation is iterative; the misclosure vector must be calculated using the following expression in subsequent steps (Pope 1972):

\[
w := F(\tilde{y}, x^0) - Bv \quad (8)
\]

using the residuals and the partials evaluated at the adjusted values of the observations, both calculated at the end of the previous iteration.

We write the above equation in matrix notation for \(n \) observations with \(r \) conditions equations that contain \(u \) common unknown parameters as follows:

\[
B_{r \times n} v + A_{r \times u} \delta x + w_{r \times 1} = 0. \quad (9)
\]

The weight matrix associated with the observations is denoted by \(P \). The principle of the minimum variance solution requires minimizing the \(v^T P v \) and fulfilling the conditions imposed on the observations can be obtained using the method of Lagrange multipliers for the following target function:

\[
\phi = v^T P v - 2 \lambda^T (B v + A \delta x + w) = \text{stationary}, \quad (10)
\]

where \(\lambda \) is a \(n \times 1 \) vector of Lagrange multipliers. The solution includes the following compendium of equations (ibid).

The unknown parameters can be calculated using the following expression:

\[
\delta x = -(A^T M^{-1} A)^{-1} A^T M^{-1} w \quad (11)
\]

with the corresponding variance/covariance matrix

\[
\Sigma_x = \Sigma_0 (A^T M^{-1} A)^{-1}, \quad (12)
\]

where \(M := B P^{-1} B^T \).

The Lagrange multiplier vector

\[
\lambda = -M^{-1} (A \delta x + w) \quad (13)
\]

can be used in the calculation of the residuals and the a posteriori variance of the unit weight \(\sigma_0^2 \) as follows:

\[
v = P^{-1} B^T \lambda = -P^{-1} B^T M^{-1} (A \delta x + w) \quad (14)
\]

\[
\Rightarrow v^T P v = -\lambda^T w, \quad (15)
\]

\[
\sigma_0^2 = \frac{v^T P v}{r - u}. \quad (16)
\]

The number of unknown lunar figure parameters in each formulation is small (largest being 6, 3 for size, and 3 for the origin of a triaxial ellipsoid). Yet there are 271,610 control points and the same number of condition equations – one for each control point – to be formulated and 814,830 observations (three coordinate components for each control) to be adjusted – substantially large in number. The following partitioned computational formulations significantly reduce the storage requirements during the computations.

Linearized condition equations given by (9) can be arranged into \(k \) groups with \(p \) condition equations in each group:

\[
B_1_{|p \times 3|} v_1 + A_1_{|p \times 1|} \delta x + w_1 = 0 \quad ,(17)
\]

\[
\vdots
\]

\[
B_k_{|p \times 3|} v_k + A_k_{|p \times 1|} \delta x + w_k = 0 .
\]

Assuming that the observations from group-to-group are uncorrelated, the following partitions are obtained,

\[
A = \begin{bmatrix} A_1 \\ \vdots \\ A_p \end{bmatrix}, \quad B = \begin{bmatrix} B_1 \cdots \cdots 0 \\ \vdots \\ 0 \cdots B_p \end{bmatrix}, \quad (18)
\]

\[
P = \begin{bmatrix} P_1 \cdots \cdots 0 \\ \vdots \\ 0 \cdots P_p \end{bmatrix}, \quad w = \begin{bmatrix} w_1 \\ \vdots \\ w_p \end{bmatrix}. \quad (19)
\]
\[M = BP^{-1}B^T = \begin{bmatrix} B_1P^{-1}B_1^T & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & B_kP^{-1}B_k^T \end{bmatrix} \]

\[M^{-1} = \begin{bmatrix} (B_1P^{-1}B_1^T)^{-1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & (B_kP^{-1}B_k^T)^{-1} \end{bmatrix} \tag{20} \]

\[A^TM^{-1}A = \sum_{i=1}^{k} A_i^TM_i^{-1}A_i, \]

\[A^TM^{-1}w = \sum_{i=1}^{k} A_i^TM_i^{-1}w_i. \tag{22} \]

Hence,

\[\delta x = -\left[\sum_{i=1}^{k} A_i^TM_i^{-1}A_i \right]^{-1} \sum_{i=1}^{k} A_i^TM_i^{-1}w_i \]

\[\rightarrow \hat{x} = x^0 + \delta x, \tag{23} \]

\[\Sigma_x = \sigma_0^2 \left[\sum_{i=1}^{k} A_i^TM_i^{-1}A_i \right]^{-1}. \tag{24} \]

Similarly, it can be shown that \(\lambda = -M^{-1}(A\delta x + w) \)

\[= -\left[M_1^{-1}(A_1\delta x + w_1) \right] = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix} \] \[p=1 \]

\[v = P^{-1}B^T \lambda = \begin{bmatrix} P_1B_1^T \lambda_1 \\ \vdots \\ P_kB_k^T \lambda_k \end{bmatrix} \tag{26} \]

\[\rightarrow v^TPv = -\lambda^TW = \sum_{i=1}^{k} \lambda_iw_i. \tag{27} \]

Alternatively, an iteratively weighted least squares solution can also be used to solve the linearized mathematical model given by equation (9) by defining the weight matrix, \(P \), using the inverse residual squares of the adjusted control points (Cartesian coordinates) calculated during the iterations. An identity matrix is used for the weight matrix in the first iteration. The inverse residual squares of the adjusted control points’ Cartesian coordinates, calculated during the first iteration, are used as weights in the second iteration. Iterations continue until the norm of the corrections to the approximate values of the adjusted parameters converges to zero and the sum of the residual squares stabilizes. Note that since the weights are formed using the inverse residual squares, the weighted sum squares of the residuals are always close to one, hence the \(a \) \textit{posteriori} variance of unit weight (variance factor) cannot be used to scale the variance covariance matrix of the adjusted lunar figure parameters.

Appendix B: Residual transformation

We would like to transform the Cartesian coordinate residuals \(v_x, v_y, v_z \), to the selenocentric residuals \(v_r, v_{\phi}, v_{\lambda} \) of selenocentric coordinates – radial, latitudinal and longitudinal counterparts.

Consider the following relationships between the selenocentric coordinates \((r, \phi, \lambda) \) and the corresponding Cartesian coordinates \((x, y, z) \) of a point in the selenocentric coordinate system,

\[
\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix} = \begin{bmatrix}
\cos \phi \cos \lambda \\
\cos \phi \sin \lambda \\
\sin \phi \\
\end{bmatrix} \begin{bmatrix}
r \\
\cos \phi \sin \lambda \\
\sin \phi \cos \lambda \\
\sin \phi \\
\end{bmatrix} \begin{bmatrix}
r \\
\cos \phi \sin \lambda \\
\sim \phi \cos \lambda \\
\end{bmatrix}. \tag{28}
\]

From which, by partial differentiation, the differential changes in these coordinates that approximate the Cartesian coordinate residuals \(v_x, v_y, v_z \) and \(v_r, v_{\phi}, v_{\lambda} \) are given by

\[
\begin{bmatrix}
v_r \\
v_{\phi} \\
v_{\lambda} \\
\end{bmatrix} = \begin{bmatrix}
\cos \phi \cos \lambda & -r \cos \phi \sin \lambda & r \sin \phi \cos \lambda \\
\cos \phi \sin \lambda & r \cos \phi \cos \lambda & r \sin \phi \sin \lambda \\
\sin \phi & 0 & -r \cos \phi \\
\end{bmatrix} \begin{bmatrix}
v_x \\
v_y \\
v_z \\
\end{bmatrix}. \tag{29}
\]

Its inversion gives the following desired transformation equations,

\[
\begin{bmatrix}
v_x \\
v_y \\
v_z \\
\end{bmatrix} = \begin{bmatrix}
\cos \phi \cos \lambda & \cos \phi \sin \lambda & \sin \phi \\
\cos \phi \sin \lambda & -r \cos \phi \cos \lambda & 0 \\
\sin \phi \cos \lambda & -r \sin \phi \sin \lambda & \cos \phi \\
\end{bmatrix} \begin{bmatrix}
v_r \\
v_{\phi} \\
v_{\lambda} \\
\end{bmatrix}. \tag{30}
\]

Acknowledgement

This study was supported by the Hong Kong Polytechnic University grants G-U417 and 1-BB83. UCLN 2005 data and pertinent information were provided by Brent Archinal from USGS, which is gratefully acknowledged. I wish to thank two anonymous reviewers for their careful reading of the manuscript and their comments.

References

Received: Jan 30, 2009 Accepted: Apr 11, 2009

Author information

H. Baki Iz

Department of Land Surveying and Geo-Informatics
The Hong Kong Polytechnic University
Hong Kong S.A.R., China
E-mail: lshbiz@polyu.edu.hk