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The rapid and accurate computation of the Jacobian matrix, which is usually computationally intensive, is of
critical importance for the reconstruction problem of fluorescent molecular tomography (FMT). An extension of
the Green’s function method for the Jacobian matrix computation suitable for two coupled differential equa-
tions is proposed, in combination with the parallel forward computing strategy for FMT image reconstruction.
For further acceleration of the reconstruction process without significant quality reduction of the results, we
also propose to reconstruct the FMT image on an adaptively refined mesh generated with a priori information
incorporated. Experimental results demonstrate that the speed of the reconstruction process can be signifi-
cantly improved with the proposed overall algorithm. © 2007 Optical Society of America
OCIS codes: 170.3010, 170.3880, 170.6960, 200.4960, 260.2510.

1. INTRODUCTION

Optical techniques in the near-infrared (NIR) spectral
window have made significant progress in biomedical re-
search in recent years. The relatively low absorption and
low scattering in the 600—1000 nm spectral region allow
detection of photons that have traveled through several
centimeters of biological tissue [1]. Fluorescent molecular
tomography (FMT) is an emerging tool for molecularly
based medical imaging [2]. In this imaging modality, a
fluorescent biochemical marker used as contrast agent
such as Indocyanine Green is injected into the biological
system. The injected fluorophore may preferentially accu-
mulate in diseased tissues due to leaky vasculature, an-
giogenesis, and hypermetabolism. The use of an exoge-
neous fluorescent agent has the potential to improve the
contrast and thus to facilitate early diagnosis [3]. During
the imaging process, NIR light (sinusoidally modulated,
continuous wave, or pulsed excitation light) is used to ir-
radiate the surface of the tissue, while measurements of
light that has escaped from the tissue are collected at the
tissue surface, through which the spatial-concentration
distribution of the fluorescence markers inside the tissue
can be obtained [4]. Such distributions of fluorescent
dyes have important applications in clinical diagnosis.
The principle of FMT is schematically illustrated in
Fig. 1.

Two processes are involved in FMT reconstruction: the
forward and the inverse processes. The forward problem
is to predict the observable states (e.g., emission fluence)
at the measurement locations on the basis of the known
excitation light source, the spatially distributed optical
properties of the tissue, and the photon transport model
[5]. In FMT, such a forward model is usually described by
two coupled partial differential equations (i.e., diffusion
equations). The first equation describes the excitation

1084-7529/07/072014-9/$15.00

light, while the second one corresponds to the emitted
light. In the inverse problem, the values of the optical pa-
rameters (i.e., absorption coefficients and scattering coef-
ficients), the fluorescent yield, and the fluorescent lifetime
are updated repeatedly from an initial guess until the
predictions match the measurements, or some other con-
vergence criterion is achieved. The final spatial distribu-
tion of optical parameters, the fluorescent yield, and the
fluorescent lifetime will result in reconstructed images.

As pointed out, both the forward and the inverse pro-
cesses are involved in the tomographic image reconstruc-
tion; they will determine the speed of the reconstruction.
For the forward problem, we propose a method to de-
couple the two originally coupled differential equations
corresponding to the excitation and the emission light,
making the forward problem suitable for parallel imple-
mentation. In contrast, during the inverse reconstruction
process, the Jacobian matrix (also referred to as the sen-
sitivity matrix), which defines the perturbation sensitiv-
ity of the forward calculated data to the image param-
eters, needs to be computed repeatedly. Hence, this
process is another important factor determining the speed
of the whole reconstruction algorithm.

The Jacobian matrix is usually computationally inten-
sive especially for the FMT reconstruction problem,
where there are two coupled diffusion equations describ-
ing the forward problem. It is well known that the Green’s
function method is an effective tool for accelerating the
Jacobian matrix computing process. The theory of using
the Green’s function for the Jacobian matrix computing
when only one differential equation is concerned has been
well established. In this paper, such a method will be gen-
eralized in combination with the aforementioned parallel
computing strategy for the FMT reconstruction problem
where two coupled equations are concerned.
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Fig. 1. Schematic illustration of the principle of FMT.

For further acceleration of the reconstruction process
without significant reduction in reconstruction quality, we
also propose to reconstruct the image on an adaptively re-
fined mesh generated with a priori information incorpo-
rated. Experimental results demonstrate that both the
speed of the reconstruction computation and the precision
of the inverse solutions can be significantly improved with
the proposed algorithm. The main contribution of this pa-
per is the combination of the proposed parallel forward
computation strategy and the extension of the Green’s
function method originally developed for the Jacobian
matrix computation from only a single differential equa-
tion to the case of two coupled equations, which can sig-
nificantly speed up the reconstruction process.

2. FORWARD PROBLEM AND PARALLEL
IMPLEMENTATION

A. Forward Problem

The forward model of FMT is used to predict the measure-
ments given the locations and the optical and fluorescent
properties of the random medium [5]. Light propagation
is rigorously described by the Maxwell’s equations that
describe the relation between the electric and the mag-
netic waves in space and time. The radiative transfer
equation (RTE) is an approximation to Maxwell’s equa-
tions and has been used successfully to model light trans-
portation in diffusive media [6]. The diffusion equation,
which is the P; approximation to RTE, is usually em-
ployed for describing light propagation in media with ei-
ther low absorption or high scattering coefficients because
the RTE is extremely computationally expensive. In FMT,
two coupled second-order, elliptic, partial differential
equations are used to describe, respectively, the propaga-
tion of the excitation and the fluorescent light in tissues
[5]. In the frequency domain, they can be written as fol-
lows:

(_V'va +kx)q)x=Sx9 (1)

(-V-D,V +k,,)®,, =po,. (2)

The first equation describes the propagation of the ex-
citation light, and the second one models the generation
and propagation of fluorescent emitted light. In Eqs. (1)
and (2), V is the gradient operator, S,(W/cm?) is the in-
tensity of the excitation light source, and ®, ,, is the pho-
ton fluence at the excitation (with the subscript of x) or
the emission wavelength (with the subscript of m). The
diffusion coefficients D, ,, decay coefficients %, ,,, and
emission source coefficients 3 are defined, respectively, as
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where u,,;(cm™) and u,,;(cm™1) are the absorption coef-
ficients due to nonfluorescing chromophores, ,uaxf(cm‘l)
and ,,Acm™) are the absorption coefficients due to the
fluorophores, w! (cm™!) and ., (cm™!) are the isotropic
scattering coefficients, 7 is the fluorescence quantum effi-
ciency, 7(s) is the fluorescence lifetime, i=(-1)2, and
c(em/s) is the speed of light in the medium [5]. As men-
tioned before, the subscripts x and m are used to denote
the corresponding quantities at the excitation and emis-
sion wavelengths, respectively.

To obtain solutions to Egs. (1) and (2), the Robin-type
boundary conditions are employed to describe the trans-
port behavior of light on the boundary of the tissue:

n-[D,V.(r)]+b,D,(r)=0 forallr € 90, (6)

n-[D,V®,(r)]+b,,r)=0 forallr € 9Q), (7)

where n is a vector normal to the boundary (), and b,
and b,, are the Robin boundary coefficients, which are
governed by the reflection coefficients (R,,R,,) [5] and
have a value of 1/2 under the condition of no reflections at
the boundary.

B. Parallel Computation of the Forward Problem

The rapid and accurate computational implementation of
the forward model is of critical importance for optical to-
mographic image reconstruction, as the forward Egs. (1)
and (2) must be solved repeatedly during the process of
reconstruction following the model-based iterative image
reconstruction scheme [7].

Traditionally, the forward problem of Egs. (1) and (2) is
solved in a sequential manner, i.e., Eq. (1) is first solved,
and its solution is then substituted into Eq. (2), which
yields the photon fluence at the emission wavelength.
This sequence will prevent a fast implementation of the
forward problem, and hence slow down the tomographic
image reconstruction. To tackle this problem, a parallel
algorithm is proposed in this paper.

To decouple Eqgs. (1) and (2), the term ®, in the right-
hand side of Eq. (2) should be eliminated. For such a pur-
pose, a new quantity ® is introduced that satisfies

(-V-D,V +k,)®=1. (8)
Multiplying by B®, on both sides of Eq. (8), we can obtain
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(-V-D,V +k,,)D- D, =pb,. 9)

Comparing Eqgs. (2) and (9), it can be seen that ®,, is a
function of ® and ®,, and hence we have

@, =f(D,D,). (10)

This implies that, if the function in Eq. (10) is known, the
photon fluence ®, and ®,, for the excitation and the emis-
sion light, respectively, can be obtained in parallel man-
ner from Egs. (1) and (8) with multiprocessors because
Eqgs. (1) and (8) are independent. Thus the whole parallel
forward problem of FMT can be described by Eqgs. (1) and
(8) together and the photon fluence at the emission wave-
length can be easily obtained by substituting the solu-
tions to Egs. (1) and (8) into Eq. (10). As will be seen in
the following discussion, Eq. (10) can be easily solved in
matrix notation when using the finite element method
(FEM) for numerical implementation of the forward prob-
lem.

In the FEM, the domain is divided into P elements
joined at N vertex nodes. The solution ®,,, is approxi-
mated by the piecewise function fbx,mzﬁﬁv D, ni¢i, where
¢;(i=1...N) are basis functions [8]. Assuming Vg
=Span{(pj}in1 [9], Vy, e Vg, we have

N
Vh= D Crpe (11
k=1

Now let uy, =Zj1\i1<bjgoj. To obtain the weak solutions of Egs.
(1) and (2) under the boundary conditions of Egs. (6) and
(7), Egs. (1) and (2) are written in the form

aﬂh(u}‘uvh)x,m = (fx,m’vh)ﬂh? (12)

where

a()h(uhavh)x,m = f f [Dx,m(vuh : Vvh) + kx,muhvh]dQ
o,

+ f by mttpvpds, (13)
Ty
(fx,myvh)(lh = f f fx,mvth’ (14)
,
=S  [n=BPy (15)

with Q; and T’y being, respectively, the bounded domain
and its boundary. Equation (12) can be further rewritten
in a more compact matrix form as

Ax,m(px,m = Sx,ma (16)
where
(fx,m’ <P1)szh
Sem= : , am
(fx,rm ¢N)Qh
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aﬂh((Pb(Pl)x,m aﬂh(¢N, Qol)x,m
A= : : . (18

a!lh(ﬁpl’QDN)x,m aS)h(‘PN’qu)x,m

The elements of the finite element matrix A, ,, can be
obtained from the formula

anh(%%‘)x,m:ff Dx,mV(Pi'V@de"'ff ko meipidQ)
o, a,

+J bx,m(,Di(deS. (19)
T,
Because there are three terms in the right-hand side of
Eq. (19), Eq. (16) can be rewritten as

(Dx + K, + Bx)q)x = Sx, (20)
D, +K,+B,)®,=8,, (21)
where

Ax,m = (Dx,m + Kx,m + Bx,m)7 (22)
Dij=f j Dac,mV ¢i'V§Ddea (23)

@
Kij = f f kx,m¢i¢jdﬂ7 (24)

a,
Bij = J bx,mgpi(des- (25)

r

h

It can be proved (in Appendix A) that matrix A, ,, is
symmetric and positive definite. Therefore, there exists
an inverse matrix H for A,,; that is, there exists a matrix
H satisfying the following equation [10],

A H=1, (26)

with I being an identity matrix.

Combining Egs. (20) and (26) leads to a system of equa-
tions in discretized domain for the forward problem of
FMT. Owing to their independence, these two equations
can be implemented in a parallel manner with multipro-
cessors.

It can be easily seen from Egs. (21) and (26) that the
photon fluence ®,, at the emission wavelength can be re-
covered by simple matrix multiplication, i.e.,

®,=H-S,. (27)

3. RECONSTRUCTION

A. Image Reconstruction

The inverse problem of FMT is to predict the spatial dis-
tribution of the optical parameters and the fluorescent
properties of the medium from measurements [11]. We
implement the iterative image reconstruction based on
the parallel model. The Newton—Raphson technique com-
bined with a Marquardt algorithm is employed to recon-
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struct the fluorescent properties within the medium. The
linearized inverse problem can be expressed as

Ax =JT(JJT + \I) 1Ay, (28)

where Ax is the perturbation in optical properties, Ay is
residual data between the measurements and the pre-
dicted data, J is the Jacobian matrix, I is the identity ma-
trix, and A is a regularization parameter which can be de-
rived from the Marquardt algorithm [6].

During the iterative process of Eq. (28) for FMT, the re-
sidual data of Ay are updated in each iteration with the
recent distribution of Ax and, as a result, the photon flu-
ence ®, and ®,, at the excitation and emission wave-
lengths must be calculated repeatedly. According to Egs.
(15) and (17), S,,, is a function of ®,, and hence a straight-
forward strategy is first to solve Eq. (20) for ®,, which is
then substituted into Eq. (21) to obtain ®,,. Compared
with the traditional method in which ®, and ®,, are ob-
tained in a sequential manner by solving the two coupled
matrix Egs. (20) and (21) during each iteration, our par-
allel forward implementation scheme can compute the
vector @, and the matrix H in a parallel manner with
multiprocessors from Eqs. (20) and (26) because of their
independence. As a result, ®,, can be obtained from Eq.
(27) with S,, being obtained from Eqs. (15) and (17). Be-
cause ®, and the matrix H can be obtained simulta-
neously in a parallel manner and also because all opera-
tions involved in the latter process for obtaining the
quantity of ®,, are only simple matrix multiplications,
this strategy can significantly speed up the reconstruction
process. Particularly in the case when only the absorption
coefficient ., due to the fluorophore is to be recon-
structed, the matrix H in Eq. (26) needs to be calculated
only once during the whole reconstruction process, and
the fluence ®,, at the emission wavelength can be ob-
tained very fast through simple matrix multiplications.

B. Jacobian Matrix Computation with the

Green’s Function

Another quantity that needs to be repeatedly updated
during each iteration is the Jacobian matrix J in Eq. (28),
which is also a key factor determining the implementa-
tion speed of the reconstruction algorithm. In fact, the
Jacobian matrix is a measure of the rate of change in
measurement with respect to the optical parameters.
Conventionally, the direct derivation method and the per-
turbation method are two straightforward methods to ob-
tain the Jacobian matrix, both of which are computing in-
tensive. Therefore, it is of critical importance to develop
an effective Jacobian matrix calculation method for a fast
implementation of the FMT reconstruction.

The Green’s function, which is also referred to as the
point source function representing the field generated by
a point source, plays an important role in solving both
mathematical and physical problems described by partial
differential equations. The theory of using the Green’s
function in the derivation of the Jacobian matrix from a
single differential equation has been well established
[12]. However, a direct employment of the aforementioned
Green’s function method is not valid for our case because
there are two coupled forward differential equations in
the FMT problem.
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To solve such a problem, we propose a Green’s function
method based on our parallel computation algorithm as
discussed in Section 2 to derive the elements of the Jaco-
bian matrix. We will discuss in detail the derivation of the
Jacobian matrix elements with respect to uq, as an ex-
ample; other elements can be obtained in a similar man-
ner.

In the framework of the FEM, we consider the follow-
ing perturbations:

K,~K +AK, D,—D,+AD,, &, —® +Ad,.

Substituting the perturbed quantities into Eq. (20) and
keeping only up to the first-order terms, we can obtain

AA®D, =- (AD, + AK,)®,. (29)

Using the Green’s function as well as the corresponding
reciprocity principle [13], we can get

(AD,), = (G,)T(AD, + AK,)®,, (30)
where G: can be obtained from the adjoint problem [14]
AG,=-Q (31)

*
no’

with QZ and Az being, respectively, the adjoint source lo-
cated at the original detector position and the conjugate
matrix of A,.

As we are now interested only in u,,p only the pertur-
bation corresponding to u,,r should be considered with
other parameters being regarded as constants. To solve
the problem in the FEM framework, the perturbation of
Maxrat anodep (p=1,2,...,N) should be expanded in the
space of Vf)‘, ie., Aﬂaxf=22v=0(A,uaxf)nqon, with one vertex
node p having a perturbation of (Au,.), and the others
having a value of 0.

Dividing by (Aue,p), on both sides of Eq. (30) and con-
sidering the our interest as stated in the first sentence of
the last paragraph, the expression for the Jacobian ma-
trix elements corresponding to ®, and pu,,s can be ex-
pressed as

(AP)n (GHTV, @ 32)
(Atap)p W) Vap P (

Paxp@sntd =

where the elements of V,;, can be obtained from the for-
mula:

(pr)ij:ff ‘Pp<Pi<deQ- (33)
O,

After the derivation of the Jacobian matrix elements
for ®, and u,, as discussed above, the next task for us is
to derive the Jacobian matrix elements for ®,, and w,.
However, owing to the coupling of the two forward Eqgs.
(20) and (21), ®@,, cannot be obtained from Eq. (21) sepa-
rately. As a result, the Jacobian matrix elements corre-
sponding to ®,, and wu,, cannot be derived from Eq. (21)
in the same manner as those corresponding to ®, and ¢
with the Green’s function method. To tackle this problem,
we propose to use the uncoupled Egs. (20) and (26) in
combination with Eq. (27) instead. Considering only a
perturbation on u,,r and leaving all other optical param-
eters unchanged, such a perturbation will have no effect
on Eq. (26) and hence results in a constant matrix H.
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Then we can shift our attention to Eq. (27), and perturba-
tions of ®,, and S,, are performed as follows:

P, >, +AD, S, — S, +AS,,.

Substituting them into Eq. (27) and neglecting the
second-order terms resulting from Au,,rand A®, in AS,,,
we have, according to Egs. (2) and (5),

A®,, =HAQ,,, (34)

where the elements of AQ,, can be obtained from the fol-
lowing formula:

san] [
J f "
+
0, l-iwT
—(Alu'axf) ff

n
+ff Mo AP, ;). (35)
0, l1-ioT

Dividing both sides of Eq. (34), by (Aug.y)p, the expres-
sion for the Jacobian matrix elements corresponding to
®,, and u,,r can be obtained as

Ad,, AQ,,
=H .
(A:u/axf)p

Auaxffbx%dﬂ

/‘Lafo (I)x QDidQ

T 0. D, dQ

J = (36)
Haxp PP (Aluaxf) )

Using Eq. (35), the elements of AQ,,/(Augy), can be ex-
pressed as

{ AQ, } (AQ,); J f .
(p x‘Pl
(A:u'axf)p i (A/'Laxf)p l-ior”
+ f f 7 P an
. Max, (2
Q, l-iwr /(Alu'axf)p
f f i O,p,dQ2

/'Lax ¢n¢idQ
f J fz (A/'Laxf)p

(37)

Equations (32) and (36) constitute the two closed forms
for the derivation of the Jacobian matrix elements with
respect to uq,r. From the above discussions, it can be seen
that the Jacobian matrix elements corresponding to ®,
and s can be calculated with the Green’s function,
which can then be used to calculate the Jacobian matrix
elements corresponding to ®,, and u,,s based on the un-
coupled equations resulting from the proposed parallel
computation strategy. Therefore, the computational cost
can be reduced in terms of the Green’s function applied to
the uncoupled equations.

Suppose the number of sources, measurements, and
vertex nodes are S, M, and N, respectively. Then the di-
rect calculation of the Jacobian matrix elements corre-
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sponding to ®, and wu,,s requires S X (N+1) FEM forward
calculations, while our proposed method based on the
Green’s function needs only S+M forward calculations.
Similarly, the direct calculation of Jacobian matrix ele-
ments corresponding to ®,, and u,, requires S X (N+1)
FEM calculations while our proposed method based on
the Green’s function requires S+N forward calculations.
Therefore, when there is more than one source involved in
the imaging process, our method can reduce the computa-
tion requirements and improve the reconstruction speed
significantly.

C. Reconstruction Based on the Adaptively Refined
Mesh

The accuracy of FEM solutions to the partial differential
equations and the accuracy of the reconstructed results
depend on the mesh size [15]. However, global extremely
fine meshes can not only increase the complexity of the re-
construction algorithm, but also enhance the ill-
posedness of the reconstruction problem because of the
limited number of the measurements. To further reduce
the computation requirements without significantly re-
ducing the image resolution, we propose to reconstruct
the image based on an adaptively refined mesh. During
the mesh generation process, some a priori information
derived from the structural imaging modalities can be in-
corporated. In our mesh generation algorithm, the recon-
structed domain is first uniformly discretized according to
the Delaunay triangulation scheme, after which the uni-
form mesh is then adaptively refined with the a priori in-
formation. It is obvious that in order to obtain an image
with high quality, the areas with fine details should be re-
constructed with high resolution, whereas other areas
composed mainly of the low-frequency component with
little variation can be reconstructed with low resolution to
reduce the computational requirements and also to im-
prove the ill-posedness [15].

In structural imaging, areas with large variations in
pixel values, which are likely to be edges between differ-
ent tissues or between normal and abnormal tissues,
should be reconstructed with high resolution, whereas re-
gions with small variations, which are likely to lie in the
interior of the tissues, can be reconstructed with low reso-
lution, which will not affect the quality of the recon-
structed image. Following this idea, the variations of the
pixel values in the triangle of the mesh in the structural
tomography are used to judge whether the resolution is
satisfied, i.e.,

DX)=E{X-EX)P*, (38)

where X is the pixel value in the triangular unit in the a
priori image, E is the expectation operator, and D is the
variation of pixel values in the triangle. With such a
variation, adaptive meshing can be realized, in which tri-
angles in the regions with large variations will be further
segmented into finer triangles to achieve high resolution.

4. RESULTS AND DISCUSSION

To validate the algorithms proposed in this paper, they
will be employed for the reconstruction of FMT from the
simulated data. The simulated forward data are obtained
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from Egs. (1) and (2) in which Gaussian noise with a
signal-to-noise ratio of 10 dB is added for evaluating the
noise robustness of the algorithms. Figure 2 illustrates
the simulated phantom with two anomalies of different
shape in it. Four sources and thirty detectors correspond-
ing, respectively, to circles and squares are equally dis-

Fig. 2. Model of reconstruction.

Fig. 3. Model of a priori image.

(a)
(a) Adaptively refined mesh, (b) globally coarse mesh, (c) globally fine mesh.

Fig. 4.
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tributed around the circumference of the simulated phan-
tom. To achieve better reconstructed results with
relatively low computational requirements, the a priori
image with a resolution of 100X 100 pixels as shown in
Fig. 3 is used to generate an adaptively refined mesh. The
resulting mesh is shown in Fig. 4(a) with 148 vertex
nodes. Figures 4(b) and 4(c) show the globally coarse
mesh with 91 vertex nodes and the globally fine mesh
with 169 vertex nodes, respectively. Table 1 outlines the
optical and fluorescent parameters in different regions of
the simulated phantom.

To evaluate the noise robustness of our algorithm quan-
titatively, the relative error is introduced, defined as

(2 = x07)
g = ——— X100 %,
Xoi

i=1,...,M, (39)

where ¢; is the relative error with respect to x; and x;,
which are the reconstructed and the simulated true data,
respectively, and M is the total pixel number of the origi-
nal image.

The reconstruction of the absorption coefficients s
due to the fluorophore is performed for illustration of the
superiorities of parallel computation strategy. Figures
5(a) and 5(b) illustrate, respectively, the reconstructed im-
ages using the parallel computation algorithm and tradi-
tional sequential method. To further evaluate the recon-
struction quality, Table 2 summarizes the performance of
the reconstructions in terms of the computation time, the
averaged absolute value of relative error, and the mean
square error (MSE), defined as

1 M
MSE = ME (x()i - xi)z.

i=1

(40)

From Table 2, it can be seen that the reconstruction
based on the parallel computation algorithm runs much

(b) (c)

Table 1. Optical and Fluorescent Properties

Maxi (mm) -1

My (mm)~! el (mm)~t 7 7 (ns)
Excitation light
Background 0.02 0.02 2.0 0.18 0.5
Heterogeneity 0.02 0.14 2.0 0.18 0.5
Mami (mm)_l Mamf (mm)_l /'L\;m (mm)_l n T (IlS)
Fluorescent light
Background 0.01 0.002 1.0 0.18 0.5
Heterogeneity 0.01 0.05 1.0 0.18 0.5
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(a) (b)

Fig. 5. Reconstructed spatial map of absorption coefficient due
to fluorophore w,,r on the adaptively refined mesh with (a) our
parallel algorithm and (b) sequential method.

Table 2. Comparison of Performance of Algorithms

Sequential Parallel
Performance Algorithm Algorithm
Computation time (s) 2280 1445
Mean square error 3.266x 1074 3.934x 10
Averaged absolute value 2.890% 102 3.071x 1072

of relative error

(@) (b)
Fig. 6. Reconstructed spatial map of absorption coefficient due
to fluorophore u,, on the adaptively refined mesh with (a)
Green’s function method and (b) traditional perturbation
method.

Table 3. Comparison of Performance of Methods

Perturbation Green’s
Performance Method Function
Computation time (s) 1445 1034
Mean square error 3.934x10™* 3.636x107*
Averaged absolute value 3.071x 1072 3.011x10°2

of relative error

(@)

(b) (c)
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faster than the sequential method, while the MSE, as well
as the averaged absolute value of the relative error of the
reconstructed results based on the former, are a little
larger than that based on the latter. This means that our
algorithm can significantly speed up the process of recon-
struction at the expense of a small reduction in recon-
struction accuracy. Therefore, the parallel computation
strategy can provide relatively high reconstruction qual-
ity with low computational requirements.

Figures 6(a) and 6(b) depict the reconstruction images
using the Green’s function method and the traditional
perturbation method, respectively, both of them based on
the parallel strategy. Table 3 lists the performance of the
above two methods for a quantitative comparison in de-
tail. It can be seen that the computational time of the
Green’s function method is less than that of the tradi-
tional perturbation method. In addition, both the MSE
and the averaged absolute value of the relative error of
the reconstructed results based on the former are a bit
smaller than that of the latter, which means that we can
further save computation time and improve the quality of
reconstruction using the Green’s function method. Com-
bining Table 2 and Table 3, we can demonstrate that the
Green’s function method based on the parallel algorithm
can significantly reduce the computational time of recon-
struction with relatively high reconstruction accuracy.

To validate the advantages of the proposed reconstruc-
tion algorithm based on the adaptively refined mesh over
that of the homogeneous reconstruction algorithms, re-
constructed results based on the three different meshes
as depicted in Figs. 4 are shown in Fig. 7, with (a), (b),
and (c) corresponding, respectively, to the reconstruction
result based on the adaptively refined mesh, the globally
coarse mesh, and the globally fine mesh for the absorption
coefficients due to fluorophores. The quantitative com-
parisons of the performance among the reconstructed re-
sults based on different kinds of meshes are listed in
Table 4. From this table, we can see that both the MSE
and the averaged absolute value of the relative error for
the reconstructed tomographic image based on the adap-
tively refined mesh are smaller than that based on the
low-resolution mesh but larger than that based on the
high-resolution mesh. However, the computational re-
quirements and the reconstruction speed of the algorithm
based on the adaptively refined mesh can be significantly
improved relative to that based on the uniform high-
resolution mesh, i.e., we can achieve a significant compu-

Fig. 7. Reconstructed spatial map of absorption coefficient due to fluorophore w,, with Green’s function method on (a) adaptively re-

fined mesh, (b) globally coarse mesh, (c) globally fine mesh.
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Table 4. Comparison of Reconstruction for
Different Meshes

Adaptively  Globally Globally
Refined Coarse Fine
Performance Mesh Mesh Mesh
Computation time (s) 1034 178 1692

Mean square error 3.636x10™* 4.679x10™* 3.342x107*
Averaged absolute value 3.011x1072 3.875Xx 1072 2.827x 1072
of relative error

tational reduction at a sacrifice of small reconstruction ac-
curacy by using the reconstruction algorithm based on the
adaptively refined mesh.

5. CONCLUSION

In this paper, a reconstruction algorithm suitable for mul-
tiprocessor implementation is proposed for FMT in which
the traditionally computationally intensive Jacobian ma-
trix is obtained with an algorithm combining the Green’s
function method and our parallel forward computation
strategy. In addition, we have derived a closed form for
the Jacobian matrix elements in terms of the Green’s
function that greatly reduces the computational complex-
ity. For a further reduction of the computing require-
ments and for the improvement of the ill-posedness of the
reconstruction problem, the tomographic image is pro-
posed to be reconstructed on an adaptively refined mesh
in which a priori information obtained from other imag-
ing modalities can be conveniently incorporated. Experi-
mental results show that our algorithm can significantly
speed up the reconstruction process and achieve high ac-
curacy.

APPENDIX A

(1) A, ,, is symmetric.
Proof. It can obviously be seen from Egs. (18) and (19)
that

th(goi; (Pj)x,m = th((Pj, <Pi)x,m- (A]-)

Thus, we can conclude that

A, "=A,,. (A2)
Therefore A, ,, is symmetric. O
(2) A, ,, is positive definite.

Proof.

Definition I: For a matrix A e CVV, vX e CN, X#0, if
Re(XPAX) >0, matrix A is a complex positive definite ma-
trix [16].

Definition 2: For a continuous function f defined on
with boundary I'y, the norm of f can be defined as [9]

1/2
ff [f2+(f;)2+(;§)2]dﬂ+f st .
Q, r

h

(A3)

Let V=(cqy,...,cy)T e CY and V+#0, where V¥ is the
conjugate transposed matrix of V, ¢ is the conjugate com-
plex of ¢, and Re(X) is the real part of complex X; we have
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N
Re(VHAx,mV) = Re|: 2 aﬂh(¢ia (Pj)x,mEiCj:|

ij=1

N N
=Re anh(z Cipis 2 cj‘Pj)
i1 =1 e

= Re[aﬂh(ah,vh)x,m], (A4)
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(A5)

Re(aq, (U,01)x,m)

o[ f o]
N fr bx,mvh|2d3) > ¥,
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+f [v,2ds
Iy
1 fJ { vy | 2
=—n —
2 0,
TR
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where Y1 =min[1 ’ (bx,m/Dx,m)min]Dx,m min-*
Let v,=a+bi, a,b € R; then we obtain
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From Eqgs. (A6) and (A7), we can conclude that

dop |2 [ dlual\?
— = —. (A8)
ox ox

Similarly, we also have
awp |2 [ dvnl\?
s (—’”> . (A9)
n oy

Using Friedrich’s inequality [9],

[ (2) o [ = [ [ o0

(A10)

with constant ¢>0 in combination with Eqs. (A3), (A8),
and (A9), we have

B 1 dopl\* [ dlvnl\?
Re[anh(vh,vh)x,m]>§71 ffnh W > dQ
1 2
[ st gt | | [
T, 2 o,
2
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where y=(1/2)y; min(1,c).
From Eqgs. (A4) and (A11) we have
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Re(VHAx,mV) = Re[aﬂh(ﬁh?vh)x,m] = 7’H|Uh|||§,nh > 0’

vV #0. (A12)
Therefore according to definition 1, matrix A, ,, is positive
definite, as stated. O
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