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The rapid and accurate computation of the Jacobian matrix, which is usually computationally intensive, is of
critical importance for the reconstruction problem of fluorescent molecular tomography (FMT). An extension of
the Green’s function method for the Jacobian matrix computation suitable for two coupled differential equa-
tions is proposed, in combination with the parallel forward computing strategy for FMT image reconstruction.
For further acceleration of the reconstruction process without significant quality reduction of the results, we
also propose to reconstruct the FMT image on an adaptively refined mesh generated with a priori information
incorporated. Experimental results demonstrate that the speed of the reconstruction process can be signifi-
cantly improved with the proposed overall algorithm. © 2007 Optical Society of America
OCIS codes: 170.3010, 170.3880, 170.6960, 200.4960, 260.2510.
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. INTRODUCTION
ptical techniques in the near-infrared (NIR) spectral
indow have made significant progress in biomedical re-

earch in recent years. The relatively low absorption and
ow scattering in the 600–1000 nm spectral region allow
etection of photons that have traveled through several
entimeters of biological tissue [1]. Fluorescent molecular
omography (FMT) is an emerging tool for molecularly
ased medical imaging [2]. In this imaging modality, a
uorescent biochemical marker used as contrast agent
uch as Indocyanine Green is injected into the biological
ystem. The injected fluorophore may preferentially accu-
ulate in diseased tissues due to leaky vasculature, an-

iogenesis, and hypermetabolism. The use of an exoge-
eous fluorescent agent has the potential to improve the
ontrast and thus to facilitate early diagnosis [3]. During
he imaging process, NIR light (sinusoidally modulated,
ontinuous wave, or pulsed excitation light) is used to ir-
adiate the surface of the tissue, while measurements of
ight that has escaped from the tissue are collected at the
issue surface, through which the spatial-concentration
istribution of the fluorescence markers inside the tissue
an be obtained [4]. Such distributions of fluorescent
yes have important applications in clinical diagnosis.
he principle of FMT is schematically illustrated in
ig. 1.
Two processes are involved in FMT reconstruction: the

orward and the inverse processes. The forward problem
s to predict the observable states (e.g., emission fluence)
t the measurement locations on the basis of the known
xcitation light source, the spatially distributed optical
roperties of the tissue, and the photon transport model
5]. In FMT, such a forward model is usually described by
wo coupled partial differential equations (i.e., diffusion
quations). The first equation describes the excitation
1084-7529/07/072014-9/$15.00 © 2
ight, while the second one corresponds to the emitted
ight. In the inverse problem, the values of the optical pa-
ameters (i.e., absorption coefficients and scattering coef-
cients), the fluorescent yield, and the fluorescent lifetime
re updated repeatedly from an initial guess until the
redictions match the measurements, or some other con-
ergence criterion is achieved. The final spatial distribu-
ion of optical parameters, the fluorescent yield, and the
uorescent lifetime will result in reconstructed images.
As pointed out, both the forward and the inverse pro-

esses are involved in the tomographic image reconstruc-
ion; they will determine the speed of the reconstruction.
or the forward problem, we propose a method to de-
ouple the two originally coupled differential equations
orresponding to the excitation and the emission light,
aking the forward problem suitable for parallel imple-
entation. In contrast, during the inverse reconstruction

rocess, the Jacobian matrix (also referred to as the sen-
itivity matrix), which defines the perturbation sensitiv-
ty of the forward calculated data to the image param-
ters, needs to be computed repeatedly. Hence, this
rocess is another important factor determining the speed
f the whole reconstruction algorithm.

The Jacobian matrix is usually computationally inten-
ive especially for the FMT reconstruction problem,
here there are two coupled diffusion equations describ-

ng the forward problem. It is well known that the Green’s
unction method is an effective tool for accelerating the
acobian matrix computing process. The theory of using
he Green’s function for the Jacobian matrix computing
hen only one differential equation is concerned has been
ell established. In this paper, such a method will be gen-
ralized in combination with the aforementioned parallel
omputing strategy for the FMT reconstruction problem
here two coupled equations are concerned.
007 Optical Society of America
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For further acceleration of the reconstruction process
ithout significant reduction in reconstruction quality, we
lso propose to reconstruct the image on an adaptively re-
ned mesh generated with a priori information incorpo-
ated. Experimental results demonstrate that both the
peed of the reconstruction computation and the precision
f the inverse solutions can be significantly improved with
he proposed algorithm. The main contribution of this pa-
er is the combination of the proposed parallel forward
omputation strategy and the extension of the Green’s
unction method originally developed for the Jacobian
atrix computation from only a single differential equa-

ion to the case of two coupled equations, which can sig-
ificantly speed up the reconstruction process.

. FORWARD PROBLEM AND PARALLEL
MPLEMENTATION
. Forward Problem
he forward model of FMT is used to predict the measure-
ents given the locations and the optical and fluorescent

roperties of the random medium [5]. Light propagation
s rigorously described by the Maxwell’s equations that
escribe the relation between the electric and the mag-
etic waves in space and time. The radiative transfer
quation (RTE) is an approximation to Maxwell’s equa-
ions and has been used successfully to model light trans-
ortation in diffusive media [6]. The diffusion equation,
hich is the P1 approximation to RTE, is usually em-
loyed for describing light propagation in media with ei-
her low absorption or high scattering coefficients because
he RTE is extremely computationally expensive. In FMT,
wo coupled second-order, elliptic, partial differential
quations are used to describe, respectively, the propaga-
ion of the excitation and the fluorescent light in tissues
5]. In the frequency domain, they can be written as fol-
ows:

�− � · Dx � + kx��x = Sx, �1�

�− � · Dm � + km��m = ��x. �2�

The first equation describes the propagation of the ex-
itation light, and the second one models the generation
nd propagation of fluorescent emitted light. In Eqs. (1)
nd (2), � is the gradient operator, Sx�W/cm3� is the in-
ensity of the excitation light source, and �x,m is the pho-
on fluence at the excitation (with the subscript of x) or
he emission wavelength (with the subscript of m). The
iffusion coefficients Dx,m, decay coefficients kx,m, and
mission source coefficients � are defined, respectively, as

Fig. 1. Schematic illustration of the principle of FMT.
Dx =
1

3��axi + �axf + �sx� �
,

Dm =
1

3��ami + �amf + �sm� �
, �3�

kx =
i�

c
+ �axi + �axf,

km =
i�

c
+ �ami + �amf, �4�

� =
��axf

1 − i��
, �5�

here �axi�cm−1� and �ami�cm−1� are the absorption coef-
cients due to nonfluorescing chromophores, �axf�cm−1�
nd �amf�cm−1� are the absorption coefficients due to the
uorophores, �sx� �cm−1� and �sm� �cm−1� are the isotropic
cattering coefficients, � is the fluorescence quantum effi-
iency, ��s� is the fluorescence lifetime, i= �−1�1/2, and
�cm/s� is the speed of light in the medium [5]. As men-
ioned before, the subscripts x and m are used to denote
he corresponding quantities at the excitation and emis-
ion wavelengths, respectively.

To obtain solutions to Eqs. (1) and (2), the Robin-type
oundary conditions are employed to describe the trans-
ort behavior of light on the boundary of the tissue:

n · �Dx � �x�r�� + bx�x�r� = 0 for all r � ��, �6�

n · �Dm � �m�r�� + bm�m�r� = 0 for all r � ��, �7�

here n is a vector normal to the boundary ��, and bx
nd bm are the Robin boundary coefficients, which are
overned by the reflection coefficients �Rx ,Rm� [5] and
ave a value of 1/2 under the condition of no reflections at
he boundary.

. Parallel Computation of the Forward Problem
he rapid and accurate computational implementation of

he forward model is of critical importance for optical to-
ographic image reconstruction, as the forward Eqs. (1)

nd (2) must be solved repeatedly during the process of
econstruction following the model-based iterative image
econstruction scheme [7].

Traditionally, the forward problem of Eqs. (1) and (2) is
olved in a sequential manner, i.e., Eq. (1) is first solved,
nd its solution is then substituted into Eq. (2), which
ields the photon fluence at the emission wavelength.
his sequence will prevent a fast implementation of the

orward problem, and hence slow down the tomographic
mage reconstruction. To tackle this problem, a parallel
lgorithm is proposed in this paper.
To decouple Eqs. (1) and (2), the term �x in the right-

and side of Eq. (2) should be eliminated. For such a pur-
ose, a new quantity � is introduced that satisfies

�− � · Dm � + km�� = 1. �8�

ultiplying by �� on both sides of Eq. (8), we can obtain
x
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�− � · Dm � + km�� · ��x = ��x. �9�

omparing Eqs. (2) and (9), it can be seen that �m is a
unction of � and �x, and hence we have

�m = f��,�x�. �10�

his implies that, if the function in Eq. (10) is known, the
hoton fluence �x and �m for the excitation and the emis-
ion light, respectively, can be obtained in parallel man-
er from Eqs. (1) and (8) with multiprocessors because
qs. (1) and (8) are independent. Thus the whole parallel

orward problem of FMT can be described by Eqs. (1) and
8) together and the photon fluence at the emission wave-
ength can be easily obtained by substituting the solu-
ions to Eqs. (1) and (8) into Eq. (10). As will be seen in
he following discussion, Eq. (10) can be easily solved in
atrix notation when using the finite element method

FEM) for numerical implementation of the forward prob-
em.

In the FEM, the domain is divided into P elements
oined at N vertex nodes. The solution �x,m is approxi-

ated by the piecewise function �x,m=�i
N�xi,mi�i, where

i�i=1. . .N� are basis functions [8]. Assuming V0
h

span��j�j=1
N [9], ∀	h�V0

h, we have

vh = �
k=1

N

ck�k. �11�

ow let uh=�j=1
N �j�j. To obtain the weak solutions of Eqs.

1) and (2) under the boundary conditions of Eqs. (6) and
7), Eqs. (1) and (2) are written in the form

a�h
�uh,vh�x,m = �fx,m,vh��h

, �12�

here

a�h
�uh,vh�x,m =� �

�h

�Dx,m��uh · �vh� + kx,muhvh�d�

+�

h

bx,muhvhds, �13�

�fx,m,vh��h
=� �

�h

fx,mvhd�, �14�

fx = Sx, fm = ��x; �15�

ith �h and 
h being, respectively, the bounded domain
nd its boundary. Equation (12) can be further rewritten
n a more compact matrix form as

Ax,m�x,m = Sx,m, �16�

here

Sx,m = 	
�fx,m,�1��h

]

�fx,m,�N��h


 , �17�
Ax,m = 	
a�h

��1,�1�x,m ¯
a�h

��N,�1�x,m

] ]

a�h
��1,�N�x,m ¯

a�h
��N,�N�x,m


 . �18�

The elements of the finite element matrix Ax,m can be
btained from the formula

a�h
��i,�j�x,m =� �

�h

Dx,m � �i · ��jd� +� �
�h

kx,m�i�jd�

+�

h

bx,m�i�jds. �19�

ecause there are three terms in the right-hand side of
q. (19), Eq. (16) can be rewritten as

�Dx + Kx + Bx��x = Sx, �20�

�Dm + Km + Bm��m = Sm, �21�

here

Ax,m = �Dx,m + Kx,m + Bx,m�, �22�

Dij =� �
�h

Dx,m � �i · ��jd�, �23�

Kij =� �
�h

kx,m�i�jd�, �24�

Bij =�

h

bx,m�i�jds. �25�

It can be proved (in Appendix A) that matrix Ax,m is
ymmetric and positive definite. Therefore, there exists
n inverse matrix H for Am; that is, there exists a matrix

satisfying the following equation [10],

AmH = I, �26�

ith I being an identity matrix.
Combining Eqs. (20) and (26) leads to a system of equa-

ions in discretized domain for the forward problem of
MT. Owing to their independence, these two equations
an be implemented in a parallel manner with multipro-
essors.

It can be easily seen from Eqs. (21) and (26) that the
hoton fluence �m at the emission wavelength can be re-
overed by simple matrix multiplication, i.e.,

�m = H · Sm. �27�

. RECONSTRUCTION
. Image Reconstruction
he inverse problem of FMT is to predict the spatial dis-

ribution of the optical parameters and the fluorescent
roperties of the medium from measurements [11]. We
mplement the iterative image reconstruction based on
he parallel model. The Newton–Raphson technique com-
ined with a Marquardt algorithm is employed to recon-
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truct the fluorescent properties within the medium. The
inearized inverse problem can be expressed as

�x = JT�JJT + �I�−1�y, �28�

here �x is the perturbation in optical properties, �y is
esidual data between the measurements and the pre-
icted data, J is the Jacobian matrix, I is the identity ma-
rix, and � is a regularization parameter which can be de-
ived from the Marquardt algorithm [6].

During the iterative process of Eq. (28) for FMT, the re-
idual data of �y are updated in each iteration with the
ecent distribution of �x and, as a result, the photon flu-
nce �x and �m at the excitation and emission wave-
engths must be calculated repeatedly. According to Eqs.
15) and (17), Sm is a function of �x, and hence a straight-
orward strategy is first to solve Eq. (20) for �x, which is
hen substituted into Eq. (21) to obtain �m. Compared
ith the traditional method in which �x and �m are ob-

ained in a sequential manner by solving the two coupled
atrix Eqs. (20) and (21) during each iteration, our par-

llel forward implementation scheme can compute the
ector �x and the matrix H in a parallel manner with
ultiprocessors from Eqs. (20) and (26) because of their

ndependence. As a result, �m can be obtained from Eq.
27) with Sm being obtained from Eqs. (15) and (17). Be-
ause �x and the matrix H can be obtained simulta-
eously in a parallel manner and also because all opera-
ions involved in the latter process for obtaining the
uantity of �m are only simple matrix multiplications,
his strategy can significantly speed up the reconstruction
rocess. Particularly in the case when only the absorption
oefficient �axf due to the fluorophore is to be recon-
tructed, the matrix H in Eq. (26) needs to be calculated
nly once during the whole reconstruction process, and
he fluence �m at the emission wavelength can be ob-
ained very fast through simple matrix multiplications.

. Jacobian Matrix Computation with the
reen’s Function
nother quantity that needs to be repeatedly updated
uring each iteration is the Jacobian matrix J in Eq. (28),
hich is also a key factor determining the implementa-

ion speed of the reconstruction algorithm. In fact, the
acobian matrix is a measure of the rate of change in
easurement with respect to the optical parameters.
onventionally, the direct derivation method and the per-

urbation method are two straightforward methods to ob-
ain the Jacobian matrix, both of which are computing in-
ensive. Therefore, it is of critical importance to develop
n effective Jacobian matrix calculation method for a fast
mplementation of the FMT reconstruction.

The Green’s function, which is also referred to as the
oint source function representing the field generated by
point source, plays an important role in solving both
athematical and physical problems described by partial

ifferential equations. The theory of using the Green’s
unction in the derivation of the Jacobian matrix from a
ingle differential equation has been well established
12]. However, a direct employment of the aforementioned
reen’s function method is not valid for our case because

here are two coupled forward differential equations in
he FMT problem.
To solve such a problem, we propose a Green’s function
ethod based on our parallel computation algorithm as

iscussed in Section 2 to derive the elements of the Jaco-
ian matrix. We will discuss in detail the derivation of the
acobian matrix elements with respect to �axf as an ex-
mple; other elements can be obtained in a similar man-
er.
In the framework of the FEM, we consider the follow-

ng perturbations:

Kx → Kx + �Kx, Dx → Dx + �Dx, �x → �x + ��x.

ubstituting the perturbed quantities into Eq. (20) and
eeping only up to the first-order terms, we can obtain

Ax��x = − ��Dx + �Kx��x. �29�

sing the Green’s function as well as the corresponding
eciprocity principle [13], we can get

���x�n = �Gn
*�T��Dx + �Kx��x, �30�

here Gn
* can be obtained from the adjoint problem [14]

Ax
*Gn

* = − Qn
* , �31�

ith Qn
* and Ax

* being, respectively, the adjoint source lo-
ated at the original detector position and the conjugate
atrix of Ax.
As we are now interested only in �axf, only the pertur-

ation corresponding to �axf should be considered with
ther parameters being regarded as constants. To solve
he problem in the FEM framework, the perturbation of
axf at a node p �p=1,2, . . . ,N� should be expanded in the
pace of V0

h, i.e., ��axf=�n=0
N ���axf�n�n, with one vertex

ode p having a perturbation of ���axf�p and the others
aving a value of 0.
Dividing by ���axf�p on both sides of Eq. (30) and con-

idering the our interest as stated in the first sentence of
he last paragraph, the expression for the Jacobian ma-
rix elements corresponding to �x and �axf can be ex-
ressed as

J�axf,�s,n,p =
���x�n

���axf�p
= �Gn

*�TVxp�x, �32�

here the elements of Vxp can be obtained from the for-
ula:

�Vxp�ij =� �
�k

�p�i�jd�. �33�

After the derivation of the Jacobian matrix elements
or �x and �axf as discussed above, the next task for us is
o derive the Jacobian matrix elements for �m and �axf.
owever, owing to the coupling of the two forward Eqs.

20) and (21), �m cannot be obtained from Eq. (21) sepa-
ately. As a result, the Jacobian matrix elements corre-
ponding to �m and �axf cannot be derived from Eq. (21)
n the same manner as those corresponding to �x and �axf
ith the Green’s function method. To tackle this problem,
e propose to use the uncoupled Eqs. (20) and (26) in

ombination with Eq. (27) instead. Considering only a
erturbation on �axf and leaving all other optical param-
ters unchanged, such a perturbation will have no effect
n Eq. (26) and hence results in a constant matrix H.
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hen we can shift our attention to Eq. (27), and perturba-
ions of �m and Sm are performed as follows:

�m → �m + ��m, Sm → Sm + �Sm.

ubstituting them into Eq. (27) and neglecting the
econd-order terms resulting from ��axf and ��x in �Sm,
e have, according to Eqs. (2) and (5),

��m = H�Qm, �34�

here the elements of �Qm can be obtained from the fol-
owing formula:

��Qm�i =� �
�h

�

1 − i��
��axf�x�id�

+� �
�h

�

1 − i��
�axf��x�id�

= ���axf�p� �
�h

�

1 − i��
�p�x�id�

+� �
�h

�

1 − i��
�axf��x�id�. �35�

Dividing both sides of Eq. (34), by ���axf�p, the expres-
ion for the Jacobian matrix elements corresponding to
m and �axf can be obtained as

J�axf,�m,p =
��m

���axf�p
= H

�Qm

���axf�p
. �36�

sing Eq. (35), the elements of �Qm / ���axf�p can be ex-
ressed as

� �Qm

���axf�p
�

i

=
��Qm�i

���axf�p
=� �

�h

�

1 − i��
�p�x�id�

+� �
�h

�

1 − i��
�axf

��x

���axf�p
�id�

=� �
�h

�

1 − i��
�p�x�id�

+� �
�h

�

1 − i��
�axf�

n=0

N ���x�n

���axf�p
�n�id�.

�37�

Equations (32) and (36) constitute the two closed forms
or the derivation of the Jacobian matrix elements with
espect to �axf. From the above discussions, it can be seen
hat the Jacobian matrix elements corresponding to �x
nd �axf can be calculated with the Green’s function,
hich can then be used to calculate the Jacobian matrix
lements corresponding to �m and �axf based on the un-
oupled equations resulting from the proposed parallel
omputation strategy. Therefore, the computational cost
an be reduced in terms of the Green’s function applied to
he uncoupled equations.

Suppose the number of sources, measurements, and
ertex nodes are S, M, and N, respectively. Then the di-
ect calculation of the Jacobian matrix elements corre-
ponding to �x and �axf requires S �N+1� FEM forward
alculations, while our proposed method based on the
reen’s function needs only S+M forward calculations.
imilarly, the direct calculation of Jacobian matrix ele-
ents corresponding to �m and �axf requires S �N+1�
EM calculations while our proposed method based on

he Green’s function requires S+N forward calculations.
herefore, when there is more than one source involved in

he imaging process, our method can reduce the computa-
ion requirements and improve the reconstruction speed
ignificantly.

. Reconstruction Based on the Adaptively Refined
esh
he accuracy of FEM solutions to the partial differential
quations and the accuracy of the reconstructed results
epend on the mesh size [15]. However, global extremely
ne meshes can not only increase the complexity of the re-
onstruction algorithm, but also enhance the ill-
osedness of the reconstruction problem because of the
imited number of the measurements. To further reduce
he computation requirements without significantly re-
ucing the image resolution, we propose to reconstruct
he image based on an adaptively refined mesh. During
he mesh generation process, some a priori information
erived from the structural imaging modalities can be in-
orporated. In our mesh generation algorithm, the recon-
tructed domain is first uniformly discretized according to
he Delaunay triangulation scheme, after which the uni-
orm mesh is then adaptively refined with the a priori in-
ormation. It is obvious that in order to obtain an image
ith high quality, the areas with fine details should be re-

onstructed with high resolution, whereas other areas
omposed mainly of the low-frequency component with
ittle variation can be reconstructed with low resolution to
educe the computational requirements and also to im-
rove the ill-posedness [15].
In structural imaging, areas with large variations in

ixel values, which are likely to be edges between differ-
nt tissues or between normal and abnormal tissues,
hould be reconstructed with high resolution, whereas re-
ions with small variations, which are likely to lie in the
nterior of the tissues, can be reconstructed with low reso-
ution, which will not affect the quality of the recon-
tructed image. Following this idea, the variations of the
ixel values in the triangle of the mesh in the structural
omography are used to judge whether the resolution is
atisfied, i.e.,

D�X� = E��X − E�X��2�, �38�

here X is the pixel value in the triangular unit in the a
riori image, E is the expectation operator, and D is the
ariation of pixel values in the triangle. With such a
ariation, adaptive meshing can be realized, in which tri-
ngles in the regions with large variations will be further
egmented into finer triangles to achieve high resolution.

. RESULTS AND DISCUSSION
o validate the algorithms proposed in this paper, they
ill be employed for the reconstruction of FMT from the

imulated data. The simulated forward data are obtained
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rom Eqs. (1) and (2) in which Gaussian noise with a
ignal-to-noise ratio of 10 dB is added for evaluating the
oise robustness of the algorithms. Figure 2 illustrates
he simulated phantom with two anomalies of different
hape in it. Four sources and thirty detectors correspond-
ng, respectively, to circles and squares are equally dis-

Table 1. Optical and

�axi �mm�−1 �axf �m

Excitation light
Background 0.02 0.0
Heterogeneity 0.02 0.1

�ami �mm�−1 �amf �m
luorescent light
Background 0.01 0.0
Heterogeneity 0.01 0.0

Fig. 2. Model of reconstruction.

Fig. 3. Model of a priori image.

Fig. 4. (a) Adaptively refined mesh, (b
ributed around the circumference of the simulated phan-
om. To achieve better reconstructed results with
elatively low computational requirements, the a priori
mage with a resolution of 100100 pixels as shown in
ig. 3 is used to generate an adaptively refined mesh. The
esulting mesh is shown in Fig. 4(a) with 148 vertex
odes. Figures 4(b) and 4(c) show the globally coarse
esh with 91 vertex nodes and the globally fine mesh
ith 169 vertex nodes, respectively. Table 1 outlines the
ptical and fluorescent parameters in different regions of
he simulated phantom.

To evaluate the noise robustness of our algorithm quan-
itatively, the relative error is introduced, defined as

�i =
�xi − x0i�

x0i
 100 % , i = 1, . . . ,M, �39�

here �i is the relative error with respect to xi and x0i,
hich are the reconstructed and the simulated true data,

espectively, and M is the total pixel number of the origi-
al image.
The reconstruction of the absorption coefficients �axf

ue to the fluorophore is performed for illustration of the
uperiorities of parallel computation strategy. Figures
(a) and 5(b) illustrate, respectively, the reconstructed im-
ges using the parallel computation algorithm and tradi-
ional sequential method. To further evaluate the recon-
truction quality, Table 2 summarizes the performance of
he reconstructions in terms of the computation time, the
veraged absolute value of relative error, and the mean
quare error (MSE), defined as

MSE =
1

M�
i=1

M

�x0i − xi�2. �40�

From Table 2, it can be seen that the reconstruction
ased on the parallel computation algorithm runs much

rescent Properties

�sx� �mm�−1 � � (ns)

2.0 0.18 0.5
2.0 0.18 0.5

�sm� �mm�−1 � � (ns)

1.0 0.18 0.5
1.0 0.18 0.5

lly coarse mesh, (c) globally fine mesh.
Fluo

m�−1

2
4

m�−1

02
5

) globa
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aster than the sequential method, while the MSE, as well
s the averaged absolute value of the relative error of the
econstructed results based on the former, are a little
arger than that based on the latter. This means that our
lgorithm can significantly speed up the process of recon-
truction at the expense of a small reduction in recon-
truction accuracy. Therefore, the parallel computation
trategy can provide relatively high reconstruction qual-
ty with low computational requirements.

Figures 6(a) and 6(b) depict the reconstruction images
sing the Green’s function method and the traditional
erturbation method, respectively, both of them based on
he parallel strategy. Table 3 lists the performance of the
bove two methods for a quantitative comparison in de-
ail. It can be seen that the computational time of the
reen’s function method is less than that of the tradi-

ional perturbation method. In addition, both the MSE
nd the averaged absolute value of the relative error of
he reconstructed results based on the former are a bit
maller than that of the latter, which means that we can
urther save computation time and improve the quality of
econstruction using the Green’s function method. Com-
ining Table 2 and Table 3, we can demonstrate that the
reen’s function method based on the parallel algorithm

an significantly reduce the computational time of recon-
truction with relatively high reconstruction accuracy.

To validate the advantages of the proposed reconstruc-
ion algorithm based on the adaptively refined mesh over
hat of the homogeneous reconstruction algorithms, re-
onstructed results based on the three different meshes
s depicted in Figs. 4 are shown in Fig. 7, with (a), (b),
nd (c) corresponding, respectively, to the reconstruction
esult based on the adaptively refined mesh, the globally
oarse mesh, and the globally fine mesh for the absorption
oefficients due to fluorophores. The quantitative com-
arisons of the performance among the reconstructed re-
ults based on different kinds of meshes are listed in
able 4. From this table, we can see that both the MSE
nd the averaged absolute value of the relative error for
he reconstructed tomographic image based on the adap-
ively refined mesh are smaller than that based on the
ow-resolution mesh but larger than that based on the
igh-resolution mesh. However, the computational re-
uirements and the reconstruction speed of the algorithm
ased on the adaptively refined mesh can be significantly
mproved relative to that based on the uniform high-
esolution mesh, i.e., we can achieve a significant compu-

rophore �axf with Green’s function method on (a) adaptively re-
able 2. Comparison of Performance of Algorithms

Performance
Sequential
Algorithm

Parallel
Algorithm

omputation time (s) 2280 1445
ean square error 3.26610−4 3.93410−4

veraged absolute value
of relative error

2.89010−2 3.07110−2
Table 3. Comparison of Performance of Methods

Performance
Perturbation

Method
Green’s

Function

omputation time (s) 1445 1034
ean square error 3.93410−4 3.63610−4

veraged absolute value
of relative error

3.07110−2 3.01110−2
ig. 5. Reconstructed spatial map of absorption coefficient due
o fluorophore �axf on the adaptively refined mesh with (a) our
ig. 6. Reconstructed spatial map of absorption coefficient due
o fluorophore �axf on the adaptively refined mesh with (a)
reen’s function method and (b) traditional perturbation
ig. 7. Reconstructed spatial map of absorption coefficient due to fluo
ned mesh, (b) globally coarse mesh, (c) globally fine mesh.
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ational reduction at a sacrifice of small reconstruction ac-
uracy by using the reconstruction algorithm based on the
daptively refined mesh.

. CONCLUSION
n this paper, a reconstruction algorithm suitable for mul-
iprocessor implementation is proposed for FMT in which
he traditionally computationally intensive Jacobian ma-
rix is obtained with an algorithm combining the Green’s
unction method and our parallel forward computation
trategy. In addition, we have derived a closed form for
he Jacobian matrix elements in terms of the Green’s
unction that greatly reduces the computational complex-
ty. For a further reduction of the computing require-

ents and for the improvement of the ill-posedness of the
econstruction problem, the tomographic image is pro-
osed to be reconstructed on an adaptively refined mesh
n which a priori information obtained from other imag-
ng modalities can be conveniently incorporated. Experi-

ental results show that our algorithm can significantly
peed up the reconstruction process and achieve high ac-
uracy.

PPENDIX A
1) Ax,m is symmetric.

Proof. It can obviously be seen from Eqs. (18) and (19)
hat

a�h
��i,�j�x,m = a�h

��j,�i�x,m. �A1�

hus, we can conclude that

Ax,m
T = Ax,m. �A2�

herefore Ax,m is symmetric. �

(2) Ax,m is positive definite.
Proof.
Definition 1: For a matrix A�CNN, ∀X�CN, X�0, if

e�XHAX��0, matrix A is a complex positive definite ma-
rix [16].

Definition 2: For a continuous function f defined on �h
ith boundary 
h, the norm of f can be defined as [9]

f1,�h
=�� �

�h

�f2 + �fx��
2 + �fy��

2�d� +�

h

f2ds�1/2

.

�A3�

Let V= �c1 , . . . ,cN�T�CN and V�0, where VH is the
onjugate transposed matrix of V, c̄ is the conjugate com-
lex of c, and Re�X� is the real part of complex X; we have

Table 4. Comparison of Reconstruction for
Different Meshes

Performance

Adaptively
Refined
Mesh

Globally
Coarse
Mesh

Globally
Fine
Mesh

omputation time (s) 1034 178 1692
ean square error 3.63610−4 4.67910−4 3.34210−4

veraged absolute value
of relative error

3.01110−2 3.87510−2 2.82710−2
Re�VHAx,mV� = Re��
i,j=1

N

a�h
��i,�j�x,mc̄icj�

= Re�a�h��
i=1

N

c̄i�i,�
j=1

N

cj�j�
x,m
�

= Re�a�h
�v̄h,vh�x,m�, �A4�

e�a�h
�v̄h,vh�x,m�

= Re�� �
�h

�Dx,m�� �vh

�x �2

+ � �vh

�y �2� + kx,m�vh�2�d�

+�

h

bx,m�vh�2ds� � �1�� �
�h

�� �vh

�x �2

+ � �vh

�y �2�d�

+�

h

�vh�2ds�
=

1

2
�1�� �

�h

�� �vh

�x �2

+ � �vh

�y �2�d� +�

h

�vh�2ds�
+

1

2
�1�� �

�h

�� �vh

�x �2

+ � �vh

�y �2�d� +�

h

�vh�2ds� ,

�A5�

here �1=min�1, �bx,m /Dx,m�min�Dx,m min.
Let vh=a+bi, a ,b�R; then we obtain

� �vh

�x �2

= � �a

�x�
2

+ � �b

�x�
2

=
1

4�a2 + b2��4a2� �a

�x�
2

+ 4b2� �b

�x�
2

+ 4a2� �b

�x�
2

+ 4b2� �a

�x�
2�

�
1

4�a2 + b2��4a2� �a

�x�
2

+ 4b2� �b

�x�
2

+ 8�ab
�b

�x
·

�a

�x��
�

1

4�a2 + b2��4a2� �a

�x�
2

+ 4b2� �b

�x�
2

+ 8ab
�b

�x
·

�a

�x� , �A6�

� ��vh�

�x �2

= � ��a2 + b2

�x
�2

=
1

4�a2 + b2�� ��a2�

�x
+

��b2�

�x �2

=
1

4�a2 + b2��2a
�a

�x
+ 2b

�b

�x�2

=
1

4�a2 + b2��4a2� �a

�x�
2

+ 4b2� �b

�x�
2

+ 8ab
�b

�x
·

�a

�x� . �A7�
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rom Eqs. (A6) and (A7), we can conclude that

� �vh

�x �2

� � ��vh�

�x �2

. �A8�

imilarly, we also have

� �vh

�y �2

� � ��vh�

�y �2

. �A9�

sing Friedrich’s inequality [9],

� �
�

�� �v

�x�
2

+ � �v

�y�
2�d� +�




v2ds � c� �
�

v2d�,

�A10�

ith constant c�0 in combination with Eqs. (A3), (A8),
nd (A9), we have

Re�a�h
�v̄h,vh�x,m� �

1

2
�1�� �

�h

�� ��vh�

�x �2

+ � ��vh�

�y �2�d�

+�

h

�vh�2ds� +
1

2
�1�� �

�h

�� �vh

�x �2

+ � �vh

�y �2�d� +�

h

�vh�2ds�
�

1

2
�1c� �

�h

�vh�2d�

+
1

2
�1�� �

�h

�� �vh

�x �2

+ � �vh

�y �2�d�

+�

h

�vh�2ds�
=

1

2
�1�c� �

�h

�vh�2d� +� �
�h

�� �vh

�x �2

+ � �vh

�y �2�d� +�

h

�vh�2ds�
�

1

2
�1�c� �

�h

�vh�2d�

+� �
�h

�� ��vh�

�x �2

+ � ��vh�

�y �2�d�

+�

h

�vh�2ds� � ��vh�1,�h

2 , �A11�

here �= �1/2��1 min�1,c�.
From Eqs. (A4) and (A11) we have
Re�VHAx,mV� = Re�a�h
�v̄h,vh�x,m� � ��vh�1,�h

2 � 0,

∀ V � 0. �A12�

herefore according to definition 1, matrix Ax,m is positive
efinite, as stated. �
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