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Abstract 

Study Design. Recovery of postural equilibrium following bilateral voluntary 

arm movement was evaluated using a case-control study, with 13 subjects with 

chronic LBP and 13 age- and gender-matched control subjects. 

Objectives. To evaluate control of the Centre-of-Pressure (COP), as a marker 

of the quality of control of postural equilibrium associated with voluntary arm 

movements, in people with and without LBP. 

Summary of background data. When healthy individuals perform rapid 

voluntary arm movements, small spinal movements (preparatory movement) opposite 

to the direction of the reactive moments precede voluntary arm movements.  

Evaluation of trunk movement in people with LBP suggests that this strategy is used 

infrequently in this population and is associated with an increased spinal displacement 

following arm flexion. As the preparatory spinal movement was also thought to be an 

anticipatory mechanism limiting postural perturbation caused by arm movements, we 

hypothesized that LBP subjects would have compromised control of postural 

equilibrium following arm flexion. 

Methods. Subjects performed bilateral voluntary rapid arm flexion while 

standing on support surface of different dimensions with eyes opened or closed. 

Results. Results indicated that people with LBP consistently took longer to 

recover postural equilibrium and made more postural adjustments in different stance 

conditions. However, there was no increase in the excursion of the COP during the 

recovery period in the LBP group.    

Conclusion. These data suggest that while COP is tightly controlled during 

postural recovery, the fine-tuning of the control of postural equilibrium is 



 

compromised in people with LBP. Postural control dysfunctions should be considered 

in the management of chronic low back pain.  
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Key Points 

 Control of postural equilibrium associated with bilateral voluntary arm 

flexion was evaluated in 13 study participants with chronic LBP and 13 

matched control subjects. 

 Subjects with LBP consistently took longer to recover postural equilibrium 

and made more postural adjustments in different support and visual 

conditions. 

 The inferior quality of postural control may be associated with altered spinal 

movement control in people with chronic LBP. 

 

 

 



 

Introduction 

  People with low back pain (LBP) commonly have impaired postural control1,2. 

In particular, LBP subjects have difficulty controlling lumbopelvic movements 

associated with postural adjustments3,4.  For instance, it is known that lumbopelvic 

movement is critical to maintain upright stance when standing on a short base5 and 

subjects with LBP frequently lose balance when standing quietly on a short base 

with no visual input3. In trials when they were able to stand on a short base, the LBP 

group had reduced antero-posterior (AP) shear force which suggests reduced use of 

AP lumbopelvic movement during quiet stance. 

 An important element of postural control is appropriate anticipatory control in 

association with voluntary movement. When healthy individuals perform rapid 

bilateral arm flexions, the lumbar spine flexes as a result of reactive forces, altered 

body configuration, and anterior shift of the body’s Centre-of-Mass (CoM). This 

flexion movement has been termed resultant motion of the lumbar spine as it is the 

result of the reactive forces from arm movement6. In healthy individuals, this resultant 

motion is preceded by a small preparatory trunk extension, which is in the opposite 

direction to the resultant motion4,6. Although preparatory motion appears to provide 

an ideal mechanism to limit the perturbation to the trunk, this strategy is used 

relatively infrequently by people with LBP. Notably, trials with no preparatory spinal 

movement are associated with increased spinal displacement following arm 

movement in people with LBP4. This compromise in the quality of spinal control may 

contribute to balance impairment in this population.  

Reduced spinal motion prior to the onset of arm movement was thought to be 

a biomechanical consequence of altered muscle control in people with LBP4,7. 

Increased co-activation of the trunk muscles has been reported in people with LBP 



 

during various motor tasks8,9, and in association with arm movements when LBP is 

induced experimentally10. Co-activation has been argued to be an adaptation to limit 

spinal movement and therefore increase spinal stability.  This may be a strategy used 

by the nervous system to protect the spine from further pain and injury or to 

compensate for impaired proprioception8. However, this strategy to reduce spinal 

movement in people with LBP may adversely affect postural control as 

multisegmental movement is a critical component of balance.  

It has been acknowledged by many authors that movement of the spine is 

essential to overcome balance disturbance as ankle moment alone is insufficient to 

maintain equilibrium11. With fast support surface translations, movement of the 

hip/trunk is necessary to adjust the CoM over the new base of support5. Even in quiet 

stance, movement of the spine is ongoing to overcome the challenge to balance 

imposed by the rhythmic cardiac and respiratory events12. Furthermore during arm 

movements, it is argued that trunk movements contribute not only to the control of 

perturbation of the trunk but also to assist in the maintenance of the position of the 

CoM6,13. We hypothesized that chronic LBP may be associated with impaired control 

of Centre-of-Pressure (COP) displacement and whole body equilibrium. The aim of 

the present study was to test this hypothesis by investigation of the quality of postural 

recovery following arm movement in people with and without LBP. In the present 

study, the quality of postural recovery is examined by two characteristics; the time 

taken to regain postural recovery and the number of postural adjustments during the 

period of postural recovery following rapid bilateral upper limb movement. 

 

Method 

Subjects 



 

Twenty-six subjects participated in the study; 13 in the LBP group with a 

mean (SD) age of 28.8 (5.3) years and 13 age- (±3 years) and gender-matched control 

subjects, aged 27.7 (4.2) years. All subjects were on full work duty at the time of 

testing. Inclusion criteria for the LBP group were: a history of episodic LBP of >18 

months duration, at least 1 episode of LBP in the preceding 6 months or pain that was 

semi-continuous with periods of greater and lesser pain, LBP of musculoskeletal 

origin, and of a severity that required treatment or sick-leave from work. Subjects 

were included in the control group if they had no history of significant LBP (defined 

as an episode that required treatment or sick leave). Subjects with any known sensory 

or neurological disorders, previous surgery to the spine, unresolved lower limb 

musculoskeletal pathology, or any condition or medication that could affect balance 

were excluded from either group. All procedures were approved by the Institutional 

Medical Research Ethics Committee and were conducted in accordance with the 

Declaration of Helsinki. All subjects participated in an earlier experiment4. 

Demographic data 

Prior to testing, participants completed a Habitual Physical Activity 

Questionnaire (HPA)14 and anthropometric measures (height, weight and foot length) 

were recorded. Subjects in the LBP group completed an additional questionnaire 

related to their LBP history. Severity of LBP was measured using a 10 cm Visual 

Analog Scale (VAS) and the Roland Morris Disability Questionnaire (RMS)15. The 

characteristics of subjects are listed in Table 1. T-tests for independent samples 

showed no difference between groups.  

Limb kinematics 

Motion of the upper limb was measured with an electromagnetic motion 

analysis system (Accension, USA). Angular displacement of the arm was recorded 



 

with a single sensor attached to the skin over the mid shaft of shoulder. Data were 

collected at 100 Hz using MotionMonitor software (Innsport, USA).  

Force Plate Measurements 

 A force platform (9286A, Kistler, USA) was used to detect the ground 

reaction forces. Data were acquired simultaneously with the limb kinematics using 

MotionMonitor software (Innsport, USA).  

Procedure 

In response to an auditory signal, subjects rapidly flexed the arms bilaterally at 

shoulders to ~60° as fast as possible while standing on either a flat surface (FS) or a 

short base (SB, anteroposterior dimension - 12 cm). The subject performed 5 

individual trials on each support surface. The SB condition was included with the aim 

to force the use of trunk and hip movement, as ankle torque alone is insufficient to 

control balance in this condition5. Subjects stood relaxed with bare-feet so that the 

mid-points of the heels were separated by a distance equals to half the foot length and 

the feet externally rotated up to 15°, and were encouraged to maintain equal weight 

bearing during the maneuver. In the SB condition, subjects stood on the block across 

the middle of the soles of the feet. The sequence of the FS and SB was randomized. A 

30 s rest period was available between repetitions. An auditory warning preceded the 

trigger by a random period of 0.5 – 2 s. Three practice trials were provided before 

data collection. Data were collected at 100 Hz for 2.5 s, from 0.5 s before to 2 s after 

the auditory trigger for each trial.   

Data analysis 

 Shoulder movement – the time of shoulder movement onset and peak, duration 

of movement and peak range of movement were identified using the movement trace 

recorded by the motion analysis system.  Peak angular acceleration of shoulder 



 

flexion in the sagittal plane was calculated by twice differentiating the angular 

displacement data using Matlab 6.0 software (The Mathworks, USA).  

COP excursion – ground reaction forces recorded from the force plate were 

used to calculate the COP range of excursion (max AP position – min AP position). 

The velocity of the COP (COPV) was calculated from the instantaneous position of 

COP during the trial using Matlab 6.0 software (The Mathworks, USA). Only the 

variables in anteroposterior dimension (i.e. COPap and COPVap) were analysed as 

postural perturbation induced by the arm movement occurred primarily in the sagittal 

plane.  

 Time to postural stabilization – the time taken for the COPap velocity to return 

to a pre-perturbation level was calculated16. This was calculated as the time for the 

rectified COPVap trace to return to a level consistent with the baseline (mean 

COPVap from 100 ms to 400 ms before onset of shoulder movement plus 2 standard 

deviations), and remain below this velocity for 30 ms following shoulder movement 

(Figure 1a). 

Number of adjustments – the number of adjustments was recorded as the 

number of times the COPVap crossed zero (which represents major direction change 

of the COPap trajectory) in the period from shoulder movement onset until the time to 

stabilization using the plot of un-rectified COPVap against time (Figure 1b). 

Statistical analysis 

 Force platform measures (baseline COPVap, time to postural recovery, 

number of postural adjustments made during postural recovery and COPap excursion,) 

were compared between groups (LBP vs. control), base (FS vs. SB), and visual (eyes 

open vs. closed) conditions using a linear mixed model and significance was tested 

using F statistic of the analysis of variance table (ANOVA). Between groups 



 

differences in the ordinal data of the number of postural adjustments were analysed 

using Wilcoxon’s rank sum test. Between-group characteristics including shoulder 

movement were compared using independent t-tests. SPSS v11.0 was used for all 

analyses and a p-value of 0.05 was set for significance. 

 

Results 

Shoulder movement 

 When subjects moved the arms forward rapidly, there was no difference in the 

range (F1,23 = 0.12, p = 0.74) and peak acceleration (F1,23 = 0.96, p = 0.34) of shoulder 

movement between groups (Table 2). 

Baseline COPVap 

There was no difference in baseline COPVap between the two groups (F1,23 = 

0.67, P = 0.42) (Table 2). However, there was a significant main effect for base (P < 

0.01), visual condition (P < 0.02) and an interaction between base and visual 

condition (P = 0.01). Antero-posterior COP velocity trajectory was increased with 

reduced base length and when visual input was removed and this was identical for 

both groups. 

Time to stabilization 

 Comparison of the mean time to stabilization of COPVap following arm 

movement between the control and the LBP groups indicated that there was a 

significant main effect for group (F1,23 = 29.8, P < 0.001). Following voluntary 

bilateral arm flexion, the average time for COPVap return to pre-movement level was 

significantly longer in the LBP group (679 ± 45 ms) compared with the controls (513 

± 26 ms). As shown in Figure 2, there was no significant interaction between group 



 

and visual or base condition (all: P > 0.47). This indicates that the LBP group 

consistently took longer for postural recovery after voluntary arm movement. 

Number of postural adjustments 

 The number of postural adjustments during the period between onset of 

shoulder movement and postural recovery was significantly greater (F1,23 = 13.3, P = 

0.01) in the LBP group (5.4 ± 0.7) compared with the controls (3.8 ± 0.2) (Figure 3). 

Again, no interaction was found between group and either visual or base condition (all: 

P = 0.06). This indicates that people in the LBP group consistently make a greater 

number of postural adjustments in the period of postural recovery.  

Excursion of COP 

 There was a significant main effect for base (P = 0.01), visual condition (P = 

0.02) and an interaction between base and visual condition (P = 0.02). Antero-

posterior excursion of COP trajectory was increased with reduced base length and 

absence of visual input for both groups. However, there was no difference in the range 

of COPap during the period of postural recovery between the two groups (F1,23 = 0.53, 

P = 0.47) (Figure 4, Table 2). 

 
 
Discussion 

 This is the first study that reveals people with LBP have impaired ability to 

recover postural stability after internal perturbations induced by arm movement. 

When compared with their age- and gender-matched pain-free controls, LBP 

participants took a longer time to regain postural stability and required a greater 

number of postural adjustments during recovery. It is unlikely that the impaired 

postural recovery in the LBP group is due to deconditioning as all subjects were 



 

performing full job duties, there was no between-group difference in physical activity 

level, and the reported pain level in the LBP group was low at the time of testing. 

 

Inferior quality of postural recovery in people with LBP 

 In the present study, balance performance was examined using COP velocity, 

and the quality of postural recovery was quantified using two parameters; the time 

taken for the COPVap to return to the pre-perturbation level and the number of 

postural adjustments during the period of postural recovery. COPV reflects the speed 

of movement of the COP, and its timing to resume steadiness has been used as a 

measure of quality of postural recovery16,17. It has been that suggested that increased 

time taken for postural stabilization is associated with poor postural control16,18. For 

instance, time to regain postural equilibrium is increased in: elderly individuals 

compared with a younger population18; and elderly with known reduced balance 

performance (versus elderly with better balance performance)16. The number of 

postural adjustments represents major direction changes of the COP around its neutral 

position which reflects the fine tuning of postural control during the recovery period, 

and was used to quantify the quality of postural recovery after external postural 

perturbation17. Previous work has shown that this measure of quality of postural 

recovery is sensitive to changes in postural ability as a result of changed mechanical 

demands in healthy individuals17. It has been shown that postural recovery does not 

correlate with postural steadiness during quiet stance and should be considered 

independently when assessing balance performance18,19. The present study extends 

existing findings of balance deficits in LBP (static balance1-3 and following 

unexpected external perturbations2,7,20. As the perturbation was performed by the 

individual and therefore predictable, the postural recovery is initiated in a preplanned 



 

manner before the movement is started. The reduced quality of recovery implies that 

preplanned strategies and later refinement of these strategies (once feedback becomes 

available) is not ideal in people with chronic LBP. 

There are reports of several neuromuscular impairments in people with 

chronic LBP which might contribute to this finding. First, spinal proprioception is 

compromised in this population. As proprioception constitutes one of the sensory 

inputs for regulation of postural stability, defective input may affect the accuracy of 

postural control. Previous studies reported that LBP subjects are less sensitive to 

detect rotary motion in both detections21, make errors with reproduction of a 

previously presented lumbopelvic angle22, and consistently tend to undershoot target 

angles during active repositioning of sacral tilt23. If the quality of proprioceptive 

feedback from the lumbar spine is poor, control of the CoM position might become 

ineffective when the lumbopelvic movement is involved in postural control (i.e. hip 

strategy). A hip strategy is more complex and requires calculation of CoM position 

from interpretation of angle changes at the angle, hip and spine24. If spine position is 

uncertain, this task could be near-impossible. This may explain the reduced tendency 

for people with LBP to use the hip strategy for balance control.  

As ankle torque is generally sufficient to maintain balance in association with 

minor disturbances, it could be argued that this strategy may be sufficient to control 

equilibrium in a simple task such as voluntary arm movement when standing on a flat 

surface. However, lumbopelvic movement has been shown to be an essential 

component during this task6. Notably, lumbopelvic motion is less frequently used by 

people with LBP: people with LBP used preparatory lumbar movement less 

frequently and this was associated with increase spinal displacement following 

voluntary arm movement4. Furthermore, the reduced tendency to use shear forces at 



 

the ground (suggesting reduced hip strategy) and the corresponding dominance of 

ankle torque for postural control in people with LBP accounted for the increased 

frequency of balance loss when standing on a short base3. Thus, in order to maintain 

balance and spinal control precise control of spinal movement is needed. The 

tendency of people with LBP to undershoot a previously set position23 and the 

reduced sensitivity for spinal motion might compromise the effectiveness of 

resumption of the pre-perturbation position.  

Second, people with LBP have been found to have altered muscle control. 

Superficial trunk muscle activity is increased in people with LBP during various 

voluntary tasks8-10. Trunk muscle co-contraction has been shown in in vivo and 

modeling studies to increase spinal stiffness25,26, and has been argued to be an attempt 

to compensate for insufficiency in the osseoligamentous system or to prevent further 

pain and/or injury8. However, the resultant increase in trunk stiffness would reduce 

spinal movement, which has been reported in people with chronic or experimental 

LBP27,28. Similar increases in co-contraction have been observed in less-skilled 

performers and older adults29 as an attempt to reduce variability of movement18. 

Regardless of the mechanism, the potential advantages of this strategy (prevention of 

pain and (re)injury, decreased variability) may be offset by the loss of flexibility to 

use spinal movement for postural control in people with LBP. It is well accepted that 

control of postural equilibrium is dependent on movement of the hips and spine, 

particularly when stability is challenged dynamically. Eng et al.11 and Friedli et al.13 

argued that spinal movement is a crucial element in the control of postural stability if 

the multi-segmental nature of human body is taken into consideration. Although 

adjustment of anteroposterior instability would still be possible via movement of the 

lower limbs, especially hip and ankle5, previous data from our laboratory show no 



 

evidence of increased compensation by hip during similar tasks4 and respiration30 in 

people with LBP. However, healthy individuals appear to have the capacity to adapt 

to use other joints when conditions are changed31. This suggests that people with LBP 

have an impaired ability to adapt with changed postural set. 

 

 No change in COP excursion 

The results showed no difference in the COPap excursion between LBP and 

the control subjects during postural recovery following voluntary arm movement. 

This suggests postural steadiness is tightly constrained during the recovery period 

after voluntary arm movement in people with LBP in order to prevent falling. 

 

 Methodological considerations 

Several methodological limitations require consideration. First, the case-

control methodology is not able to establish a temporal sequence of postural 

dysfunction and development of chronic LBP. Second, although the sample size was 

small the sample was sufficient to identify group differences, additional studies are 

required to establish the generalisability of the results. Third, the time taken for the 

COPV to return to a pre-perturbation level as a measure of the quality of postural 

recovery may be influenced by a difference in the baseline variability of COPV 

between groups. However, no between group difference was found in this study and 

this can be excluded as an explanation for our results. Fourth, participants in this 

study were involved in an earlier experiment with similar protocol. As such the 

observed recovery strategy may vary slightly from a naive cohort, but we do not 

anticipate that this would compromise the main conclusions of the study as this would 

be similar for both groups. 



 

 

Conclusion 

During voluntary arm movements postural instability is self-imposed and 

predictable to the nervous system. Thus, the current data imply compromised 

organization of preplanned mechanisms of postural control. The inability to achieve 

timely postural recovery associated with the minor internal perturbation in this task 

may place the individuals with LBP at risk of overbalancing or falling during 

situations where rapid recovery is critical. Clinical assessment and treatment of 

balance are not commonly addressed in the management of LBP. Clinicians should 

consider the postural stability of patients with LBP during the course of rehabilitation.  
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Tables and Captions 
 
Table 1. Characteristics of back pain and matched control subjects.  
 

 Low Back Pain Subjects (n=13) 

[mean (SD)] 

Matched Controls (n=13) 

[mean (SD)] 

P 

Age (yr) 28.8 (5.3) 27.7 (4.2) 0.57 

Height (m) 1.74 (0.12) 1.75  (0.06) 0.82 

Weight (kg) 75.1 (14.7) 70.4 (12.0) 0.34 

Body Mass Index 24.7 (3.5) 22.9 (3.2) 0.20 

Habitual Physical Activity    

Work (scale 1-5) 2.5 (0.5) 2.4 (0.3) 0.60 

Sports (scale 1-5) 2.7 (1.1) 2.8 (0.6) 0.65 

Leisure (scale 1-5) 2.8 (0.7) 3.0 (0.3) 0.18 

Duration of Back Pain (yr) 5.0 (5.3) NA  

VAS score (scale 0-10) 1.9 (1.8) NA  

Roland Morris Scale (scale 0-24) 2.5 (1.6) NA  

P values indicate results of independent t test. 
NA indicates not applicable.  



 - 1 - 

Table 2. Group data (mean ± SD) of range and acceleration of shoulder flexion, and 

baseline Centre-of-Pressure Velocity in antero-posterior direction in different stance 

conditions.  

  FS/EO SB/EO FS/EC SB/EC 

Shoulder 

flexion 

range (º)  

    

 Control 60.0 (16.9) 61.2 (13.7) 62.0 (17.8) 60.7 (13.5) 

 LBP 62.9 (18.3) 55.3 (13.8) 63.2 (15.0) 59.0 (12.7) 

Shoulder 

acceleration 

(º/sec²) 

    

 Control 555.0 (125.4) 551.7 (225.9) 488.8 (162.0) 543.9 (208.5) 

 LBP 501.8 (275.7) 551.4 (270.9) 694.0 (364.8) 668.8 (360.6) 

COP 
Velocity in 
Antero-
posterior 
direction 
(mm/sec²)  

    

 Control 1.83 (0.71) 2.30 (1.39) 1.93 (0.61) 3.88 (2.17) 

 LBP 2.27 (1.98) 3.23 (2.86) 2.78 (2.36) 4.19 (3.12) 

 

FS = flat surface; SB = short base; EO = eyes open; EC = eyes closed. Values are 

mean (SD). 

 

 




