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The authors report the fabrication of heterojunction light emitting diodes (LEDs) based on

two-dimensional (2D) hexagonal ordered n-type ZnO nanomesh and p-type GaN. The 2D ZnO

nanomesh array was prepared by employing polystyrene spheres as a template. When a forward

bias was applied to the LED, a strong ultraviolet (UV) electroluminescence peaked at 385 nm can

be observed. The peak deconvolution revealed three emission peaks at 370, 388, and 420 nm. The

origin of these emission peaks will be discussed. In addition, the LED was capable of exciting a red

phosphor to convert UV light into red light.VC 2011 American Institute of Physics.
[doi:10.1063/1.3587576]

Due to the direct wide band gap energy of 3.37 V and a

large exciton binding energy of 60 meV, ZnO films have

been considered as a potential material for ultraviolet (UV)

light emitting diodes (LEDs),1,2 laser sources,3,4 and solar

cells.5 Among several materials, p-GaN is an ideal p-type
substrate for ZnO-based LEDs because of the similar crystal-

lographic between ZnO and GaN.6,7 Nanostructured ZnO

especially low-dimensional arrays, have attracted great inter-

est and been widely investigated because of their special

physical and chemical properties.4 In the past years, many

types of heterojunction LEDs based on one-dimensional

ZnO nanowire/nanorod arrays and p-GaN substrate have

been fabricated using various techniques such as hydrother-

mal approach8 and chemical vapor deposition.9,10 However,

LEDs based on two-dimensional (2D) nanostructures are

scarce. The 2D nanostructures is expected to improve the

extraction efficiency of LEDs.11 In this letter, we demon-

strated a heterojunction LED based on large-area 2D hexago-

nal ordered n-type ZnO nanomesh and Mg-doped GaN as a

p-type injector. The strong UV electroluminescence (EL)

emission can be observed from the device. This approach

provides an alternative route in fabricating nanoscale optoe-

lectronic devices.

The Mg-doped p-GaN (0001) film grown on sapphire

substrate was bought from Semiconductor Wafer Co. The

schematic illustration of preparation process of 2D hexago-

nal ZnO nanomesh is shown in Fig. 1(a). First, the ordered

monolayer of polystyrene (PS, size of 960 nm) spheres tem-

plate was coated on p-GaN by self-assembly method.12 Then

n-type ZnO thin film was deposited on the template by fil-

tered cathodic vacuum arc technique.13 The arc was operated

in dc mode with current of 50 A. The deposition temperature

was 150 �C and the oxygen flow rate was 42 SCCM (SCCM

denotes cubic centimeter per minute at STP). Finally, highly

ordered 2D hexagonal ZnO nanomesh was obtained by dis-

solving PS in toluene. Scanning electron microscopy (SEM)

was performed on a Philips XL 30 FEG SEM. Current-volt-

age (I-V) measurements were carried out on a Keithley 2400

SourceMeter and the EL spectra were measured by Ocean

Optics USB4000 spectrometer. Low temperature photolumi-

nescence (PL) measurements were performed using a He-Cd

laser of 325 nm as the excitation source.

A low magnification SEM image of ZnO nanomesh is

shown in Fig. 1(b), which indicates a large area (>1 cm2)

highly ordered hexagonal array of thin film. The upper inset

is the high magnification image which shows that the pore

size is about 700 nm and the neck width is around 95 nm.

The lower inset is the cross-section view of the interface

between ZnO nanomesh and GaN which indicates a sharp

and smooth interface. The schematic diagram of the LED is

shown in Fig. 1(c). The top of the ZnO nanomesh is

FIG. 1. (Color online) (a) Schematic illustration of the preparation of 2D

hexagonal ordered ZnO nanomesh. (b) SEM image of the ZnO nanomesh.

The upper inset is the high magnification SEM image of the sample. The

lower inset is the cross-section view of the interface between ZnO nanomesh

and GaN. (c) Schematic diagram of the LED device.a)Electronic mail: apsplau@polyu.edu.hk.
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contacted with an indium tin oxide (ITO) layer deposited on

a transparent glass sheet which was used as an electrode. A

gold electrode was deposited on the p-GaN to form Ohmic

contact. The device area was about 15mm� 8mm.

Figure 2 shows the I-V characteristic of the 2D n-ZnO
nanomesh array/p-GaN heterojunction LED device measured

at room temperature, which demonstrates a good nonlinear

rectification behavior. The linear curves in the inset of Fig. 2

are the current-voltage characteristics of ITO on n-ZnO as

well as Au on p-GaN which revealed that Ohmic contacts

have been formed in both electrodes. Thus, it can be deduced

that the rectification behavior origins from the n-ZnO/p-GaN
heterojunction. The turn-on voltage of the heterojunction is

about 3.8 V, which is consistent with the ZnO band gap.

Moreover, when the device is under reverse biased condition,

there is low leakage current (�0.5lA) at voltage of � 5 V.

The leakage current is smaller compared with the reported

result,14 indicating that the measured I-V characteristics of

n-ZnO/p-GaN heterojunction showed diode characteristics.

Figure 3(a) shows the EL spectrum of the 2D n-ZnO
nanomesh/p-GaN heterojunction LED device, which is

measured under various forward bias voltages (10, 15, 20,

25, and 30 V) at room temperature. The EL spectrum showed

a strong emission peak at 385 nm, and the full width at half-

maximum intensity is 40 nm. The emission intensity is

increased gradually as the forward bias voltage increase

from 10 to 30 V. The profile of the EL spectrum does not

change with the increase in the biased voltage. Moreover, no

defect-related emissions can be observed in the spectrum

which indicated the high-quality of the ZnO nanomesh. The

inset of Fig. 3(a) displays a colored photo taken from the

LED under forward bias voltage of 25 V, which was cap-

tured by a digital camera (Canon IXUS 9701S). The strong

blue-light emission can be clearly seen by naked eyes even

in normal lighting environment. More importantly, it is noted

that only the region of p-GaN:Mg covered with the ZnO

nanomesh exhibited the blue-light emission. The peak

deconvolution of the spectrum with Gaussian functions is

shown in Fig. 3(b), which indicates that the band consists of

FIG. 2. (Color online) Room temperature I-V characteristics of the n-ZnO
nanomesh/p-GaN heterojunction LED device. The inset shows the I-V char-

acteristics of ITO on n-ZnO and Au on p-GaN.

FIG. 3. (Color online) (a) The EL spectrum of the LED de-

vice under various forward bias voltages. The inset is a col-

ored photo taken from the device under a forward bias

voltage of 25 V. (b) Three distinct bands decomposed from

broad UV emission by Gaussian deconvolution analysis.

(c) PL spectra of n-ZnO nanomesh and p-GaN:Mg at room

temperature. (d) Band diagram and transition process re-

sponsible for the EL in the p-n heterojunction diode. (e)

The EL spectrum of the device coated by a red phosphor

film. The inset is a colored photo taken from the phosphor

coated LED.
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three distinct peaks centered at around 370 nm, 388 nm, and

420 nm, respectively. The corresponding room temperature

PL spectra of the n-ZnO nanomesh and p-GaN are shown in

Fig. 3(c). The PL peaks for n-ZnO nanomesh and p-GaN are

centered at 384 nm and 365 nm, respectively. Thus the emis-

sion peaks at 370 nm and 388 nm could be attributed to the

near band edge emission from p-type GaN and n-ZnO nano-

mesh, respectively, which come from the recombination of

free and bound excitons. In order to understand the origin of

the EL emissions, the band structure diagram of the n-ZnO/
p-GaN is shown in Fig. 3(d).15,16 The electron affinities (v)
for ZnO and GaN are taken as 4.35 eV and 4.20 eV, respec-

tively.17 The band gap energies (Eg) of ZnO and GaN are

presumed to be 3.37 eV and 3.39 eV at room temperature,

respectively. The blue emission at around 420 nm could be

attributed to the radiative interfacial recombination of elec-

trons from the conduction band edge of n-ZnO and holes

from the acceptor level of p-GaN.
It is known that UV light can be converted to visible

light by exciting a phosphor. In order to show the strong EL

emission from the LED, the device was coated by a layer of

red phosphor film. The phosphors film was fabricated by

mixing the red phosphor particles (TMR-500630 whose exci-

tation wavelength is between 255 and 530 nm) with the ep-

oxy. Figure 3(e) shows the EL spectrum from the red

phosphor coated LED under a forward bias of 25 V. Besides

the UV emission peak at 385 nm, a broad emission peak cen-

tered at 615 nm can also be observed. The strong red-light

emission can be seen by naked eyes and the emission photo

is shown in the inset of Fig. 3(e).

In summary, we demonstrated a heterojunction LED

based on n-type ZnO nanomesh and p-type GaN. The heter-

ojunction LED exhibited a strong EL emission peaked at

385 nm. The origin of the emission peak is attributed to the

band edge emission from the ZnO nanomesh, GaN and

interfacial recombination of electrons from the conduction

band edge of n-ZnO and holes from the acceptor level of p-
GaN. The heterojunction LED was capable of exciting a red

phosphor and it can convert the UV emission into red

emission.
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