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Abstract

We propose a semiparametric linear programming discriminant (SLPD) rule
for high dimensional discriminant analysis under a semiparametric model.
As an extension, we further propose a two-stage SLPD (TSLPD) rule, which
can have better classification performance under mild sparsity assumptions.
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1. Introduction

High dimension low sample size data sets are frequently encountered
nowadays in di↵erent fields. However it is known that the statistical anal-
ysis of these data sets is very challenging and possibly intractable in some
instances. For example, in high dimensional classification, the classical lin-
ear discriminant analysis is asymptotically equivalent to random guess even
when the Gaussian assumptions are satisfied (Bickel & Levina, 2004). For-
tunately, in many situations the data can be assumed to be sparse in that
many parameters are close or equal to zero. Motivated by this observation,
many approaches are proposed to exploit this sparsity assumption.

Let X = (x
1

, . . . , x
p

)T and Y = (y
1

, . . . , y
p

)T be random variables from
two di↵erent classes. We shall call these two classes class X and class Y
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throughout this paper. Assume the Gaussian model where X ⇠ N(µ
x

,⌃)
and Y ⇠ N(µ

y

,⌃). Given a random observation Z from class X or class Y ,
the well known Bayes rule classifies Z into classX if [Z�(µ

x

+µ
y

)/2]⌃�1(µ
y

�
µ
x

)  0 and into class Y otherwise.
Practically, µ

x

, µ
y

and ⌃ are unknown and it is a standard technique to
separately estimate µ

x

, µ
y

and ⌃ or ⌃�1 from the sample and plug them into
the above Bayes rule. Assuming that both ⌃ and µ = µ

y

� µ
x

are sparse,
Shao et al. (2011) used thresholding procedures for estimating ⌃ and µ. By
noticing that the Bayes rule depends on ⌃ and µ only through � = ⌃�1µ,
instead of estimating ⌃�1 and µ separately, Cai & Liu (2011) obtained sparse
estimators for � directly. Other approaches for sparse linear discriminant
analysis under multivariate normal assumptions can be found in Fan et al.
(2012), Mai et al. (2012) and the references therein.

A limitation of the linear discriminant rules is the normality assumption.
When p is fixed, Lin & Jeon (2003) considered the so-called transnormal or
nonparanormal distribution to allow the marginal distributions unspecified,
as discussed in the next subsection; see also Kon & Nikolaev (2011). In
this paper, we consider discriminant analysis under this generalized distri-
bution when the dimension p far exceeds the sample size n but grows slower
than exp(n1/2). We derive the Bayes rule under this semiparametric model
and propose estimators for its components. We show that the risk of our
classification rule tends to the Bayes risk in probability.

1.1. A semiparametric model

We begin by introducing some notations. For any matrix M , write MT

as the transpose of M . Let v = (v
1

, . . . , v
p

)T 2 Rp be a p-dimensional vector.
Define |v|

0

=
P

p

i=1

I{vi 6=0} and |v|1 = max
1ip

|v
i

|. For any 1  q < 1, the
l
q

norm of v is defined as |v|
q

= (
P

q

i=1

|v
i

|q)1/q. We denote the p-dimensional
vector of ones as 1

p

and the p-dimensional vector of zeros as 0
p

.
Following Lin & Jeon (2003), we say a random vector V = (V

1

, . . . , V
p

)T

has a transnormal distribution TN(h, µ, 1
p

,�) if there exists a set of uni-
variate strictly monotone and di↵erentiable functions h = (h

1

, . . . , h
p

)T such
that h(V ) = (h

1

(V
1

), . . . , h
p

(V
p

))T is multivariate normal with mean µ =
(µ

1

, . . . , µ
p

)T and correlation matrix � = (�
ij

)
p⇥p

.
The transnormal distribution is also called the nonparanormal distribu-

tion in some recent literature and is also related to the Gaussian copula
model; see for example Liu et al. (2009). Denote the density functions
of X and Y as f

X

and g
Y

respectively. In this paper we assume that
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X ⇠ TN(h, µ
x

, 1
p

,�) and Y ⇠ TN(h, µ
y

, 1
p

,�). Without loss of general-
ity we assume that µ

x

= (0, . . . , 0)T , µ
y

= µ = (µ
1

, . . . , µ
p

)T . Therefore
h
i

(x
i

) ⇠ N(0, 1), h
i

(y
i

) ⇠ N(µ
i

, 1), and we immediately have

h
i

= ��1 � F
i

= (��1 �G
i

) + µ
i

, 1  i  p, (1)

where � denotes the composition of functions, � is the univariate standard
Gaussian cumulative distribution function, F

i

is the cumulative distribution
function of x

i

and G
i

is the cumulative distribution function of y
i

. This is a
sub model of the functional analysis of variance model; see for example Lin
& Jeon (2003) for more discussion. In addition, when X ⇠ N(µ

x

,⌃) and
Y ⇠ N(µ

y

,⌃), model (1) is satisfied with µ = µ
y

� µ
x

.

1.2. Discriminant analysis through the semiparametric model

Suppose h, µ and � are known and let Z = (z
1

, . . . , z
p

)T be an indepen-
dent observation from class X or class Y . Under the semiparametric model
introduced in the last subsection, the well known Bayes procedure yields a
classification rule that classifies Z to class X if and only if D

L

(Z)  0 where

D
L

(Z) = {h(Z)� µ/2}T��1µ. (2)

This is in fact equivalent to applying Fisher’s LDA to the transformed data
h(Z), h(X) and h(Y ) and the misclassification rate of this rule is seen as

R = �(��
p

/2), where �
p

=
p

µT��1µ. (3)

When p is bounded, what we introduced above is similar to Case 1 in Lin
& Jeon (2003). We now discuss the estimation of the components in D

L

(Z)
when p is very large. Noting that the discrimination rule D

L

(Z) depends on
� and µ only through the product ��1µ, we propose to estimate � := ��1µ
by the Dantzig selector in Candes & Tao (2007) and Cai & Liu (2011) as

�̂ = argmin
�2Rp{|�|

1

subject to |�̂� � µ̂|1  �
n

}, (4)

where �
n

is a tuning parameter, �̂ and µ̂ are estimators of � and µ defined in
Section 2. On the other hand, we estimate h(Z)�µ/2 using h̃

Z

as in (7). We
then classify Z to class X if h̃T

Z

�̂  0, and to class Y if h̃T

Z

�̂ > 0. We shall
call this the Semiparametric Linear Programming Discriminant (SLPD) rule.
Note from (3) that the Bayes risk is independent of h. Consistent to this,
the SLPD rule is invariant about h; see Proposition 1.
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While we are finishing this paper, we found that the semiparametric
model in this paper is also studied in Han et al. (2013) and Mai & Zou
(2013), but with key di↵erences. Our method and assumptions are di↵erent
from those in Han et al. (2013) and Mai & Zou (2013). Under the semipara-
metric model, we directly estimate the Bayes rule, while Mai & Zou (2013)
made use of an equivalent least square formulation for estimating � and Han
et al. (2013) is based on the regularized optimal a�ne discriminant analysis
in Fan et al. (2012). In terms of estimation method, we use median in esti-
mating µ and use Dantzig selector in estimating �. In terms of assumptions,
we do not assume the irrepresentable condition (Zhao & Yu, 2006); see for
example Definition 8 of Han et al. (2013) and (18) of Mai & Zou (2013).
This condition is known to be su�cient for selecting the zero entries in �
consistently in theory, but can be easily violated in practice (Zhao & Yu,
2006). What is more, our sparsity assumption on � is more general; see (12)
in Theorem 1. More specifically, we do not require the number of nonzero
elements of � to be relatively small, while Han et al. (2013) and Mai & Zou
(2013) considered the case that the number of nonzero elements of � is much
smaller than n. Last but not least, we allow the logarithm of the dimension
to grow slower than the square root of sample size while Mai & Zou (2013)
requires that the logarithm dimension grows slower than the cube root of n.

2. Estimation method

Assume thatX
i

= (X
i1

, . . . , X
ip

)T , 1  i  n
1

and Y
i

= (Y
i1

, . . . , Y
ip

)T , 1 
i  n

2

are independently identically distributed random vectors from class
X and class Y respectively. Denote the total sample size as n = n

1

+ n
2

.
Throughout this paper we make the following assumptions.

Assumption 1. There exists a constant � > 0 such that ��1  �
1

(�) 
�
p

(�)  �, where �
1

(�) and �
p

(�) are the smallest and largest eigenvalues of
� respectively. In addition, there exists a constant B > 0 such that �

p

> B.
Assumption 2. The sample size satisfies n

1

⇣ n
2

and log p = o(n1/2).
We use the Winsorized estimator (Liu et al., 2009) in estimating F

i

:

F̃
i

(t) =

8

<

:

�x
n

if F̂
i

(t) < �x
n

F̂
i

(t) if �x
n

 F̂
i

(t)  1� �x
n

1� �x
n

if F̂
i

(t) > 1� �x
n

,

(5)

where F̂
i

(t) = 1

n

1

P

n

1

j=1

I{Xjit}, and �x
n

is a truncation parameter. Here the
truncation is used to avoid infinity value and clearly there is a bias-variance
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tradeo↵ in choosing �x
n

. We then define ĥx

i

= ��1 � F̃
i

, i = 1, . . . , p. Similarly,
let Ĝ

i

= 1

n

2

P

n

2

j=1

I{Yjit}. We estimate G
i

by

G̃
i

(t) =

8

<

:

�y
n

if Ĝ
i

(t) < �y
n

Ĝ
i

(t) if �y
n

 Ĝ
i

(t)  1� �y
n

1� �y
n

if Ĝ
i

(t) > 1� �y
n

,

(6)

and we define ĥy

i

= ��1�G̃
i

, i = 1, . . . , p. Let F̃ ⇤
i

(t) = F̃
i

(t) with �x
n

= 1/(2n
1

)
and G̃⇤

i

(t) = G̃
i

(t) with �y
n

= 1/(2n
2

). Define

µ̂x = (µ̂x

1

, . . . , µ̂x

p

)T , µ̂x

i

= median{��1(F̂ ⇤
i

(Y
ji

)), j = 1, . . . , n
2

},
µ̂y = (µ̂y

1

, . . . , µ̂y

p

)T , µ̂y

i

= median{��1(Ĝ⇤
i

(X
ji

)), j = 1, . . . , n
1

}.

We then estimate h(z)� µ/2 in (2) by h̃
Z

= (h̃1

Z

, . . . , h̃p

Z

)T where

h̃i

Z

:= ↵(ĥx

i

(z
i

)� µ̂x

i

/2) + (1� ↵)(ĥy

i

(z
i

)� µ̂y

i

/2), i = 1, . . . , p. (7)

Here ↵ can be any arbitrary constant in [0, 1] and a natural choice of ↵ is
↵ = n

1

/n. We estimate µ by µ̂ = (µ̂
1

, . . . , µ̂
p

)T where

µ̂
i

= ↵µ̂x

i

� (1� ↵)µ̂y

i

, i = 1, . . . , p. (8)

Let r̂x
ij

be the Spearman’s rank correlations between (X
1i

, . . . , X
n

1

i

) and
(X

1j

, . . . , X
n

1

j

) and let r̂y
ij

be the Spearman’s rank correlations between
(Y

1i

, . . . , Y
n

2

i

) and (Y
1j

, . . . , X
n

2

j

). We estimate � using the adjusted Spear-
man’s rank correlations similar to Xue & Zou (2012):

�̂ = (�̂
ij

)
1i,jp

, �̂
ij

= 2↵ sin
⇣⇡

6
r̂x
ij

⌘

+ 2(1� ↵) sin
⇣⇡

6
r̂y
ij

⌘

. (9)

We estimate � = ��1µ by (4) with µ̂ and �̂ defined as in (8) and (9), and
then the SLPD rule can be computed using (4) and (7). Next we provide
some theoretical results to evaluate our estimation procedure and the mis-
classification rate of the proposed discriminant rule. Proofs of these results
are provided in the supplementary material. Notice from (3) that the Bayes
risk depends on µ and � only. Consistent to this, we have

Propositon 1. Let h = (h
1

, . . . , h
p

)T be a monotone function defined

as in the transnormal distribution. Given �
n

, the SLPD rule is invariant to h.
More specifically, suppose U

1

, . . . , U
n

1

are independent samples from N(0
p

,�)
and V

1

, . . . , V
n

2

are independent samples from N(µ,�). Given Z, the SLPD

rules for the following two cases are the same: (i) X
i

= U
i

, i = 1, . . . , n
1

,

Y
i

= V
i

, i = 1, . . . , n
2

; (ii) X
i

= h(U
i

), i = 1, . . . , n
1

, Y
i

= h(V
i

), i = 1, . . . , n
2

.
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Lemmas 1, 2 and Proposition 2 given below indicate that ĥx, ĥy, µ̂ and
�̂ can estimate h, h� µ, µ and � well when n and p are large enough.

Lemma 1. Assume that |µ|1 < U < 1 for some constant U . Suppose

Z = (z
1

, . . . , z
p

) is either a random sample from the X class or the Y class.

By choosing �x
n

=
q

M log p

2n

1

+ �(�
p
2M log p) for some constant M > 1, we

have that, when n
1

and p are large enough, for any 1  i  p, there exists a

constant H large enough such that

E|ĥx

i

(z
i

)� h
i

(z
i

)|I{|hi(zi)�ui|
p
2M log p, | ˆFi(zi)�Fi(zi)|

q
M log p
2n

1

} 
H log pp

n
, (10)

where I{·} is the indicator function and u
i

equals 0 if Z is from the X class

and equals µ
i

if Z is from the Y class. Similarly, by choosing �y
n

=
q

M log p

2n

2

+

�(�
p
2M log p) for some constant M > 1, we have

E|ĥy

i

(z
i

)� h
i

(z
i

)� µ
i

|I{|hi(zi)�ui|
p
2M log p, | ˆGi(zi)�Gi(zi)|

q
M log p
2n

2

} 
H log pp

n
.(11)

From Lemma 1 of Xue & Zou (2012), the following can be easily shown.

Lemma 2. Let �̂ be defined as in (9). For any 0 < ✏ < 1, there exists

a positive constant c
0

such that when n � 24⇡/✏,

P (|�̂
ij

� �
ij

| > ✏)  2 exp(�c
0

n✏2).

Propositon 2. Let µ̂ be defined as in (8). Assume that |µ|1 < U < 1
for some constant U . Then for any 1  i  p and ✏ > max{(2n

1

)�1, (2n
2

)�1}
such that ✏ ! 0 as n, p ! 1, there exist constants c

1

> 0, c
2

> 0 such that

P (|µ̂
i

� µ
i

| > ✏)  c
1

n exp(�c
2

n✏2).

Proposition 2 implies that our estimator µ̂ can estimate µ very well even
when p ! 1. The reason of using median (see the definition of µ̂x and
µ̂y ) instead of mean as in Mai et al. (2012) is that the function ��1(t) is
very unstable in that a small change in the value of t when t is close to 0
or 1 would cause a large change in the value of ��1(t). Known as a robust
estimator, median is a natural choice here. In terms of theoretical results, to
estimate the p elements in µ well simultaneously, Mai et al. (2012) assume
that log p = o(n1/3) while from Proposition 2 we can have log p = o(n).

The next lemma shows that the true � = ��1µ belongs to the feasible set
of (4) with overwhelming probability.
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Lemma 3. Under the assumptions of Lemma 2 and Proposition 2, for

any constant M > 0, by choosing �
n

= C|�|
1

p

(log p+ log n)/n for some

constant C large enough, we have with probability greater than 1�O(p�M),

|�̂� � µ̂|1  �
n

.

Given the sample {X
i

, Y
j

: 1  i  n
1

, 1  j  n
2

}, the conditional
misclassification rate of SLPD is seen as

R
n

=
1

2
P
n(h(Z)� µ)T �̂

q

�̂T��̂
 ↵

h(µ̂x/2� µ)T �̂
q

�̂T��̂
� {ĥx(Z)� h(Z)}T �̂

q

�̂T��̂

i

+(1� ↵)
h �̂T µ̂y/2
q

�̂T��̂
� {ĥy(Z)� h(Z) + µ}T �̂

q

�̂T��̂

i

�

�

�

h(Z) ⇠ N(µ,�)
o

+
1

2
P
n h(Z)T �̂
q

�̂T��̂
> ↵

h �̂T µ̂x/2
q

�̂T��̂
� {ĥx(Z)� h(Z)}�̂

q

�̂T��̂

i

(1� ↵)
h �̂T (µ̂y/2 + µ)

q

�̂T��̂
� {ĥy(Z)� h(Z) + µ}�̂

q

�̂T��̂

i

�

�

�

h(Z) ⇠ N(0,�)
o

,

where ĥx = (ĥx

1

, . . . , ĥx

p

)T and ĥy = (ĥy

1

, . . . , ĥy

p

)T . The following theorem
shows that the conditional misclassification rate R

n

tends to R in probability.

Theorem 1. Assume that |µ|1 < U < 1 for some constant U and

|�|2
1

�2

p

= o
⇣

p
n

log p

⌘

. (12)

By choosing �x
n

=
q

(M+1) log p

2n

1

+ �(�
p

2(M + 1) log p), �y
n

=
q

(M+1) log p

2n

2

+

�(�
p

2(M + 1) log p) and �
n

= C|�|
1

p

(log p+ log n)/n for some constants

M > 0 and C large enough, we have with probability tending to 1,

R
n

�R ! 0, as n ! 1.

The sparse assumption (12) here is more general than the assumptions in Han
et al. (2013) and Mai et al. (2012) in that it allows the case where � is only
approximately sparse. What is more, from Cauchy-Schwarz inequality and
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Assumption 1 we have |�|2
1

�

2

p
 |�|

0

|�|2
2

�

2

p
 |�|

0

|�2|µ|2
2

�

�2|µ|2
2

= �4|�|
0

. Therefore, |�|
0

=

o(
p
n

log p

) implies (12). In the case where �
i

’s are very small, we can allow � to
be nonsparse. On the other hand, from Conditions 3-5 and Theorem 15 in

Han et al. (2013), we can see that they roughly require |�|2
0

= o(
q

n

log p

); From

condition (C1) of Mai et al. (2012) we can see that they require |�|2
0

= o(n
1/3

log p

).

3. A two-stage procedure

As an extension of our SLPD rule introduced above, we propose a Two-
stage SLPD (TSLPD) rule. TSLPD operates by first screening out variables
via 4, then retaining the remaining variables that pass a threshold. Then the
classification is conducted by using SLPD again. This technique was first
pointed out by Candes & Tao (2007) in linear regression. See also Wang
et al. (2013). For any vector v = (v

1

, . . . , v
p

)T and an index set S, let v
S

denote a new vector such that v
S

= (v
i

: i 2 S)T . Similarly for any matrix
� = (�

i,j

)
1i,jp

we define �
S

= (�
i,j

)
i,j2S.

Throughout this section we assume that �

2

i
�

2

p
� |�|2

1

�

2

p

q

n

log q+logn

� ⌘
S

for

any i 2 S where ⌘
S

=
P

i2SC �

2

i

�

2

p
! 0. Let p

0

be the size of S. For a new

observation Z, the TSLPD rule is given below:
(i) Let �̂ be the estimator of � obtained using (4) and for any q � p

0

, let
Ŝ
q

= {i :
P

p

j=1

I{|ˆ�i|>| ˆ�j |} < q} be the set of indices of the q largest |�̂
i

|’s.
(ii) Let X

i

ˆ

Sq
and Y

j

ˆ

Sq
be the sub-vectors of X

i

and Y
j

with features

indexed by Ŝ
q

for i = 1, . . . , n
1

and j = 1, . . . , n
2

. We then implement our
SLPD rule to Z

ˆ

Sq
based on X

1

ˆ

Sq
, . . . , X

n

1

ˆ

Sq
and Y

1

ˆ

Sq
, . . . , Y

n

2

ˆ

Sq
.

Propositon 3. Assume that there exists an index set S ⇢ {1, 2, . . . , p},
such that ⌘

S

=
P

i2SC �2

i

! 0. Under Assumption 1, we have: µT

S

��1

S

µ
S

=
µT��1µ+O(⌘

S

�2

p

). In particular, when ⌘
S

= 0, we have µT

S

��1

S

µ
S

= µT��1µ.

This proposition is similar to propositions 1 and 2 in Wang et al. (2013).
It implies that if we only consider the important features, the change in the
Bayes risk is negligible. The following theorem further indicate that stage (i)
of our TSLPD rule is able to estimate S consistently under mild conditions.

Theorem 2. Assume that

|�|2
1

�2

p

= o
⇣

r

n

log q + log n

⌘

. (13)
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Let �
1

,�
2

be the tuning parameters in the two stages of our TSLPD rule.

For any constant M > 0, by choosing �
1

= C|�|
1

p

(log p+ log n)/n and

�
2

= C|�|
1

p

(log q + log n)/n for some constant C large enough, we have

P (S ✓ Ŝ
q

) = 1�O(p�M). In particular, when q = p
0

, we have P (Ŝ
p

0

= S) =
1�O(p�M).

Theorem 2 indicates that the first step of our TSLPD rule is able to select
the important features for q > p

0

and Ŝ
p

0

is consistent in estimating S.
Clearly, when q = p, the TSLPD rule reduces to the SLPD rule. In practice,
p
0

can be far smaller than the original dimension p. By choosing q = p
0

or slightly larger than p
0

, the first stage can screen out a large number of
irrelevant variables, resulting in better classification results in the second step
comparing to the one-stage SLPD rule. In addition, from Theorems 1 and 2,
we can also see that theoretically, the TSLPD rule can further improved the

diverging rate of |�|2
1

�

2

p
to o

⇣

q

n

log p

0

+logn

⌘

.

4. Numerical study

Let u = (u
1

, . . . , u
p

)T 2 R

p and let �
i

be the i-th row of �̂. The convex
optimization problem (4) can be implemented via linear programming as

min
p

X

i=1

u
i

subject to u
i

 �
i

 u
i

and� �
n

 �T

i

� � µ̂
i

 �
n

, i = 1, . . . , p,

This is similar to the implementation of the Dantzig selector; see example
Candes & Tao (2007) and Cai & Liu (2011). The tuning parameter �

n

in
(4) is chosen using K-folder cross validation. More specifically, randomly
divide the index sets {1, . . . , n

1

} into K subgroups N
11

, . . . , N
1K

, and divide
{1, . . . , n

2

} into K subgroups N
21

, . . . , N
2K

. Denote the full sample set as
S = {X

i

, Y
j

: 1  i  n
1

, 1  j  n
2

} and let S
k

= {X
i

, Y
j

: i 2 N
1k

, Y 2
N

2k

} for k = 1, . . . , K. For a given �
n

and an observation Z, let �̂(k) and

h̃(k)

Z

be defined as in (4) and (7) based on S \ S
k

. For each k = 1, . . . , K, let
C

1k

=
P

i2N
1k
I{˜h(k)T

Xi
ˆ

�

(k)0} and C
2k

=
P

i2N
2k
I{˜h(k)T

Yi
ˆ

�

(k)
>0}. We then find �

n

such that it maximizes the averaged correct classification number: CV (�
n

) =
1

K

P

K

k=1

(C
1k

+ C
2k

).
In our simulation study, we set ↵ in (7), (8) and (9) to be n

1

/n. One can
also choose ↵ using cross validation. However, according to the simulation

9



Table 1: Simulation results under Models 1-3

Model 1 Model 2 Model 3
R=0.101 R=0.093 R=0.127

hi

inv

(t) Rslpd RTslpd Rlpd Rslpd RTslpd Rlpd Rslpd RTslpd Rlpd

t 0.185 0.189 0.178 0.126 0 .118 0.125 0.155 0.152 0.144
t3 0.182 0.183 0.227 0.126 0.121 0.156 0.173 0.164 0.293
et 0.184 0.187 0.232 0.127 0.120 0.197 0.162 0.148 0.233
R: Bayes risk; Rlpd: misclassification rates for the LPD rule;
Rslpd: misclassification rates for the SLPD rule.
RTslpd: misclassification rates for the TSLPD rule.

we have done, there is no significant improvement in choosing ↵ using cross
validation than simply setting ↵ = n

1

/n.
Next we provide some numerical results on two simulation studies. In the

first simulation study, we compare our SLPD rule to the LPD rule in Cai &
Liu (2011). We consider the following models.

Model 1. n
1

= n
2

= 50, p = 100, ⌃ = (�
i,j

)
p⇥p

where �
ij

= 0.6|i�j|, 1 
i, j  p and � = (�

1

, . . . , �
p

)T with �
i

= 0.129, 1  i  p.
Model 2. n

1

= n
2

= 100, p = 200, ⌃ = (�
i,j

)
p⇥p

where �
ij

= 0.5|i�j|, 1 
i, j  p, � = (�

1

, . . . , �
p

)T with �
i

= 0.4 if 1  i  10, �
i

= 0.3 if 11  i  20
and �

i

= 0 otherwise.
Model 3. n

1

= n
2

= 50, p = 100, ⌃ = (�
i,j

)
p⇥p

where �
ii

= 1 for
1  i  p and �

ij

= 0.5 otherwise, � = (�
1

, . . . , �
p

)T with �
i

= 0.3 if
1  i  10, �

i

= 0.001 if 11  i  p.
The parameter � in Model 1 is sparse in a way that every �

i

has the
same weak strength. � in Model 2 is sparse such that most of the �

i

’s
equal zero. In Model 3, � is sparse in a sense that only a few �

i

has strong
signal strength while others are (nonzero) weak signals. We generate n

1

independent samples U
1

. . . , U
n

1

from N(0
p

,⌃), and n
2

independent samples
V
1

. . . , V
n

2

from N(µ,⌃) where µ = ⌃�. We then set X
i

= h
inv

(U
i

), 1 
i  n

1

and Y
i

= h
inv

(V
i

), 1  i  n
2

, where h
inv

(x) = (h1

inv

, . . . , hp

inv

)T is
the set of inverse functions of h = (h

1

, . . . , h
p

)T needed in the transnormal
distribution. In this simulation we set h1

inv

(t) = · · · = hp

inv

(t) and consider
the following three cases: hi

inv

(t) = t, t3 or et. Note that hi

inv

(t) = t implies
the Gaussian assumption is satisfied. We then generate a random sample
W

1

from N(0
p

,⌃) and use the SLPD rule and the LPD rule in classifying
Z = h

inv

(W
1

). The above procedure is repeated 1000 times and we define
Cslpd

1

as the number of times of classifying Z to Class X using the SLPD rule

10



and C lpd

1

as the number of times of classifying Z to Class X using the LPD
rule. Similarly, we generate X

1

, . . . , X
n

1

and Y
1

, . . . , Y
n

2

as above and use
the SLPD rule and LPD rule to classify Z = h

inv

(W
2

) where W
2

is a random
sample from N(µ,⌃). This again is repeated for 1000 times and we define
Cslpd

2

as the number of times of classifying Z to Class Y using the SLPD rule
and C lpd

2

as the number of times of classifying Z to Class Y using the LPD
rule. The misclassification rates are then given by

Rslpd = 1� (Cslpd

1

+ Cslpd

2

)/2000, Rlpd = 1� (C lpd

1

+ C lpd

2

)/2000.

RTslpd is defined similarly for the TSLPD rule. q in the first step and �
2

in the
second step of the TSLPD rule are chosen using the cross validation method
described as in the beginning of this section. Tuning parameter �

1

in the first
step is of secondary importance and is simply set it to be

p

(log p+ log n)/n.
Results of this simulation are given in Table 1, where we can observe

that the SLPD rule and the TSLPD rule have very good overall perfor-
mance. More specifically, when the Gaussian assumption is violated (when
hi

inv

(t) = t3 or et), Rlpd is clearly larger than the Rslpd under Models 1-3,
indicating that the SLPD rule is outperforming the LPD rule in these cases.
When the Gaussian assumption is satisfied (when hi

inv

(t) = t), Rlpd and Rslpd

are comparable. In addition, we see clearly that the misclassification error
of SLPD is similar across di↵erent h

inv

, confirming the theoretical result in
Proposition 1. These results suggest that the SLPD rule can be an alter-
native choice besides the LPD rule in high dimensional sparse discriminant
analysis. We have also tried the methods in Han et al. (2013) and Mai &
Zou (2013) and the results are very similar to those of SLPD. On the other
hand, comparing with the SLPD rule, the TSLPD rule does improve the
classification performance under Models 2 and 3, where � is sparse. The
sparse assumptions for the TSLPD rule are violated in Model 1. However,
classification results using the TSLPD rule are still comparable to the results
using the SLPD rule.

In the next simulation, we study the asymptotic properties of the SLPD
rule as in Theorem 1 under di↵erent scenarios. By Proposition 1, we only
have to consider the Gaussian case (where hi

inv

(t) = t). We consider the
following three models.

Model 4. p = 64, ⌃ = (�
i,j

)
p⇥p

where �
ij

= 0.5|i�j|, 1  i, j  p and
� = (�

1

, . . . , �
p

)T with �
i

= 0.502 if 1  i  10 and �
i

= 0 otherwise. We
set n

1

= n
2

= 36, 108, 180, 252.

11
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Model 4, D=3.85
Model 5, D=32.48
Model 6, D=1.92

Figure 1: Plot of the L1-loss versus the rescaled sample size

p
n/ log p

Model 5. p = 128, ⌃ = (�
i,j

)
p⇥p

where �
ij

= 0.6|i�j|, 1  i, j  p
and � = (�

1

, . . . , �
p

)T with �
i

= 0.114, 1  i  p. We set n
1

= n
2

=
49, 147, 245, 343.

Model 6. p = 256, ⌃ = (�
i,j

)
p⇥p

where �
ii

= 1 for 1  i  p and
�
ij

= 0.5 otherwise, � = (�
1

, . . . , �
p

)T with �
i

= 0.165 if 1  i  20,
�
i

= 0.001 if 21  i  p. We set n
1

= n
2

= 64, 192, 320, 448.
In each model we consider four cases by increasing the sample size n

1

and n
2

. Define the rescaled sample size as
p
n/ log p. The n

1

, n
2

values in
Models 4-6 are chosen such that the

p
n/ log p = 2.04, 3.53, 4.56, 5.40 in each

model. For each case in each model, the data generating procedure is the
same as the previous simulation except that the repeated times for calculating
Cslpd

1

and Cslpd

2

are set to be 500. Hence the estimated misclassification rate
is given as Rslpd = 1 � (Cslpd

1

+ Cslpd

2

)/1000. From assumption (12), we
define a parameter D = |�|2

1

/�2

p

. Figure 1 presents the plot of the L1-
loss= |Rslpd � R|, the di↵erence between the SLPD risk and the Bayes risk,
versus the rescaled sample size

p
n/ log p. It can be seen that in each model,

Rslpd converges very fast to R. The D value to some degree describes the
di�culty in classifying a new observation using the SLPD rule. For example,
Model 6 has a relatively small D value and it can be seen that the L1-loss
is already very small even when the sample size is n

1

= n
2

= 64, which is

12



much smaller than the dimension p = 256. On the other hand, under Model
5, we have D = 32.48. This implies that condition (12) is seriously violated.
Although the L1-loss is quite large when

p
n/ log p = 2.04, a fast convergence

pattern can be observed when the rescaled sample size is increased.

5. Discussion

To overcome the Gaussian limitation in high dimensional LDA, we pro-
pose a semiparametric linear programming discriminant rule under a semi-
parametric model. We have demonstrated via theoretical results and nu-
merical study that comparing with normality-based discriminant rules our
proposed SLPD rule can significantly improve the classification accuracy un-
der the semiparametric model. In this paper we focus on binary classifica-
tion and linear discriminant analysis only. It will be interesting to extend
it to multi-class and quadratic discriminant analysis problems. In addition,
as pointed out by a reviewer, it is also interesting to extent the results to
functional data where variables are observations on discretized grids of some
continuous data (Aneiros & Vieu, 2014, 2015).
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