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A novel type of hybrid non-symmetric flexure hinges (NSFHs) is developed for higher motion
precision in this paper, then the finite beam based matrix modeling (FBMM) method is employed
to describe elastic deformation behaviors, model compliance matrix, and define non-dimensional
precision factors of the hybrid NSFHs. Influences of the dimensional parameters on the dominant
compliances and motion accuracies of the NSFHs are analytically investigated based on the FBMM
models, while an asymmetry ratio is introduced and its influences on performances of the NSFHs
are well revealed. Moreover, making comparisons of the main performances between the proposed
NSFHs and symmetric flexure hinges, the obtained results indicate that the hybrid NSFHs can greatly
improve the motion accuracy and suppress the adverse inherent motions. Finally, performances of the
NSFHs and modeling accuracies are investigated by experimental tests, and making comparison with
other flexure hinges. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928593]

I. INTRODUCTION

As the extremely important joints in micro electric
mechanical systems (MEMSs), various flexure hinges are
broadly employed for friction-free and lubrication-free mo-
tions with high resolution and high precision. Lots of typical
applications can be widely found in many fields, such as
the micro-machining systems,1,2 the micro/nano manipula-
tors,3,4 and the micro/nano positioning stages.5,6 So far, many
types of flexure hinges with excellent performances have been
developed, whose performances depend largely on the various
complex-shaped notches. For example, Lobontiu et al.7–12

have developed the generalized models for the corner-filleted
flexure hinges, conic-section flexure hinges, circular cross
section corner-filleted flexure hinges, and multiple-segment
flexure hinges. The closed-form compliance equations and
motion accuracies of these hinges were analytically inves-
tigated based on the Castigliano’s second theorem. More-
over, the generalized models of the conic flexure hinges and
elliptical-arc-fillet flexure hinges have been presented through
the direct integrations based on the Euler–Bernoulli beam the-
ory.13–16 Tian et al.17 developed a type of V-shaped fillet flexure
hinges for higher performances based on the Castigliano’s
second theorem, and the power-function-shaped flexure hinges
were also proposed with the unit-load method.18

In reality, the rotary centers of flexure hinges may deviate
from their ideal geometric center, which greatly deteriorate
the motion accuracies and block their wider applications. Less
center shifts of the flexure hinges are regarded as the common
ambitions of many researchers for designing more excellent
flexure hinges. As the key metric of motion precision, the
precision factors (PFs) were introduced to characterize the
motion accuracies of the conic-section flexure hinges, and

a)Author to whom correspondence should be addressed. Electronic mail:
xqzhou@jlu.edu.cn.

the related results show that the hyperbolic flexure hinge
has the highest motion accuracies.11,12 Through the reciprocals
of the PFs, Tian et al.17 have compared the performances
of three types of flexure hinges, namely, the cycloidal, right
circle, and V-shaped fillet flexure hinges, and the results
indicate the cycloidal flexure hinge has the highest motion
accuracy. However, above PFs block fair comparisons due to
the negligence of the motion ranges, Li et al.18 introduced a
ratio between the PF and the rotation stiffness to more fairly
investigate the motion accuracies.

Currently, most existing flexure hinges adopt both trans-
versely and longitudinally symmetric structures, but the bi-
symmetric structures greatly restrict their motion accuracies
and design feasibilities. Motivated by this, Chen et al.14,19,20

developed two types of hybrid flexure hinges to improve
motion accuracies, and the PFs have been introduced to reveal
the motion accuracy by the equivalent compliance rotary cen-
ter.13,15 Besides, the hybrid hyperbolic corner-filleted flexure
hinges were proposed for more excellent performances.21

However, these hybrid flexure hinges are evenly divided into
two equal-length segments with respect to minimum cross
sections, while these two segments, namely, the left notch and
right notch, will adopt different notch shapes, respectively.
Thus, the rotary centers of the hybrid hinges can only indirectly
and finitely drift from the geometric midpoint, and this is
difficult to directly and arbitrarily adjust the positions of
rotary centers for more flexible designs. Given this, a type
of exponent-sine-shape flexure hinges (ESFHs) with trans-
versely asymmetric structures have been developed based on
the finite beam based matrix modeling (FBMM) method,22

but the complex-shaped notch will greatly restrict the design
flexibility and block broader applications of hinges due to the
complex profile and less control variables.

In this paper, a novel type of hybrid non-symmetric
flexure hinges (NSFHs) that are transversely asymmetric with
respect to their minimum sections is developed to improve the
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motion accuracy and increase the design flexibility. Perfor-
mances of two typical hybrid NSFHs are thoroughly inves-
tigated by the FBMM method and the experimental tests on
practical prototypes.

II. STRUCTURES OF THE HYBRID NSFHs

The 3-D geometric models of the hybrid NSFHs are
shown in Fig. 1, where o-xyz are the corresponding Cartesian
coordinates; b and t denote the width and the minimum
thickness of the flexure hinge; L and c denote the length and
the depth of notch, respectively.

As shown in Fig. 1(a), both the left notch and right notch of
hinge adopt elliptical notches, called as the elliptical NSFHs,
where RL

a and RL
b

are the major axis and the minor axis of the
left elliptical notch; RR

a and RR
b

denote the similar meaning
of the right elliptical notch; and L1 and L2 denote the lengths
of the left and right notches, respectively. However, when
both the major axis of the left and right elliptical notches are
particularly equal to their minor axis, namely, RL

a = RL
b

and
RR
a = RR

b
, the elliptical NSFHs evolve to the circular NSFHs,

as shown in Fig. 1(b), where RL
c and RR

c are the radius of their
left and right circular notches. If the left or right notch of the
NSFH is circular, while another notch is elliptical, which is a
type of hybrid NSFHs, as shown in Fig. 1(c). To investigate
influences of the structural asymmetry on the performances of
the proposed NSFHs, an asymmetric ratio λ is introduced by

λ = L1/L2. (1)

To investigate the proposed NSFHs, the profiles of NSFHs
notches are mathematically described by below,




y = −Rb


1 −

(
x − λL/ (1 + λ)

Ra

)2

+ Rb +
t
2

c = −Rb


1 −

(
λL/ (1 + λ)

Ra

)2

+ Rb

, (2)

where, Ra, Rb, and c denote the major axis, minor axis, and
depth of the elliptical notch of the NSFH, which can be reason-
ably chosen based on the notch length L and the asymmetric

FIG. 2. The geometric features of the hybrid NSFHs. (a) The ENSFHs and
(b) the CNSFHs.

ratio λ, expressed as follows:




Ra = RL
a ,Rb = RL

b , 0 ≤ x ≤ λL/ (1 + λ)
Ra = RR

a ,Rb = RR
b , λL/ (1 + λ) < x ≤ L

. (3)

Obviously, the notch shapes of the proposed NSFHs are
mainly governed by dimensional parameters RL

a , RL
b

, RR
a , RR

b
,

b, L, c, and λ. To improve the design feasibilities and the
availabilities of the NSFHs, the two sorts of hybrid NSFHs
are therefore developed as two special cases of the NSFHs,
as shown in Fig. 2. The left or right notch of the hinge is
circular but another notch is elliptical profile, while the radius

FIG. 1. 3-D geometric model of the non-symmetrical flexure hinge (NSFH). (a) Elliptical NSFH, (b) circular NSFH, and (c) hybrid NSFH.
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of circular notch is equal to the major axis or minor axis of the
elliptical notch.

As shown in Fig. 2(a), the left notch and right notch of
the hybrid NSFH employ the elliptical and circular profiles,
respectively, denoted by the ENSFH. Inversely, another sort of
hybrid NSFHs (denoted by the CNSFHs) adopts circular and
elliptical shapes as their left and right notches, respectively, as
illustrated in Fig. 2(b). To reveal dependences of the notch pro-
files to asymmetric ratio λ of the two types of hybrid NSFHs,
different notch curves in terms of variable λ are shown in
Fig. 3. When λ ranges from 1/3 to 4/3, notch profiles of the two
hybrid NSFHs are shown in Figs. 3(a) and 3(b), respectively.
Next, the remainder of this paper will mainly concentrate on
investigating the two types of hybrid NSFHs in detail.

III. COMPLIANCE AND MOTION
ACCURACY MODELING

To more simply but effectively describe the elastic defor-
mation behaviors of flexure hinges, a novel FBMM method
proposed by authors before will be introduced to avoid labo-
rious integral operations,22,23 and the followings are the model-
ing processes of the hybrid NSFHs.

A. Compliance modeling with the FBMM method

Based on Hooke’s law, the relationship is derived as
follows:

∆ = C F, (4)

where, F and ∆ are, respectively, defined as the unit load
vector and corresponding deformation vector and C denotes
the compliance matrix. This paper will concentrate on the
compliance modeling with the FBMM method that assumes
the flexure hinge to be a combination of finite Euler-Bernoulli
micro-beams with serial connections, so C can be mathemat-
ically described by22,23

C =
N
i=1

TiCiTT
i , Ti =



Ri Si (ri)Ri

0 Ri


, (5)

where Ci denotes the compliance matrix of the ith single
micro-beam in its local coordinate.22,23 Ti denotes the compli-
ance transformation matrix (CTM) the ith local coordinate
with respect to the global coordinate. N is the total number
of the divided micro-beams. Ri denotes the rotation matrix of
the local coordinate with respect to the global coordinate. ri
represents the position vector of the local coordinate in the
global coordinate. Si(ri) denotes the skew-symmetric operator
for the vector ri,

Si (ri) =


0 −zi yi

zi 0 −xi

−yi xi 0



, ri =



xi

yi

zi



T

. (6)

In Eq. (7), E and G are the modulus of elasticity and
the modulus of rigidity. dx and b denote the length and width
of the single micro-beam. hi represents the height of the ith
divided micro-beam, which can be obtained by the formula
h(x) = 2y(x), and k denotes the shape factor of the torsional
deformation.24

Ci =



dx
Ebhi

0 0 0 0 0

0
4dx3

Ebh3
i

+
dx

Gbhi
0 0 0

6dx2

Ebh3
i

0 0
4dx3

Eb3hi

+
dx

Gbhi
0 − 6dx2

Eb3hi

0

0 0 0
dx

Gkbh3
i

0 0

0 0 − 6dx2

Eb3hi

0
12dx
Eb3hi

0

0
6dx2

Ebh3
i

0 0 0
12dx
Ebh3

i



. (7)

To verify the established FBMM model, the finite
element analysis (FEA) on three series of hybrid NSFHs with
different dimensional parameters, which are listed in Table I,
is conducted by the widely adopted ANSYS Workbench.
The chosen material (spring steel) with the Young’s modulus
and Poisson’s ratio is E = 2 × 1011 Pa and µ = 0.288. The
in-planar compliances obtained by the FEA and the FBMM
method are presented in Table II, the relative errors (denoted
by e) between the FEA results (denoted by F) and analytical

results (denoted by A) are calculated through taking the
FEA results as the ideal values. As shown in Table II, all
the relative errors e are less than 5%, which indicates a
good agreement between the FEA and analytical results,
well demonstrating the established FBMM models of the
NSFHs can effectively characterize their elastic deformation
behaviors.

In addition, it is also very important to evaluate the
maximum stresses of hinges from the displacement fields
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FIG. 3. Profiles of the hybrid NSFHs in terms of the asymmetric ratio λ. (a)
The ENSFHs and (b) the CNSFHs.

When only the in-plane bending and axial effects are consid-
ered, the maximum stress on the cross section with minimum
thickness can be expressed12

σmax = 6
kb
bt2

�(K6,6 + L2 · K6,2) θz

+ (K6,2 + L2 · K2,2)y� + ka
bt

K1,1x, (8)

where K6,6, K6,2, K2,2, and K1,1 are the stiffnesses in the corre-
sponding directions, which are the reciprocals of the compli-
ances C6,6, C6,2, C2,2, and C1,1, respectively; the stress concen-
tration factors in bending kb and axial ka are specified in
Ref. 25. This formula is also verified by FEA method in Ta-
ble II, and the maximum displacement vectors x and y are both
set as 10 µm. The relative errors between the analytical and
FEA results are less than 5%, which indicates the maximum
stress formula is accurate for describing the maximum stress
of the proposed hybrid NSFHs from the displacement fields.

B. Motion accuracy modeling and verification

In practice, the rotary centers of flexure hinges may
adversely drift and cause undesirable motion deviations due to
their elastic deformations. To describe the motion accuracies
of the two hybrid NSFHs, the planar motion deviations of the
rotary centers in the x and y directions are also calculated as
the motion precisions by the above FBMM method.22,23 The
motion accuracies are generally regarded as the very signifi-
cant performance criteria for designing the flexure hinges.

The schematic of hybrid NSFH with external loads is
shown in Fig. 4, where O1 denotes the rotary center; Fx, Fy,
and Mz are the external loads exerted on the free end; F1x and
F1y are the equivalent forces on the rotary center induced by
external forces Fx and Fy; and M1z denote the total equivalent
moments at rotary centers caused by external forces Fy and
moments Mz. The equivalent generalized forces on the center
O1 can be expressed as follows:

FG =

F1x F1y M1z

T
=


Fx Fy Mz + Fy · Lr

T
, (9)

where Lr denotes the distance of rotary center to the free end.
The rotary center of the NSFH will diverge from the midpoint
of the minimum cross section; thus, Lr can be determined by:26

Lr =
δy

δθz
=

δy/Mz

δθz/Mz
=

Cy,M

Cθ,M
. (10)

∆1 = [ex1 ey1]T will be defined as the drift components of
the rotary centers when external loads are exerted on the free
ends of the hinges, namely, the translational drifts along the
x1-axis and y1-axis. Based on the Hooke’s law, the relationship
between the drift components∆1 and equivalent external loads
FG can be expressed by

∆1 = Θ · FG =



ex1/F1x 0 0
0 ey1/F1y ey1/Mz


·



F1x

F1y

M1z



, (11)

Θ =
(L−Lr )/dx

i=1
T1iCiTT

1i, T1i =



1 0 yi

0 1 −xi

0 0 1



, (12)

where, Θ denotes the planar compliance matrix at the rotary
center,22 each element of Θ has been defined as the PF.14,15

Similar to the compliance matrix C, Ci is the compliance
matrix of the ith single unit-beam in its local coordinate and
T1i is the planar compliance transformation matrix.5

The defined PF18 was proposed as an absolute physical
parameter to describe the undesired drifts of rotary centers
with considering motion range of the hinge, but the PFs have
non-uniform dimensions. In authors’ previous studies, the
non-dimensional precision factors (NDPFs) are proposed to
be the key performance criteria,22 which means the ratios

TABLE I. Parameters of the proposed hybrid non-symmetrical flexure hinges.

Example RL
a (mm) RL

b
(mm) RR

a (mm) RR
b

(mm) L (mm) t (mm) c (mm) b (mm)

1 6 6 12 6 18 1.2 6 12
2 6 15 15 15 18 1.2 6 12
3 9.7 9.7 9.7 9.7 18 1.2 6 12
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TABLE II. Comparisons between FEA and analytical results (in SI unit).

δx/Fx

�
×10−9 m/N

�
δy/Fy

�
×10−6 m/N

�
δy/Mz

�
×10−4 1/N

�
δθz/Mz

�
×10−4 1/N

�
σmax (MPa)

A F e(%) A F e (%) A F e (%) A F e (%) A F e (%)

1 2.98 3.09 3.6 1.61 1.58 1.9 1.41 1.38 2.2 1.29 1.27 1.6 274.3 279.3 1.9
2 2.57 2.64 2.7 1.33 1.32 0.8 1.15 1.14 0.9 1.04 1.03 1.0 243.4 234.4 3.8
3 2.69 2.82 4.6 0.944 0.923 2.3 0.999 0.974 2.6 1.11 1.08 2.8 246.4 235.8 4.5

of the deviations of the rotary centers to the generalized
displacements of the free end under same loads, as expressed
in following:

β =



β1

β2

β3



=



ex1/δx
ey1/δy

ey1/δy



=



ex1
Fx

δx
Fx

ey1
Fy

δy
Fy

ey1
Mz

δy
Mz



T

. (13)

Similar to verify the planar compliances of hinges, the
precision factors are also calculated by both the FEA and
FBMM methods, as listed in Table III. Then, the FEA results
will be regarded as the accurate values for further calculating
the relative errors with the FBMM results. As listed in Ta-
ble III, the maximum relative error is about 10%, which shows
the FEA results can well agree with the FBMM results. The
fine results demonstrate that the NDPF modeling method is
very effective and can well describe the motion accuracies of
the hybrid NSFHs.

IV. PERFORMANCE ANALYSIS AND DISCUSSION

A. Influence of the dimensional parameters on the
planar compliances

In view of the planar motions of the hinges are more domi-
nant than the motions in the other directions, thus influences
of the dimensional parameters on these planar compliances
are analytically investigated based on the FBMM method. As
shown in Fig. 2, five dimensional parameters, marked by t, b,
c, L, and λ, co-determine the notch shapes of the designed
hinges, which are therefore employed for describing the elastic
deformation behavior of the hybrid NSFHs. Obviously, param-
eters c, L, and λ determine the notch shapes of the hinges,
while variables b and t determine the structure features of
the NSFHs. Thus, this research will focus on the influences
of former three size parameters on the planar compliances,
namely, δx/Fx, δy/Fy, δy/Mz, and δθz/Mz. To investigate
influences of the parameters L and c, variables b, t, and λ are
first assumed to be 10 mm, 1 mm, and 0.5, while parameters
L and c range from 10 mm to 20 mm and 3 mm to 8 mm,

FIG. 4. The schematic of the NSFH under external unit forces.

respectively. For comparing the two hybrid NSFHs with the
right-circular flexure hinges (RCFHs) and elliptical flexure
hinges (EPFHs), the dependences of the planar compliances to
variables L and c are also revealed. The radius of the RCFHs
is set as Rc = c/2 + L2/(8c), while the major axis and minor
axis of the EPFHs are set as Ra = L/2 and Rb = c, respectively.
The resulted relationships of these four different hinges are
shown in Fig. 5. Similarly, for investigating the influences of
asymmetric ratio λ on the planar compliances, variables t, b,
c, and L are chosen to be 1 mm, 10 mm, 5 mm, and 15 mm,
respectively, while ratio λ ranges from 1/3 to 1, the acquired
relationships are shown in Fig. 6.

From the relationships shown in Fig. 5, the planar compli-
ances of the two hybrid NSFHs present increasing trends with
the increase of length L, while the variation sensitivities of
the compliances to variable L will slightly increase with the
increasing L, except δy/Fy has obvious increase. Moreover,
parameter c has little influences on the planar compliances
of the CNSFHs, but the planar compliances of the ENSFHs
will slightly decrease with increasing c. The influences of
parameters L and c on the planar compliances of the CNSFHs
are more than the ENSFHs, while the variation sensitivities of
the planar compliances to the length L are obviously stronger
than the depth c. It shows that L can more strongly influence
the performances of the proposed hybrid NSFHs.

In view of the NSFHs have trade-off relationships between
the motion ranges and motion accuracies, so the comprehen-
sive discussions should be made on the above two criteria,
while the symmetric RCFHs and EPFHs are fairly compared
with the proposed NSFHs. As shown in Fig. 5, all the compli-
ances of the RCFHs and EPFHs are close to these of the
ENSFHs except δx/Fx and δθz/Mz of the EPFHs, and similar
changing trends can be observed in above compliances. How-
ever, both δx/Fx and δθz/Mz of the EPFHs more strongly
decrease with increasing c than other compared hinges, as
shown in Figs. 5(a) and 5(d). Additionally, the planar compli-
ances of the RCFHs and EPFHs are less than these of the
CNSFHs in most situations. In conclusion, δy/Fy and δy/Mz

of the ENSFHs are slightly more than these of the EPFHs and
RCFHs, while δx/Fx and δθz/Mz of the ENSFHs are very
close to these of the RCFHs. However, δx/Fx and δθz/Mz

of the CNSFHs more strongly decrease with increasing c
than other hinges whose planar compliances have little depen-
dences with the variable c.

As shown in Fig. 6, the dominant compliances also depend
largely on the asymmetric ratio λ. Except δx/Fx and δθz/Mz

of the ENSFHs, all compliances of the two hybrid NSFHs
will gradually decrease with increasing λ, while the variation
sensitivities of these compliances to λ will decrease with the
increase of λ. However, the two excepted compliances above
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TABLE III. Comparison of precision factors between FEA results (denoted by F) and the FBMM results (denoted by A).

ex1/Fx

�
×10−10 m/N

�
ey1/Fy

�
×10−7 m/N

�
ey1/Mz

�
×10−6 1/N

�
eθ1/Mz

�
×10−3 rad/m N

�

A F e (%) A F e (%) A F e (%) A F e (%)

1 9.96 10.7 6.9 1.21 1.32 8.3 4.62 5.01 7.1 4.31 4.64 7.1
2 8.58 9.29 7.6 0.794 0.886 10 3.03 3.37 10.1 2.34 2.59 9.6
3 13.5 14.2 5.0 1.84 1.90 4.7 7.74 7.94 2.5 5.61 5.88 4.6

are nearly proportional to λ, whose variation sensitivities to
ratio λ basically keep unchanged. For compliance δθz/Mz, as
shown in Figs. 5(d) and 6(d), the maximum value is multiple
of the minimum one, this means that the hybrid NSFHs can
provide a wider range of compliances and expand their appli-
cations with the suitable dimensional parameters.

B. Motion accuracy analysis and comparison

In view of the RCFHs and EPFHs are extensively applied
in many fields, thus the motion accuracies should be fairly
compared with the two hybrid NSFHs by the proposed NDPFs.
For fair comparisons, variables t, b, and λ are, respectively,
chosen to be 10 mm, 1 mm, and 0.5, while variables L and
c range from 10 mm to 20 mm and 3 mm to 8 mm, respec-
tively, then the related results are shown in Fig. 7. Similarly,

influences of the asymmetric ratio λ on the precision factors of
these four hinges are also investigated. Parameters L and c are
chosen to be 15 mm and 5 mm, while variable λ ranges from
1/3 to 1, the relationships of the NDPFs in terms of variable λ
are obtained and shown in Fig. 8.

As shown in Fig. 7, most NDPFs of the two hybrid NSFHs
are less than these of the EPFHs and RCFHs, namely, the
rotary centers of the hybrid NSFHs have less drifts under same
motion ranges than other two hinges. As shown in Fig. 7(a),
parameters L and c have little influences on β1 of the RCFH
and EPFH, while β1 of the two hybrid NSFHs are slightly
affected by variable L and c. As shown in Figs. 7(b) and 7(c),
β2 and β3 of the ENSFHs are less than other three hinges,
whose variation sensitivity to L and c is also less than other
hinges. In additional, β2 and β3 of the CNSFHs are partly
larger than these of the RCFH and EPFH when c > 6 mm and

FIG. 5. Compliances of the hybrid NSFH with variable L and c. (a) δx/Fx, (b) δy/Fy, (c) δy/Mz, and (d) δθz/Mz.
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FIG. 6. Compliances of the hybrid NSFH with variable λ. (a) δx/Fx, (b) δy/Fy, (c) δy/Mz, and (d) δθz/Mz.

L < 14 mm. Obviously, β2 and β3 of the CNSFHs are close
to these of the RCFHs, but the ENSFHs are superior to other
hinges. In view of the planar rotation of the rotary centers
cannot directly contribute to the drift of the rotary centers,
thus the present study will pay few attention on the related
investigation.

As shown in Fig. 8, the motion accuracies β of the two
hybrid NSFHs will increase with increasing variable λ except
β2 and β3 of the CNSFHs, which have nonlinear relation-
ships with ratio λ. The motion accuracies of the ENSFHs are
completely less than these of the CNSFHs, and it indicates
the ENSFHs have better motion precisions than the CNSFHs.
Additionally, it is worth noting that β2 and β3 of the CNSFHs
will be more than these of the symmetric hinges (λ = 1) when
the ratio λ < 0.5. As shown in Figs. 5 and 7, the ENSFHs can
exchange better motion accuracies than the RCFHs and EPFHs
with the roughly same motion ranges. Although the CNSFHs

can provide larger motion ranges than the ENSFHs, whose
motion precisions are worse than the ENSFHs.

V. EXPERIMENT TESTS AND DISCUSSIONS

To verify performances of the two hybrid NSFHs, exper-
imental tests are conducted on three prototypes of flexure
hinges, namely, the ENSFH, CNSFH, and RCFH, which
are monolithically fabricated by the wire electrical discharge
machining method. For more fair comparison, same dimen-
sional parameters and material properties are employed for
the three prototypes of flexure hinges. The dimensional
parameters are chosen as shown in Table I, and chosen material
is spring steel 65Mn with the elastic modulus E = 2 × 1011 Pa
and the Poisson’s ratio µ = 0.288. As the photograph of exper-
iment setup shown in Fig. 9, the equivalent compound loads

FIG. 7. Motion accuracy comparisons of the two hybrid NSFHs, RCFHs, and EPFHs with variable L and c. (a) β1, (b) β2, and (c) β3.
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FIG. 8. Motion accuracies of the hybrid NSFHs with variable λ. (a) β1, (b) β2, and (c) β3.

F involving the moments around the z-axis and push forces
in the y direction are exerted on the free ends of flexure
hinges, which can be measured by a force gauge. The output
displacements of the point o are also measured by a capacity
transducer (Micro-sense II 5300). All the experimental tests
will be conducted on a vibration-isolated air-bearing platform
(Newport RS4000) for reducing the adverse disturbances from
external environment.

To verify the accuracy of the established FBMM model,
the displacements under different external loads are experi-
mentally measured, as shown in Fig. 10. The experimental re-
sults are fitted to obtain the compliances of tested hinges based
on the least square method (LSM), and the corresponding
fitted residuals are also obtained. The compliances are finally
compared with the analytical and FEA results, as presented in
Table IV.

As shown in Fig. 10, the experimental results show that
there are perfect linear relationships between the external
forces and output displacements of these three flexure hinges,
and the experimental compliances (denoted by E) of the
RCFH, CNSFH, and ENSFH are 1.331 µm/N, 2.193 µm/N,
and 1.875 µm/N, respectively. With same dimensional param-
eters, the compliances of the hybrid NSFHs are more than
these of the RCFH; namely, the two hybrid NSFHs can obtain
larger motion ranges. As shown in Table IV, the relative
errors between the FEA and analytical results are small, but
the maximum deviations of experimental results are about

FIG. 9. The experimental setups (1. the sensor probe; 2. the ENSFH; 3.
the force gauge; 4. the RCFH; 5. the CNSFH; and 6. the vibration-isolation
air-bearing platform).

FIG. 10. Analysis of experimental results of different flexure hinges. (a)
Experimental tests and fits and (b) the fitted residuals.

TABLE IV. Comparisons of experiment, FEA, and analytical results.

RCFH (µ m/N) CNSFH (µ m/N) ENSFH (µ m/N)

A 1.543 2.463 2.019
F 1.548 2.449 2.021
E 1.331 2.193 1.875

12%, which are caused by two main factors: (a) the geometric
errors induced by the manufacture imperfect of the hinges
and the systematic errors of the experimental processes and
(b) the uncertain deviations of the chosen material properties
between the experimental and theoretical processes. However,
all experimental results fine match with the theoretical and
FEA results, which can well demonstrate the accuracies of the
established FBMM models of the proposed hybrid NSFH.

VI. CONCLUSIONS

In this paper, a novel type of non-symmetrical flexure
hinges (NSFHs) with transversely asymmetric structures is
developed to improve motion accuracies, whose compliance
matrixes are analytically investigated by the FBMM method.
The motion accuracies of two proposed hybrid NSFHs are
characterized and compared with symmetric flexure hinges
through introducing the NDPFs. Influences of the dimensional
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parameters on the compliances and motion accuracies of the
two hybrid NSFHs are well revealed based on built FBMM
model. This paper finally summarizes several main conclu-
sions on the present studies as follows.

(a) Comparing with the FEA results, the maximum rela-
tive error of the analytical results is less than 5%, this
indicates the established FBMM model, and derived
maximum stress formula of the proposed NSFHs is
effective.

(b) For the motion ranges and motion precision of the two
hybrid NSFHs, the ENSFHs have better motion preci-
sions than the symmetric hinges under roughly same
motion ranges, but the CNSFH has larger motion ranges
than the symmetric hinges under approximately equal
motion precisions.

(c) Linear relationships can be observed between the external
loads and output displacements in all experimental tests.
The experimental and analytical results demonstrate the
hybrid NSFHs have more excellent performances than
the symmetric hinges.
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