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Chiral plasmon in gapped Dirac systems
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We study the electromagnetic response and surface electromagnetic modes in a generic gapped Dirac material
under pumping with circularly polarized light. The valley imbalance due to pumping leads to a net Berry curvature,
giving rise to a finite transverse conductivity. We discuss the appearance of nonreciprocal chiral edge modes, their
hybridization and waveguiding in a nanoribbon geometry, and giant polarization rotation in nanoribbon arrays.
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Introduction. The Berry curvature is a topological property
of the Bloch energy band and acts as an effective magnetic
field in momentum space [1–3]. Hence, topological materials
may exhibit anomalous Hall-like transverse currents in the
presence of an applied electric field, in the absence of a
magnetic field. Examples includes topological insulators [4]
with propagating surface states that are protected against
backscattering from disorder and impurities and transition
metal dichalcogenides where the two valleys carry opposite
Berry curvature giving rise to bulk topological charge neutral
valley currents [5,6]. These bulk topological currents were
also experimentally investigated in other Dirac materials, such
as a gapped graphene and bilayer graphene system [7,8].
The electromagnetic response of these gapped Dirac systems,
particularly that due to its surface electromagnetic modes (i.e.,
plasmons), are relative unexplored.

In gapped graphene or monolayer transition metal dichalco-
genides, electrons in the two valleys have opposite Berry curva-
ture, ensured by time-reversal symmetry (TRS) of their chiral
Hamiltonians [5]. Hence, far field light scattering properties of
these atomically thin systems does not differentiate between
circularly polarized light, i.e., zero circular dichroism in the
classical sense. Optical pumping with circularly polarized
light naturally breaks TRS, and a net planar chirality ensues.
However, under typical experimental conditions, the transverse
conductivity due to Berry curvature is less than the quantized
conductivity e2/�, and the associated optical dichroism effect
is not prominent. These effects, however, can potentially
be amplified through enhanced light-matter interaction with
plasmons [9–13].

In this Rapid Communication, we discuss the emergence of
chiral electromagnetic plasmonic modes and their associated
optical dichroism effect. We consider a gapped Dirac system
under continuous pumping with circularly polarized light. We
discuss the appearance of edge chiral plasmons and how they
can allow launching of one-way propagating edge plasmons in
a semi-infinite geometry. We also consider the hybridization
of these chiral edge modes in a nanoribbon geometry and
the possibility of nonreciprocal waveguiding. Their far-field
optical properties reveal resonant absorption accompanied by
sizable polarization rotation.
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Model system. We consider the following Hamiltonian of a
massive Dirac system (MDS):

H = �vf k · σ τ + �

2
σz, (1)

where σ τ = (τσx,σy), τ = ±1 denotes the K/K′ valley, � is
the energy gap, and vf is the Fermi velocity. We denote the
eigenenergy and wave functions of H as Eτ,ν(k) and �τ,ν(k),
with ν = c,v denoting the electron and hole bands. We are
interested in the dynamics of the electronic subsystem in an
external electromagnetic field E as illustrated in Fig. 1(a),
which can be described with the von Neumann equation,
i� ∂t ρ̂ = [H + V,ρ̂], where ρ̂ is the statistical operator of the
electron subsystem and V = −eE · r is the interaction term. In
the �τ,ν(k) basis, the equation of motion is written explicitly
as [14,15]

∂ρjj ′

∂t
+ e

�
E · ∂ρjj ′

∂k

= − i

�
ρjj ′ [Ej (k) − Ej ′ (k)]

+ ie

�
E ·

∑
j ′′

[Rjj ′′ (k)ρj ′′j ′ − ρjj ′′Rj ′′j ′(k)], (2)

FIG. 1. Optically induced valley polarization: (a) Polarization
selective pumping leads to different populations in the K and K ′

valleys. (b) DC electronic carrier concentration in the two valleys as
a function of the pump electric field. (c) DC σxy in the two valleys as
a function of the right circular polarized pump electric field.
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where [ρ(t,k)]j,j ′ is the density matrix, Rjj ′ (k) =
(i/2)

∫
�∗

j (k)∂k�j ′(k)dr + hc, with j = {ν,τ } designating
the quantum number of electrons. In Eq. (2) we neglect indirect
interband optical transitions.

Here, we are interested in the interaction with a continuous
(c.w.) monochromatic electromagnetic wave, E = E0e

−iωt +
cc. Using the rotating wave approximation and introducing
relaxation phenomenologically within the relaxation time
approximation, we obtain the steady-state solution as a system
of four linear equations for diagonal components of the
distribution function, ρj ≡ ρjj ,

ρν,τ (k) = βτ

(
ρ0

ν,τ (k) + γρν,τ ′(k) + ατρν ′,τ (k)
)
, (3)

where τ ′ �= τ and ν ′ �= ν. Here,

ατ = 2e2
∣∣E0 · Rτ

cv(k)
∣∣2

�2
[
(ω − ωcv)2 + 1/τ 2

0

] , (4)

ωcv = (Eτ,c − Eτ,v)/�, βτ = 1/(1 + γ + ατ ), γ = τ0/τ1,
where τ0 is the population relaxation time, and τ1 is the
intervalley scattering time (see Supplemental Material
[16]). The equilibrium distribution function is given by the
Fermi Dirac distribution, ρ0

ν,τ (k) = [1 + exp((Eτ,ν(k) − μ)/
kBT )]−1.

Let us consider positive or right circular polarized light,
E0 = E0(ex + iey), interacting with electrons at the top of
the valence band, Rτ

cv(0) = −(vf �/�)(iτex + ey). It can be
clearly seen that E0 · Rτ

cv(0) = −i(vf �/�)(τ + 1), and thus
ατ , are zero at the K′ valley while being finite at the K valley.
Hence, pumping with circularly polarized light would lead to
carrier population imbalance between the two valleys.

Net chirality with pumping. The effective Hamiltonian in
Eq. (1) captures the valley physics in a physical system such
as monolayer graphene with staggered sublattice potential
[17] and transition metal dichalcogenides [5], if the spin-orbit
coupling term can be neglected. To proceed, we consider
some reasonable numbers for our model gapped Dirac system:
an energy gap � = 0.5 eV and Fermi velocity vf = 1 ×
106 ms−1. Our calculations assume temperature T = 300 K,
typical carrier lifetimes τ0 = 1 ps, and that the system is
undoped at equilibrium. With pumping, charge neutrality and
electron-hole symmetry would require that the electron and
hole carrier densities follow nτ

e = nτ
h. Fig. 1(b) shows the

increasing nonequilibrium electron densities as a function of
pump intensities E0, under continuous wave pumping with
right circular polarized light. Finite transfers of electrons from
the K to K′ valley is determined by the intervalley scattering
rate described by γ .

In the presence of an external electric field E, the carrier
velocity acquires a nonclassical transverse term due to Berry
curvature, τ (k), given by − e

�
E × τ (k). For a MDS, the

form of the Berry curvature is well known [5]. Within
the semiclassical Boltzmann transport theory, this would
give rise to a transverse conductivity, which in the charge
neutral case we are considering here is simply given by
σ τ

xy = 2e2/�
∫

[dk]ρc,τ (k)τ (k). The factor of 2 accounts for
contributions from both electrons and holes. It can further
be shown that σ τ

xy = −σ τ
yx . Since TRS requires K(k) =

−K′ (k), σ K
xy = −σ K′

xy at equilibrium. However, under con-
tinuous wave pumping, the asymmetric carrier populations in

FIG. 2. (a) Chiral plasmon dispersion in bulk and semi-infinite
MDS. (b) Selective excitation of edge modes using circular and linear
polarized dipoles placed at the origin: Line plots of electric field
Ex in the plane and perpendicular to the edge. The vertical offset
is 6 × 1018 V/m. (c) |E| field (normalized to max) profile for a x̂-
polarized emitter located near the edge of semi-infinite Dirac material
(x < 0) at ω = 0.1 eV. Both of these field profiles show nonreciprocal
emission into the edge mode. The dipoles are placed 10 nm above the
MDS.

the two valleys would produce a net transverse conductivity,
as shown in Fig. Fig. 1(c). We note that over the frequency
range that we are interested in, i.e., �ω � �, σxy is real
and frequency independent [18]. Our calculations suggest
that σxy an order smaller than e2/� is obtainable with pump
intensities E0 routinely used in pump-probe experiments. The
nonequilibrium longitudinal components of the conductivity,
σxx = σyy , are computed with the Kubo formula [18]. For all
subsequent results of this Rapid Communication, we use a
pump intensity of E0 = 108 V/m and γ = 0.01.

Valley induced bulk and edge chiral plasmon. Armed with
the conductivity sum of the two valleys, σij , we discuss
general results for the plasmon modes in this system. Plasmon
dispersion in a continuous sheet of the MDS is given by
[19–21]:[

ε1

κ1
+ ε2

κ2
+ ıσxx

ωε0

]
·
[
κ1 + κ2 − ıσyy

cε0
k0

]
− σxyσyx

(cε0)2
= 0, (5)

where κ1,2 =
√

q2 − ε1,2k
2
0 are the evanescent decay constants

on either side of the 2D sheet. As shown in Fig. 2, this “bulk
plasmon” dispersion is symmetric with respect to the wave
vector q, since it appears quadratically in Eq. (5).

Edges can also accommodate plasmon modes [22]. Sym-
metry arguments show that although bulk plasmon dispersion
respects ω(q) = ω(−q) with the nonsymmetric conductivity
tensor, the presence of an edge can break this degeneracy [23].
Here we consider the case of semi-infinite MDS. Within the
quasistatic picture, the edge plasmon dispersion is approxi-
mately given by [22,24]: η2 − χ2 − 3η + 2

√
2χ sgn(q) = 0,

where η = |q|σxx/(ıε0εω) and χ = |q|σxy/(ε0εω). Fig. 2(a)
indeed shows that the right moving edge plasmon has a
different dispersion compared to the left moving one. A simple
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realization of this nonreciprocity effect consists of placing a
dipole near the edge of the material. Finite element simulation
of near field dipole emission was performed using COMSOL. As
shown in Figs. 2(b) and 2(c), the linear dipole preferentially
emits into the left propagating edge state. Taking a cue from
Ref. [25], we can also use a circular dipole to couple emission
into the left or right edge state, depending on dipole helicity.
The results for circular dipoles are presented in Fig. 2(b).

In terms of experiment, the appropriate plasmon momentum
can be selected either by use of a grating near the edge [26]
or by adjusting the distance between the tip of a near field
microscope and the edge of the MDS or the tip radius [27–29].
Since the edge plasmon dispersion is nonreciprocal, selection
of the magnitude of the plasmon momentum will also lead
to selectivity in the propagation direction. In addition to the
different intensities of the two, the different wavelengths for
the left and right moving edge modes in this configuration
might be used for nonreciprocal phase shifters [30].

Waveguiding in nanoribbons. Any practical realization of
the semi-infinite case discussed above will involve a stripe or
waveguide geometry. Waveguides are an important component
of plasmonic circuitry [31], and ribbon waveguides based on
the plasmon modes in graphene have been proposed [32,33].
In this section, we show how the chirality of the plasmon leads
to the propagation direction being coupled to the ribbon edge.
It should be noted that unlike the semi-infinite case for ribbons
placed in homogeneous space, the dispersion of these plasmon
modes is symmetric due to the presence of spatial symmetry
[23]. However, these modes show nonreciprocity with respect
to edge localization as discussed below.

As shown in Fig. 3, qualitatively the typical profile of
plasmons in ribbon [32,33] or nanowire [34] geometries
is observed: There is an acoustic branch arising from a
monopolelike mode and a discrete set of higher order guided
modes which show a cutoff. The high frequency field profiles
of the two lowest order modes (for example, 1′ and 2′ for
kz > 0) in Fig. 3 reveal that these modes have the character of
edge modes in semi-infinite MDS. In fact, these edge modes
of the ribbon lie outside the “cone” of the bulk plasmon mode
for the continuous MDS. As we approach lower frequencies,
the edge localization of these two modes becomes weaker and
they start hybridizing.

All the other modes are guided modes with field maxima
in the bulk. These lie inside the cone formed by the dispersion
of the plasmon in continuous MDS. Thus these modes are
analogous to the guided modes in slab waveguides. The cutoff
frequencies for all except the lowest mode are consistent with
the Fabry-Perót condition, kBw + φR = nπ , where kB is the
bulk plasmon momentum in the MDS, as given by Eq. (5),
and φR ≈ −3π/4 is the approximate phase acquired by the
plasmon upon reflection from the ribbon edge [35].

The chirality of the plasmon mode in our case gives rise to
the coupling between the propagation direction and the edge.
For instance, for positive kz, at higher frequencies, we observe
that the field is only confined to the left edge for the lowest
mode. Such a coupling is useful for enhancing the lifetime of
the mode propagating in a given direction.

This special coupling between the edge mode direction and
the ribbon edge can be utilized to produce explicit nonrecipro-
cal devices. For instance, we can break the spatial symmetry

FIG. 3. Guided modes in freestanding MDS ribbons. Ribbon
width is assumed to be w = 100 nm. The gray dashed lines rep-
resent solutions of kBw + φR = nπ , where kB is the bulk plasmon
momentum in MDS and φR ≈ −3π/4 [35], which explains the cutoff
for all the guided modes (except the edge mode). The black solid lines
represent the bulk plasmon in a continuous sheet of MDS (same as
Fig. 2). The color plots below represent the real part of the electric
field along the ribbon at the indicated q.

between left and right by introducing another medium on one
side of the ribbon. In the most extreme case, a perfect conductor
can be used to short the edge mode on one side [30].

Valley induced giant polarization rotation. Polarization
rotation is usually discussed in the context of magneto-
optical materials (also called Faraday effect), where the
plane of polarization of the incident wave is rotated upon
passage through such a material [36]. Cyclotron resonances in
various two-dimensional electron gases [37] were employed
to produce this effect, with graphene being the most promising
candidate [38]. Optically induced valley polarization in a
MDS presents a promising route to achieve a similar effect
without the application of a static magnetic field, which can be
cumbersome in the context of on-chip photonic components
miniaturization.

We first consider polarization rotation in a continuous sheet
of MDS. The polarization rotation angle is given by [39] θF ≈
	{σxy}/2cε0 and the transmission by T (ω) ≈ 1 − 	{σxx}/cε0.
It should be noted that as opposed to optical activity [40] which
is reciprocal, the polarization rotation in our case is analogous
to Faraday rotation which is a purely nonreciprocal effect [41].
These equations suggest that the polarization rotation values in
the continuous 2D sheet are only dependent on the σxy , which
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FIG. 4. Transmission and polarization rotation in freestanding
MDS ribbons: (a) Transmission (vertical offset is one unit). Inset:
Schematic of the configuration. Note that in general the transmitted
wave is expected to be elliptically polarized as opposed to linear as
shown here. (b) Polarization rotation spectrum for different ribbon
sizes w (vertical offset is 6 degrees). For ribbon arrays, a filling factor
of 50% has been assumed.

can be tuned by adjusting the intensity and polarization of the
pump. Even with a pump intensity of the order of 108 V/m,
rotation angle of only about 0.1 degrees is obtained.

However, it is possible to use localized plasmon resonances
[42,43] of nanoribbons [44] to enhance the polarization
rotation values. In Fig. 4, we present the simulation results
for transmission and polarization rotation in nanoribbons. We
obtain significant enhancement of polarization rotation by
more than an order of magnitude upon using nanoribbons as
opposed to a continuous 2D sheet. Moreover, at the frequency
of the resonant enhancement, transmitted intensity is still about
10–20%. The spectral location of the resonance is strongly
tunable as a function of the ribbon width. These frequencies

correspond to the solutions of kBw + φR = nπ , as described
earlier but with the constraint that n is an even integer [35].
Odd n solutions are nondipolar modes, hence do not couple
with normally incident plane waves. The largest polarization
rotation occurs for smaller ribbon sizes. This is because
smaller ribbons correspond to larger in-plane wave vectors,
thus providing a higher field confinement. The polarization
rotation we obtained with nanoribbons was found to even
surpass Faraday rotation angles in monolayer graphene under
a magnetic field of 7 T [38].

Conclusion and summary. In summary, we have shown
how polarization selective pumping in a generic gapped Dirac
material can impart chirality to bulk and edge plasmons
without the need for an external magnetic field. Experimentally
testable predictions in the context of near field imaging, giant
valley induced polarization rotation, as well as nonreciprocal
waveguiding were presented. Our theoretical approach can be
applied to a general class of two dimensional gapped Dirac
materials. A rich array of nonreciprocal phenomenon can be
potentially explored, from the point of view of applications
to isolators, circulators, etc. Finally, since unlike the case of
applied magnetic field, the field profile of the optical pump can
be easily manipulated on the subwavelength scale by the use of
nanostructures [45], our work might pave the way for chip scale
nonreciprocal photonics and optically tunable metasurfaces
[46,47].

Note added in proof. Recently, we became aware of a related
preprint [48].
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