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Dynamical invariants in a non-Markovian quantum-state-diffusion equation
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We find dynamical invariants for open quantum systems described by the non-Markovian quantum-state-
diffusion (QSD) equation. In stark contrast to closed systems where the dynamical invariant can be identical
to the system density operator, these dynamical invariants no longer share the equation of motion for the
density operator. Moreover, the invariants obtained with a biorthonormal basis can be used to render an exact
solution to the QSD equation and the corresponding non-Markovian dynamics without using master equations or
numerical simulations. Significantly we show that we can apply these dynamical invariants to reverse engineering
a Hamiltonian that is capable of driving the system to the target state, providing a different way to design control
strategy for open quantum systems.
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I. INTRODUCTION

The theory of the open quantum system [1] provides a
realistic and complete description that takes into account
the often uncontrollable and inevitable interaction between
the system under consideration and its environment. This
particular field has attracted much attention from physicists
because environment-induced effects play a vital role in a
wide variety of research topics such as quantum information
[2], quantum transport [3], and quantum optics [4]. Indeed,
in practical quantum information processing, the inevitable
interactions between the system and the environment generally
lead to a deterioration of quantum information, which is one
of the biggest hurdles of building quantum devices or setups.
Conventionally, the Markov approximation was extensively
used because of its simplicity and validity for systems where
the system-bath coupling is weak and the memory effect
of the bath is negligible. The Markovian approximation
entails that the open system dynamics is forgetful and is
valid only when memory effects of the environment are
negligible. However, this approximation becomes invalid
when the system-environment coupling is strong or when
the environment is structured [1]. Consequently, general non-
Markovian environments have to be considered in explaining
new experimental advances in quantum optics [5], as well as
in various quantum information tasks where environmental
memory can be utilized to control entanglement dynamics
[6]. Therefore, it is vital to have a non-Markovian description
of the system’s dynamics under the influence of the memory
effects and the backaction of the environment without making
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any approximation. However, a precise description of non-
Markovian open systems has long been a challenge. To this
end, many theoretical approaches have been developed [7–11].
Among them, a stochastic Schrödinger equation called the
non-Markovian quantum state diffusion (QSD) [10,11], which
was derived from a microscopic Hamiltonian, has several
advantages over other exact master equations and has been
proven to be a powerful tool in the study of the system
dynamics. While originally derived for systems embedded
in a bosonic bath, the QSD framework has been extended
to deal with a fermionic bath as well [12,13]. Exact master
equations were derived for many interesting systems such as
dissipative multilevel atoms [14], multiple qubits [15], and
quantum Brownian motion [10,16], which was also exactly
given via a path-integral approach [17]. Recently, a generic
tool for deriving a non-Markovian master equation has been
developed using QSD [18] which is applicable to a generic
open quantum system irrespective of the system-environment
coupling strength and the environment frequency distribution.
Quantum continuous measurement [19–21] and the quantum
control method [22] employing the QSD were also studied.

In quantum mechanics, an invariant of a quantum system
remains intact during evolution of the system. The Lewis-
Riesenfeld dynamical invariant [23,24], which was first intro-
duced to find the solutions for time-dependent Schrödinger
equations, has been used lately to engineer quantum states
[25,26], perform quantum computation tasks [27], as well
as study shortcuts to adiabaticity [28]. However, it has been
shown that for closed systems under Hermitian Hamiltonians,
the system density matrix itself (evolved by the propagator)
can be a dynamic invariant, since they share the same linear
equation of motion. The dynamical invariant has also been
extended to non-Hermitian Hamiltonians [29] and convolu-
tionless master equations [30]. In this paper, we show that for
open systems whose dynamics can be described by the QSD
equation, the invariants are no longer equivalent to the reduced
density operator. It is also possible to obtain an analytic
solution of the QSD equation using the dynamical invariants
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under a biorthonormal basis, yielding new information on the
analytical quantum trajectories. Using the QSD invariants,
we can also reverse engineer a Hamiltonian that is capable
of driving the system to the target state. Unlike unitary
evolutions, this control protocol allows the spectrum of the
state to change, making it more appealing to experimental
realizations.

II. QSD EQUATION

We consider a generic quantum system embedded in a
bosonic bath with the Hamiltonian [10,11] (setting � = 1)

H = Hsys +
∑

k

(gkLb
†
k + g∗

kL
†bk) +

∑
k

ωkb
†
kbk, (1)

where Hsys is the Hamiltonian of the system, L is the Lindblad
operator, bk denotes the kth-mode annihilation operator of the
bosonic bath with frequency ωk , and gk stands for the coupling
strength. The bath state can be represented by a set of complex
numbers {zk} which labels the Bargmann coherent state of
each bath mode k. One remarkable feature of this open system
is that the influence of the bath can be fully encoded in a
bath correlation function, α(t,s) = ∑

k |gk|2e−iωk (t−s). If we
define a function z∗

t ≡ −i
∑

k g∗
k z

∗
ke

iωkt that characterizes the
time-dependent states of the bath and interpret zk as a Gaussian
random variable, then z∗

t becomes a Gaussian random process
with a zero mean M[z∗

t ] = 0 and the correlation function
α(t,s) = M[ztz

∗
s ], where M[·] stands for the ensemble

average. For simplicity, we first consider the case of a zero-
temperature bath. In this case, the state |ψz∗ (t)〉 = 〈z∗|�tot(t)〉,
obtained by projecting the total wave function |�(t)〉 onto
the bath state |z〉, corresponds to a quantum trajectory of the
system and obeys a linear, time-local QSD equation [10],

∂

∂t
|ψz∗ (t)〉 = [−iHsys + Lz∗ − L†Ō(t,z)]|ψz∗(t)〉, (2)

where O is an operator ansatz defined by the
functional derivative δ

δz∗
s
|ψz∗ (t)〉 = O(t,s,z∗)|ψz∗ (t)〉, and

Ō(t,z∗) = ∫ t

0 α(t,s)O(t,s,z∗)ds. The reduced density oper-
ator ρs(t) ≡ Trenv|�tot〉〈�tot| can be obtained as ρs(t) =
M[|ψz∗ (t)〉〈ψz(t)|] by the ensemble average of the quantum
trajectories under all possible realizations of the noise function
and then the corresponding non-Markovian master equations
can, in principle, be derived. The main challenge in the
application of the QSD is to derive the functional derivative
O operator. This O operator can be exactly obtained for some
simple models (see, e.g., [10]) or perturbatively derived for
more general systems [31]. Note that the QSD equation under
a specific noise realization z∗

t can be formally interpreted
as a Schrödinger equation with the non-Hermitian effective
Hamiltonian

Heff = Hs + iLz∗ − iL†Ō(t,z∗). (3)

Below we use the dynamical invariants to analytically solve
the QSD equation, which could give us an explicit expression
for the reduced density matrix.

III. DYNAMICAL INVARIANTS IN AN
OPEN QUANTUM SYSTEM

The Lewis-Riesenfeld dynamical invariant was first devel-
oped [23] to study the magnetic-moment series for a charged
particle moving nonrelativistically in an electromagnetic
field and later generalized [24] to solve the time-dependent
Schrödinger equation. The invariant I (t) was defined so that
its expectation value under any density operator ρ(t) is time
independent, i.e., ∂

∂t
Tr[ρ(t)I (t)] ≡ ∂

∂t
I ≡ 0.

It has been shown that the Lewis-Riesenfeld dynamical
invariant is useful in dealing with time-dependent quantum
problems, such as quantum computing in continuous time
[27]. In fact, for closed systems whose dynamics is governed
by a Hermitian Hamiltonian, the Lewis-Riesenfeld dynamical
invariant obeys ∂

∂t
I (t) = −i[H,I (t)], i.e., the von Neumann

equation, and thus shares the same dynamical behavior as
the density operator. As a result, with the knowledge of
the dynamical invariant, one can know the dynamics of the
system under consideration. It is shown [25] that the dynamical
invariant I (t), the propagator U (t), and the density operator
ρ(t) are mutually equivalent to each other without considering
the Lewis-Riesenfeld phase. Indeed, if we let I (t) = ρ(t), then
for any unitary propagator U (t) and density operator σ (t), we
have I = Tr[ρ(0)σ (0)], which is time independent. The prop-
agator U (t) can also be written as U (t) = ∑

n |ϕn(t)〉〈ϕn(0)|,
where |ϕn(t)〉 is the instant eigenvector of the dynamical
invariant. Thus, it readily follows that if a closed system is
initially prepared in one of the eigenvectors of I (0), then
it will necessarily evolve to the instant eigenvector of I (t)
with the same index at a later time t . This property makes
the dynamical invariant a valuable tool for both studying
the state engineering [25] and calculating the geometric
phases.

In contrast, for an open quantum system whose dy-
namics is determined by the QSD equation, the problem
becomes complicated. The reduced density operator under
a particular realization of noise function z can be shown to
satisfy

∂

∂t
Pz(t) = i[Pz(t)H

†
eff − HeffPz(t)], (4)

where Pz(t) = |ψz∗ (t)〉〈ψz(t)| and Heff is the effective time-
dependent non-Hermitian Hamiltonian given by the QSD in
Eq. (2). If one directly defines the dynamical invariant as in a
Hermitian system by imposing ∂

∂t
Tr[Pz(t)I (t)] ≡ 0, it can be

seen that the invariant satisfies ∂
∂t

I (t) = i[I (t)Heff − H
†
effI (t)],

which differs from Eq. (4) unless Heff is Hermitian. Thus,
the dynamical invariant defined this way does not give the
reduced density operator of the system under a given noise
channel z.

On the other hand, various studies [28,29] have used
the biorthonormal basis to study the dynamical invari-
ants for a non-Hermitian system. In such a framework, a
complete biorthonormal set of eigenvectors is introduced
so that the left and right eigenvectors of the Hamilto-
nian are given, respectively, by Heff|ψλ(t)〉 = λ(t)|ψλ(t)〉
and 〈ψ̃λ(t)|Heff = λ(t)〈ψ̃λ(t)|, where the orthonormal con-
dition becomes 〈ψ̃λ|ψμ〉 = δμ,λ and the completeness is∑

λ |ψλ〉〈ψ̃λ| = 1. Note that it should be carefully checked
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if such an eigendecomposition indeed exists for the system
under consideration because it may not be always so for any
non-Hermitian Hamiltonian [32]. For the criteria proposed
in [32], we have the system Hamiltonian as the self-adjoint
part, and the rest should generally be continuous and bounded
for real physical scenarios. Then, the time evolution is now
governed by i|ψ̇(t)〉 = Heff|ψ(t)〉 and i ∂

∂t
|ψ̃(t)〉 = H

†
eff|ψ̃(t)〉.

As a result, the definition ∂
∂t

Tr[P̃z(t)I (t)] ≡ 0, where P̃z(t) =
|ψz∗ (t)〉〈ψ̃z(t)|, gives

∂

∂t
I (t) = −i[Heff,I (t)], (5)

which has the same form as in the Hermitian case, albeit
with a non-Hermitian effective Hamiltonian given by the QSD
equation (2). Remarkably, this invariant defined in this way
can be used to give an analytical solution to the QSD equation.
Since the dynamical invariants for a non-Hermitian Hamil-
tonian are no longer guaranteed to be Hermitian, we
should use the biorthonormal basis given by the instanta-
neous eigenvectors of I (t), i.e., I (t)|ϕμ(t)〉 = μ|ϕμ(t)〉 and
〈ϕ̃μ(t)|I (t) = μ〈ϕ̃μ(t)|, with 〈ϕ̃μ(t)|ϕν(t)〉 = δμ,ν . We for-
mally write the general solution to the QSD equation as
|ψz∗ (t)〉 = ∑

μ cμ(t)|ϕμ(t)〉 and substitute it into the QSD
equation. After some algebra (see Appendix), we find that
under the biorthonormal basis of the invariants, the QSD
equation becomes an effectively uncoupled set of differential
equations of the coefficients cμ(t), and its solution is given by

cμ(t) = cμ(0) exp

[
−

∫ t

0
dτ (i〈ϕ̃μ|Heff|ϕμ〉 + 〈ϕ̃μ|ϕ̇μ〉)

]
.

(6)

This compact, explicit solution to the QSD equation is our
central result and it applies to any realizations of the noise z∗

t .
With O determined, we can analytically predict the quantum
trajectory for each realization of the noise zt , which was
previously determined numerically using the QSD method.
The reduced density operator of the system can be obtained by
analytically taking the ensemble average for all realizations of
noises via Novikov’s theorem [18].

IV. QUANTUM TRAJECTORIES

As an illustrative example, we apply the dynamical invari-
ants method to the quantum dynamics of a dissipative qubit
under the rotating-wave approximation (RWA). This model is
widely used to display the decoherence effects and is exactly
solvable. The Hamiltonian of the system is Hs = σz and the
Lindblad operator is L = λσ−, where λ is the system-bath
coupling strength and σ are Pauli matrices. The Ō operator
for this model [10] takes the form of Ō(t,z∗) = F (t)σ−,
where F (t) is a function depending on both the system
parameters and the bath spectral density. We can obtain
the dynamical invariant for a given channel z via Eq. (5)
as

I (t) = σz + 2λ

∫ t

0
z∗
u exp

[∫ t

u

2i + λF (s)ds

]
duσ−

≡ σz + g(t)σ−. (7)

FIG. 1. (Color online) The real and imaginary part of the wave
function vs time t under one random realization of the noise function
zt for the RWA spin-boson model, where we used γ = � = λ = 1.
The solid curves correspond to the numerical solutions; the solid open
circles and triangles correspond to the analytical results obtained via
the dynamical invariant given by Eq. (5).

The left and right eigenvectors can be readily obtained and we
finally have

|ψz∗ (t)〉 = ψ1(0) exp

[
−λ

∫ t

0
F (τ )dτ − it

][
1

g(t)
2

]

+ψ2(0) exp(it)

[
0
1

]
, (8)

assuming an initial state |ψz∗ (0)〉 = [ψ1(0),ψ2(0)]T , with
T denoting the transpose of a matrix. In particular, for
the Ornstein-Uhlenbeck noise α(t,s) = γ� exp(−γ |t − s|)/2,
F (t) can be explicitly given by Ḟ (t) = −γF (t) + 2iF (t) +
λF (t)2 + λγ/2. In Fig. 1, we plot the real and imaginary parts
of the wave function against time, and an excellent agreement
with the numerical solution is observed.

Implementation of M[|ψz∗ (t)〉〈ψz(t)|] gives the reduced
density operator. This provides us with an analytic tool to
deal with the QSD equation. For a system with known
O operator, we can use it to directly obtain an explicit
expression for the reduced density operator as a function of
time neither using a master equation nor resorting to numerical
calculations. This can be very beneficial for high-dimensional
systems whose numerical calculations may be very time
consuming. Another more complex example is the dissipative
three-level atom with Hs = ωJz = ω(|0〉〈0| − |2〉〈2|) and L =
J− = √

2(|0〉〈1| + |1〉〈2|). The Ō operator for this model
[33] explicitly depends on the noise zt and is given by
Ō = F (t)J− + G(t)JzJ− + Pz(t)J 2

−, where F (t), G(t), and
Pz(t) are time-dependent functions that can, in principle, be
calculated once the correlation function α(t,s) is known. It is
clear that we can assume an upper-triangular invariant of the
form

I (t) =
⎛
⎝0 a(t) b(t)

0 1 c(t)
0 0 2

⎞
⎠. (9)

Using the commutation relationship of the ladder operator for
the three-level system, we found from the definition (5) the
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dynamic invariant I (t) for this model,

a(t) = R{2[F (t) + G(t)] − iω,
√

2zt },
b(t) = R[F (t) − iω,

√
2{2a(t)Pz(t) − [a(t) − c(t)]zt }],

c(t) = R{−2G(t) − iω,
√

2[zt − 2Pz(t)]}, (10)

where R[g(t),h(t)] = ∫ t

0 exp [
∫ t

u
g(s)ds]h(u)du. We then

have

|ψz∗ (0)〉 =ψ1(0)e−iωt |0〉

+ ψ2(0) exp

[
−2

∫ t

0
F (s) + G(s)ds

]
|ϕ2(t)〉

+ ψ3(0) exp

[
iωt − 2

∫ t

0
F (s)ds

]
|ϕ3(t)〉, (11)

where

|ϕ2(t)〉 = a(t)|0〉 + |1〉,

|ϕ3(t)〉 = b(t) + a(t)c(t)

2
|0〉 + c(t)|1〉 + |2〉. (12)

It analytically reveals the quantum trajectory of the dissi-
pative three-level system.

V. REVERSE ENGINEERING

Now we show how to use dynamical invariants to design a
Hamiltonian that can be used to drive an initial state to a target
state by means of reverse engineering [25]. Specifically, to
design the needed Hamiltonian, we first construct an invariant
I (t) such that one of its time-dependent eigenvectors |ϕ1〉
follows the desired time-evolution path, according to Eq. (6).
The rest of the eigenvectors R = {|ϕi〉}, i = 2, . . . ,N , are left
as undetermined parameters which we will use later to make
the invariant compatible with the QSD equation. Then, we
take the time derivative of this invariant to obtain its equation
of motion and compare it with Eq. (5), where Heff should
be formally compatible with Eq. (3), imposed by the QSD
equation, i.e., Hs should be Hermitian, both Hs and L should
be noise independent, and the Ō operator is determined by
Hs and L. This is achievable by choosing an appropriate set
of basis R. We then have the desired Hamiltonian Hs of the
system and the corresponding L operator.

As an illustrative example, we consider a two-level open
system with the target state |ψT 〉 = (|0〉 + |1〉)/√2. By letting
this state be one of the eigenvectors of the invariant, we first
make a noise-dependent invariant of the form

I (t) =
(

p(t,z∗
t ) −p(t,z∗

t ) − 1
p(t,z∗

t ) − 1 −p(t,z∗
t )

)
, (13)

where p(t,z∗
t ) is a function determined by the Hamiltonian Hs

of the system and Lindblad operator L that we are designing.
If the coefficient cμ(t) in the general solution to Eq. (6) decays
to zero for the other eigenvector of the invariant, we certainly
find the steady target state. Unlike a closed system, the specific
form of the effective Hamiltonian of the QSD poses constraints
on Hs and L in that Hs needs to be Hermitian and noise
independent. With both Hs and L given, the Ō operator is
then determined. Taking this into consideration and inserting

FIG. 2. (Color online) The target fidelity and purity of three
random initial states marked by dashed red, dotted orange, and solid
green lines as a function of time. Under the Hamiltonian that we
reversely engineered, the initial states are monotonically driven to
the target pure steady state by non-Markovian dynamics.

Eq. (13) into Eq. (5), we find that Hs = −ωσx and L = λ(σz −
iσy). In Fig. 2, we numerically plot the fidelity between the
engineered state and the target state, as well as the purity of
the engineered state for three randomly chosen mixed initial
states. It can be seen that the fidelity monotonically increases
to one and become unity after some time, indicating a steady
target state is reached. In sharp contrast to the closed quantum
system that evolves unitarily, the spectrum of the state is free
to change, and we can drive a mixed state to a target pure state
by using the non-Markovian dynamics of an open quantum
system.

VI. CONCLUSION

In conclusion, we studied the dynamical invariants in
non-Markovian open systems whose temporal evolution is
governed by the non-Markovian QSD equation. For systems
that have an exact operator representation of the function
derivative in the form of the O operator, the dynamical
invariant can be obtained analytically. Dynamical invariants
of the QSD equation are discovered, and it is found that the
non-Hermitian dynamical invariants do not share the same
equation of motion as the reduced density matrix but its
eigenvectors can be used to generate an analytical expression
of the solution of QSD. This enables us to obtain the temporal
evolution of the open system without deriving and then
solving the non-Markovian master equations. Using reverse
engineering along with the QSD invariants, we are able to
design a Hamiltonian and Lindblad operator that can be used
to drive an initial state to a target state via non-Markovian
evolution.
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APPENDIX : DERIVATION FOR THE SOLUTION TO QSD

Using Eq. (5), we take the time derivative of

I |ϕλ〉 = λ|ϕλ〉, (A1)

and project it onto 〈ϕ̃μ|,
−iλ〈ϕ̃μ|Heff|ϕλ〉 + iμ〈ϕ̃μ|Heff|ϕλ〉 + μ〈ϕ̃μ|ϕ̇λ〉

= λ̇〈ϕ̃μ|ϕλ〉 + λ〈ϕ̃μ|ϕ̇λ〉. (A2)

Thus,

λ̇δμ,λ = (μ − λ)[〈ϕ̃μ|ϕ̇λ〉 + i〈ϕ̃μ|Heff|ϕλ〉], (A3)

μ = λ ⇒ λ̇ ≡ 0, (A4)

μ �= λ ⇒ 〈ϕ̃μ|ϕ̇λ〉 = −i〈ϕ̃μ|Heff|ϕλ〉. (A5)

We then expand the wave function in this basis:

|ψ(t)〉 =
∑

λ

cλ(t)|ϕλ(t)〉. (A6)

Inserting it into the QSD equation and projecting onto 〈ϕ̃μ|,
we have∑

λ

ċλδμ,λ +
∑

λ

cλ〈ϕ̃μ|ϕ̇λ〉 = −i
∑

λ

cλ〈ϕ̃μ|Heff|ϕλ〉. (A7)

Therefore,

ċμ =
∑

λ

[−icλ〈ϕ̃μ|Heff|ϕλ〉 − cλ〈ϕ̃μ|ϕ̇λ〉], (A8)

and using Eq. (A5),

ċμ =
∑
λ �=μ

[−icλ〈ϕ̃μ|Heff|ϕλ〉 + icλ〈ϕ̃μ|Heff|ϕλ〉]

− icμ〈ϕ̃μ|Heff|ϕμ〉 − cμ〈ϕ̃μ|ϕ̇μ〉
= −cμ[i〈ϕ̃μ|Heff|ϕμ〉 + 〈ϕ̃μ|ϕ̇μ〉]. (A9)

Now the differential equations for coefficients cμ(t) are
decoupled and can be readily solved,

cμ(t) = cμ(0) exp

(
−

∫ t

0
dτ

[
i〈ϕ̃μ|Heff|ϕμ〉 + 〈ϕ̃μ| ∂

∂τ
|ϕμ〉

])
.

(A10)
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