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YBa
2
Cu
3
O
7−𝑥

(YBCO) nanoparticles (NPs) were synthesized via a soft chemical approach and they were found photocatalytically
active at room temperature. Using metal acetate as precursors, a well-designed soft chemical procedure was carried out to produce
YBCO NPs. The very small particle size and/or large number of defects might have led the NPs to semiconductors with vigorous
photocatalytic activities. This work provides a direct and efficient route to obtain multifunction in YBCO based nanomaterials
which are based on specific size and surface effects.

1. Introduction

High temperature superconductivity has been one of themost
important chapters in the field of solid-state physics since
it was discovered in 1986 [1]. As one of the most important
high-Tc oxide superconductors, YBa

2
Cu
3
O
7−𝑥

(YBCO) owns
a well-defined cation stoichiometry and is easy to synthesize
[2]. Research related to YBCO physical and chemical proper-
ties has been reported in a great number of publications [3–5].

Along with industrial advance, environmental issues
such as the remediation of hazardous waste, contaminated
ground-waters, and control of toxic air contaminant have
arisen [6]. Photocatalysis by polycrystalline semiconductor
oxides is a way to degrade organic and inorganic pollutants
[7]. Many semiconductor materials have been investigated
and used because of their photodegradation properties [8].
One of the most famous photocatalysts is TiO

2
, which has

showed excellent photocatalytic effect as reported [9–15].
Meanwhile, doped TiO

2
and many other complex oxides

were also investigated for their photocatalytic properties [16–
19]. As mentioned in the literature, the superconductivity
of YBCO can be derived from its unique structure [20–22].

The distortion of Cu-O crystal plane caused by a certain
amount of oxygen deficiency plays a significant role in
superconductivity [23]. However, in some structure modified
cases, the normal crystal structure related to superconduc-
tivity may be changed, resulting in nonsuperconductivity of
YBCO materials (which may eventually transform to the
semiconductor) [24, 25]. It is known that the fixed band
gap in a semiconductor is the origin of its photocatalysis.
Besides, nanosize single crystal may also exhibit different
characteristics with traditionalmaterials because of its special
structure and size [4, 26–32]. In this case, YBCO may have
photocatalytic activities. Although the electrical properties
of YBCO have been investigated thoroughly and extensively,
few studies if any on photocatalytic activities of YBCO
materials have been reported up until now.

As a conventional synthesis technique, soft chemical
method has potential to be applied for large-scale preparation
on account of many factors: simple instruments, controllable
procedures, cheap original chemicals, and high dimension
uniformity [33–35]. In this work, YBCO nanoparticles (NPs)
were synthesized through soft chemical method. In addition
to conventional structure measurements, the photocatalytic
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Figure 1: (a) XRD patterns of YBCO NPs (NPs, green line) and corresponding ceramics (red line) sintering at 900∘C for 2 h. (b) TEM image
of YBCO NPs. (c) HRTEM image of YBCO NPs, inset: the SAED pattern.

properties of YBCO NPs and YBCO ceramics were sys-
tematically investigated. The superconductivity of the YBCO
ceramics was also studied for comparison.

2. Experimental Methods

YBa
2
Cu
3
O
7−𝑥

NPs were synthesized from precursors
Y(CH

3
COO)

3
⋅4H
2
O, Ba(CH

3
COO)

2
and Cu(CH

3
COO)

2
⋅

H
2
O with stoichiometric ratio of 1 : 2 : 3. The pH value of

the stable solution was adjusted to 1∼2 by adding certain
amount of aqueous ammonia (NH

3
⋅H
2
O) and nitric acid

(HNO
3
). After annealing in flowing oxygen environment at

900∘C for 2 hours, black YBCO NPs powders were obtained.
Furthermore, YBCO ceramics were prepared through
conventional process using YBCO NPs as precursors. The
pellet was sintered in flowing oxygen environment at 900∘C
for 2 hours. In the photocatalytic measurement, YBCO
NPs were dispersed in methylene blue (MB) with certain
concentration, and the ceramics were grinded into powders
as contrast.

Phase structures of the final samples were studied on
a Philips X-ray diffraction (XRD) system using CuΚ𝛼

(𝜆 = 1.5406 Å) as the radiation source. Transmission electron
microscopy (TEM) images and high-resolution transmis-
sion electron microscopy (HRTEM) images were obtained
through a JEOL 2011 transmission electron microscope at an
acceleration voltage of 200 kV. The superconducting transi-
tion temperatures were measured by Closed Cycle Refrigera-
tor System. The UV absorption spectra were measured using
a Shimadzu UV-2550 (Kyoto, Japan) spectrophotometer.
Photocatalytic activities of the NPs for degradation of MB
were evaluated by agitating the solution and irradiating the
samples using a 250W high-pressure Hg lamp. The initial
concentration of MB was 1.8 × 10−5mg/L with a catalyst
loading of 1.5 × 10−3mol/L in the experiment.

3. Results and Discussion

XRD patterns of as-synthesized YBCONPs and ceramics are
shown in Figure 1(a). It can be seen that the diffraction peaks
correspond to pure-phase YBCO, which has a perovskite
structure with an orthorhombic symmetry. In our case, pure-
phase and higher crystallized YBCO NPs could be formed
by using chelate compound as precursor, which can function
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Figure 2: Resistance-temperature curve of YBCO ceramics sample.

stably in a strong acid environment with pH value 1∼2.
Further structure characterizations of YBCONPs were made
using TEMas shown in Figures 1(b) and 1(c). One can see that
the YBCO NPs have an average diameter of about 100 nm.
Figure 1(c) shows the HRTEM image and SAED pattern of
the sample. As presented, the NPs are highly crystallized with
a lattice spacing of about 1.2 nm, corresponding to interlayer
spacing of the (010) planes in the YBCO crystal lattice.

To prove the superconductivity of YBCO ceramics syn-
thesized from YBCO NPs, the conducting properties of the
samples were determined. The resistance versus temperature
curve in Figure 2 clearly shows that the YBCO ceramics
exhibited behaviour of a typical high-Tc superconductor. It
has transition temperature width from onset temperature
89.9 K to zero-resistance temperature 64.9 K.

The photocatalytic activities of YBCO NPs and ceramics
powders were evaluated by the decomposition of methylene
blue (MB) under the irradiation of a medium-pressure Hg
lamp. A group of MB solution with no catalysts was also
treated as contrast. In the literature, MB is usually used
as standard dyes in photocatalytic activity testing for its
photostability. Figure 3 shows the photodegradation of MB
solution as a function of reaction time for different catalysts.
In the photocatalysis measurement, we took groups of pho-
todegraded solution several times and then used the spec-
trophotometer tomeasure theUV adsorption spectra.𝐶

0
and

𝐶

𝑡
represent the intensity of the maximum absorption peaks

of the UV adsorption spectra of solution initially and at time
𝑡. Take nature logarithm function of ratio 𝐶

0
/𝐶
𝑡
to obtain the

ordinate in Figure 3. It can be seen that MB solution without
catalyst is stable under irradiation. This phenomenon was
also found when the YBCO ceramic powders were used as
photocatalyst. However, in the presence of YBCO NPs, the
MB concentration dropped to almost zero after 7 hours of
irradiation. Such remarkable contrast could also be observed
in the insets ((a) and (b)) in Figure 3. The colour of MB
solution using YBCO ceramics powders as photocatalyst
shows no changes during the 7-hour irradiation. On the
other hand, almost all dyes in the MB solution which carried
YBCO NPs were degraded after 7 hours. Therefore it can
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Figure 3: Photodegradation of MB solution with different photo-
catalysts: no catalysts (black line), YBCO ceramics (red line), and
YBCONPs (green line). Inset (a)MB solution usingYBCOceramics
powders as photocatalyst after different hours of irradiation. Inset
(b) MB solution using YBCO NPs as photocatalyst after different
hours of irradiation.

be concluded that YBCO NPs and corresponding ceramics
behaved significantly different in photocatalysis.

Previous studies suggested that an appropriate band-gap
in semiconductor catalysts is the origin of its photocatalytic
activities. In photocatalysis, when the energy irradiation is
higher or equal to the band-gap of the semiconductor cata-
lyst, excited state valence-band holes and conduction-band
electrons would form [6–8]. Then the holes and electrons
could be got trapped inmetastable surface states to recombine
or reactwith electron acceptors and electron donors adsorbed
on the semiconductor surface or within the surrounding
electrical double layer of the charged particles. If a suitable
scavenger or surface defect state is available to trap the
electrons or holes, the recombination could be prevented.
Subsequently, the holes and electrons generated by exciting
photons could have redox reaction with dyes in the solutions.
It means that suitable band-gap energy is a key reason in
photocatalysis. Therefore, photocatalysis cannot take place
in conductors and/or superconductors. From the resistance
versus temperature curve (Figure 2), it is evident that YBCO
ceramics fabricated from NPs show superconductivity. So
YBCO ceramics could not lead to photodegradation of MB.

However, for the YBCO NPs, they show significant pho-
todegradation. As discussed above, surface defects were also
another important reason in photocatalysis for the excited
state valence-bandholes and conduction-band electronswere
trapped inmetastable surface states in the reaction. Generally
speaking, it is easy to attribute this abnormal photocatalysis to
very small particle size (and/or large number of defects). But
their TEM images in Figure 1(b) reveal the nanoparticle size is
about 100 nm, which is relatively large and the surface atoms
are not enough to dominate this novel property. So the main
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reason for this phenomenonmust come frommodified band-
gap energy in YBCO NPs.

As a famous high temperature superconductor, YBCO
also has different conductivities depending on its oxy-
gen content. Researches showed that YBa

2
Cu
3
O
7−𝑥

had a
semiconductor-like resistance characteristic when its oxygen
content is in the range 0.5 < 𝑥 < 0.7 [36, 37]. Besides,
for YBCO NPs in this work, it has single crystal phase as
shown in Figure 1(c). Under the action of many mechanisms,
YBCO single crystal can also perform novel properties [28–
31], such as the formation of oxygen vacancies clusters [32].
Moreover, as compared to our former researches on the high
temperature superconductor YBCO [5], the annealing period
for YBCONPs is relatively shorter in this work. So the oxygen
content of YBCONPs could be dominated by both the single
crystal and the shorter annealing period. As a result, these
might have led the YBCONPs to be nonsuperconductive and
have proper band-gap energy, which consequently make it
possible to exhibit the vigorous photocatalytic activities. As a
matter of fact, there are reports in the literature that, in some
structure modified cases, the superconductivity of YBCO
materials has vanished, which is likely to be consistent with
our samples [20, 23]. This could be an effective method to
investigate the potential properties and application in YBCO
based composites.More characterization (such as PL spectra)
and detailed study on the novel properties of YBCO NPs are
highly desired [38].

4. Conclusions

YBCO NPs with narrow size distribution were obtained
through a soft chemical route.The results showed that YBCO
nanoparticles could produce excellent photocatalytic effects,
while no degradation reactivities were observed for YBCO
ceramics with normal superconductivity. The semiconduc-
tive nature induced by structure modification may be
accounted for the photocatalytic effect of YBCO nanoparti-
cles.
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