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Abstract: In this paper, we study inequality constrained nonlinear programming problems

by virtue of an ` 1
2
-penalty function and a quadratic relaxation. Combining with an interior-

point method, we propose an interior-point ` 1
2
-penalty method. We introduce different kinds of

constraint qualifications to establish the first-order necessary conditions for the quadratically

relaxed problem. We apply the modified Newton method to a sequence of logarithmic barrier

problems, and design some reliable algorithms. Moreover, we establish the global convergence

results of the proposed method. We carry out numerical experiments on 266 inequality

constrained optimization problems. Our numerical results show that the proposed method is

competitive with some existing interior-point `1-penalty methods in term of iteration numbers

and better when comparing the values of the penalty parameter.

Keywords: Nonlinear programming, Lower-order penalty function, Quadratic relaxation,

Constraint qualification, Primal-dual interior-point method.

1 Introduction

Consider the inequality constrained nonlinear programming problem

min f(x)

s.t. ci(x) ≤ 0, ∀ i ∈ I,
(1)

where f and ci : Rn → R are assumed to be twice continuously differentiable and I =

{1, 2, . . . ,m}.
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To solve problem (1), many efficient methods were proposed, in particular, for example,

interior-point methods (28; 30; 36; 37; 41) and penalty methods (3; 14; 29). In the last decade,

researchers paid great attention to studying interior-point penalty methods such as interior-

point `2-penalty methods (6; 7; 20; 21) and interior-point `1-penalty methods (1; 10; 16), which

aimed at solving large-scale optimization problems by combining the regularization effects on

the constraints from exact penalty functions and the Newton-like qualities from interior-point

methods. The interior-point `1-penalty method is to apply an interior-point method to a linearly

relaxed optimization problem of the `1-penalty problem of problem (1). It was shown in (16)

that the linearly relaxed optimization problem of problem (1) always satisfies the Mangasarian-

Fromovitz constraint qualification (MFCQ, for short) at any of its feasible solutions. The global

and local convergence results of interior-point penalty methods were established in (6; 16).

However, it is a great challenge for the `1-penalty method in updating the values of the penalty

parameter in the numerical implementation, especially when the exact penalty parameter is

very large, see, e.g.,(4) and (14, Chapter 12). Different strategies for updating the penalty

parameter adaptively were proposed in (3; 4; 15; 27).

Nonconvex and non-Lipschitzian lower-order penalty functions have been studied in the

literature, see, e.g., (19; 22; 32). It was shown in (32) that the existence of lower-order exact

penalty functions requires weaker conditions than that of an `1-exact penalty function and that

the exact penalty parameter of lower-order exact penalty functions is also smaller than that

of an `1-exact penalty function. Lower-order exact penalty functions have also been used in

the establishment of the first-order necessary conditions for problem (1). More specifically,

under some second-order conditions and the existence of lower-order exact penalty functions,

the first-order necessary conditions of problem (1) were established in (39; 25). Furthermore,

examples were given in (39) to show that these conditions do not imply the weakest Guignard

constraints qualification (17) and vice versa. Recently, the ` 1
2
-regularization has received great

attention for studying the sparse modeling (particularly on compressed sensing), see (5; 8; 38).

Numerical results in (5) show that the stronger sparsity-promoting property of ` 1
2
-regularization

has been achieved over `1-regularization.

However, there are only a few numerical methods developed so far to solve the lower-order

penalty problem, such as smoothing approximation methods, see, e.g., (23; 26; 40). It is

known that the solutions of the smoothing approximate method may become unstable when

the smoothing parameter is getting small.

Properties of lower-order penalty functions mentioned above suggest that they may be useful

in designing efficient optimization methods where certain accuracy can be achieved with smaller
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values of the penalty parameter and in solving some optimization problems without requiring

usual constraint qualifications. In this study, we introduce an interior-point ` 1
2
-penalty method

for solving problem (1), in particular, when problem (1) is nonconvex. More specifically, we

first quadratically relax the following ` 1
2
-penalty problem:

min
x

φP, 1
2
(x, ρ) := f(x) + ρ

∑
i∈I

[ci(x)]
1
2
+, (2)

as follows

min
x,s

φS, 1
2
(x, s; ρ) := f(x) + ρ

∑
i∈I

si (3a)

s.t. ci(x) ≤ s2
i ∀ i ∈ I, and (3b)

si ≥ 0, ∀ i ∈ I, (3c)

where [a]+ = max{a, 0} for all a ∈ R, ρ > 0 is the penalty parameter and s = (si) ∈ Rm
+ are

artificial variables. Let (x̂, ŝ) ∈ Rn+m be a local solution of problem (3). Then we apply a

primal-dual interior-point method to solve problem (3), i.e., solving the following interior-point

penalty problem

min
x,s

φB, 1
2
(x, s; ρ, µ) := φS, 1

2
(x, s; ρ)− µ2

∑
i∈I

log
(
s2
i − ci(x)

)
− µ

∑
i∈I

logsi

s.t. s2
i − ci(x) > 0 and si > 0, ∀ i ∈ I,

(4)

where µ2 and µ are the barrier parameter for constraints (3b) and (3c) respectively, both

converging to zero from above. The further motivation for µ2 being used for the term
∑
i∈I

log
(
s2
i−

ci(x)
)

will be provided in Remark 3.1.

Optimization problem (3) can be viewed as a quadratically relaxed problem of problem (1).

Using characterizations in terms of the gradients and Hessians of constraints ci(x) with i ∈ I,

we introduce several kinds of constraint qualifications (CQs, for short) for the quadratically

relaxed problem (3), under which we establish the first-order necessary conditions of problem

(3). Especially, we present a new type of CQs (see Lemma 2.3(e) for its definition) which is

strictly weaker than the classical MFCQ.

To solve problem (4), we employ a modified Newton’s method (2) with an inexact line

search to first-order necessary conditions of problem (4). Due to the quadratic relaxation,

we add a condition on the Lagrange multipliers of original inequality constraints and that

of inequality constraints of the quadratically relaxed problem (3) in order to guarantee the

positive definiteness of the Hessian matrix for the interior-point penalty function in problem
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(4). We detail our strategies for updating the Lagrange multipliers. Moreover, we describe

three specific algorithms. The first algorithm is to solve the barrier problem (4) with a fixed

penalty parameter ρ and a fixed barrier parameter µ, the second one is to solve a sequence of

the quadratically relaxed problems (3) when ρ is fixed and µ goes to zero and the third one is

to solve the penalty problem (2) when the penalty parameter ρ goes to infinite. Finally, under

mild conditions, we establish the global convergence results of the proposed interior-point ` 1
2
-

penalty method. Specifically, we prove that the iteration sequence converges to some KKT (or

FJ) point of problem (1).

We carry out numerical experiments on 266 inequality constrained optimization problems

from CUTEr collection, COPS, MITT and Global test sets. We compare the performance of

our method with two existing interior-point `1-penalty methods introduced in (10) in term of

the number of iterations and the values of the penalty parameter.

This paper is organized as follows. In Section 2, we study the first-order necessary conditions

of the quadratically relaxed problem (3). In Section 3, we propose an interior-point ` 1
2
-penalty

method and present analysis on a modified Newton method and its global convergence. In

Section 4, we present our numerical results.

2 Notations and Necessary Conditions

2.1 Notations and Definitions

For a vector s ∈ Rn, we invariably assume that s is a column vector and use si to denote its i-th

component. We write S := diag(s) to denote a diagonal matrix whose i-th diagonal element

is si and s2 to denote a vector in Rn whose i-th element is s2
i . Given a matrix V ∈ Rn×n, the

transpose of V is denoted as VT , while V−1 denotes the inverse of matrix V if V is invertible.

Given two vectors u, v ∈ Rn, we say u ≥ (>)v if and only if ui ≥ (>)vi, for all i = 1, 2, . . . , n.

For two symmetric matrices U ,V ∈ Rn×n, we write U � (�)V to mean the matrix U − V is

positive definite (positive semi-definite). Let e ∈ Rn denote a vector whose all components

are 1 and E denote an identity matrix. Throughout this paper, we use ‖ · ‖ to indicate the

Euclidean norm. Given a vector valued function c : Rn → Rm, we write C(x) := diag(c(x)) to

denote the diagonal matrix whose i-th diagonal element is ci(x), furthermore, we write A(x)

to indicate the transpose of the Jacobian matrix of c(x), i.e., A(x) := [∇c1(x), . . . ,∇cm(x)].

Given a real value function f : Rn → R, we write ∇f(x) to denote its gradient vector. The
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Dini upper-directional derivative (39) and subderivative (31) of f at x in the direction u ∈ Rn

are defined, respectively, by

D+f(x)(u) := lim sup
t→0+

f(x+ tu)− f(x)

t
,

df(x)(u) := lim inf
t→0+, u′→u

f(x+ tu′)− f(x)

t
.

Throughout this paper, we define the index sets at x ∈ Rn as follows

I−(x) := {i ∈ I | ci(x) < 0};

I0(x) := {i ∈ I | ci(x) = 0};

I+(x) := {i ∈ I | ci(x) > 0}.

We define the feasible sets of problem (1) and the quadratically relaxed problem (3),

respectively, by

F := {x ∈ Rn | ci(x) ≤ 0, ∀ i ∈ I};

F̂ := {(x, s) ∈ Rn+m | ci(x) ≤ s2
i , si ≥ 0, ∀ i ∈ I}.

Definition 2.1 We say that x∗ ∈ Rn is a Fritz-John (FJ, for short) point of problem (1) if

there exist λ0 ≥ 0 and λ ∈ Rm
+ satisfying the following conditions

λ0∇f(x∗) + A(x∗)λ = 0,

C(x∗)λ = 0,

−c(x∗) ≥ 0.

Definition 2.2 We say that x∗ ∈ Rn is a Karush-Kuhn-Tucker (KKT, for short) point of

problem (1) if there exists λ ∈ Rm
+ satisfying the following conditions

∇f(x∗) + A(x∗)λ = 0, (5a)

C(x∗)λ = 0, (5b)

−c(x∗) ≥ 0. (5c)

Definition 2.3 A vector x∗ ∈ Rn is called a local solution of problem (1) if x∗ ∈ F and there

is a neighborhood N of x∗ such that f(x∗) ≤ f(x) for all x ∈ N ∩ F .
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2.2 First-Order Necessary Conditions

Throughout this subsection, we assume that ρ > 0 is fixed and that (x̂, ŝ) is a local solution of

the quadratically relaxed problem (3). In the next proposition we conclude that the ` 1
2
-penalty

problem (2) and its quadratically relaxed problem (3) are equivalent in the sense that they have

the same local solution. Its proof is easy and the details are omitted.

Proposition 2.1 Let ρ > 0 be fixed. Then x̂ ∈ Rn is a local solution of problem (2) if and

only if (x̂, ŝ) ∈ Rn+m is a local solution of problem (3) with ŝi = [ci(x̂)]
1
2
+ for all i ∈ I.

It is well-known that under some suitable regularity condition (also known as constraint

qualification), the first-order necessary conditions hold at (x̂, ŝ) for the quadratically relaxed

problem (3), i.e., there exist vectors y, u ∈ Rm such that

∇f(x̂) + A(x̂)y = 0, (6a)

ρe− 2Y ŝ− u = 0, (6b)

Y
(
c(x̂)− ŝ2

)
= 0, (6c)

Uŝ = 0, (6d)

ŝ2 − c(x̂) ≥ 0, (6e)

ŝ, y, u ≥ 0, (6f)

where the vectors y, u ∈ Rm
+ are called Lagrange multipliers, Y = diag(y) and U = diag(u)

are diagonal matrices. To investigate regularity conditions under which (6) can be fulfilled, we

introduce a few index sets defined for (x̂, ŝ) ∈ Rn+m as follows:

S0(x̂, ŝ) := {i ∈ I | ŝi = 0 and ci(x̂) ≤ 0};

S+(x̂, ŝ) := {i ∈ I | ŝi > 0 and ci(x̂) ≤ ŝ2
i };

S=(x̂, ŝ) := {i ∈ S+(x̂, ŝ) | ci(x̂) = ŝ2
i };

CS0(x̂, ŝ) := {i ∈ S0(x̂, ŝ) | ci(x̂) = 0}.

Since (x̂, ŝ) is assumed to be a local solution of the quadratically relaxed problem (3), we have

ŝi =
√

max{ci(x̂), 0} for all i ∈ I, and thus there is no i ∈ I such that ci(x̂) < ŝ2
i and ŝi > 0,

implying that S=(x̂, ŝ) = S+(x̂, ŝ) and I = S=(x̂, ŝ) ∪ S0(x̂, ŝ). By using the index sets above,
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we can reformulate (6) as

∇f(x̂) +
∑
i∈I

yi∇ci(x̂) = 0,

yi =
ρ

2ŝi
, ∀ i ∈ S=(x̂, ŝ), yi ≥ 0, ∀ i ∈ CS0(x̂, ŝ),

yi = 0, ∀ i ∈ S0(x̂, ŝ)\CS0(x̂, ŝ),

ui = 0, ∀ i ∈ S=(x̂, ŝ), ui = ρ, ∀ i ∈ S0(x̂, ŝ),

ŝ2 − c(x̂) ≥ 0, ŝ ≥ 0.

(7)

If x̂ is feasible to problem (1), we have ŝ = 0 and S=(x̂, ŝ) = ∅, and moreover, the first-order

necessary conditions (6) or (7) recover the first-order necessary conditions at x̂ for problem (1).

If ŝ ∈ Rm
++ := {x | xi > 0, ∀ i ∈ I}, the quadratically relaxed problem (3) only has

the inequalities ci(x) − s2
i ≤ 0 with i ∈ I being active at (x̂, ŝ), and the Jacobian matrix

(A(x̂)T ,−2diag(ŝ)) of c(x) − s2 at (x̂, ŝ) has full rank, implying that the linearly independent

constraint qualification (LICQ, for short) holds at (x̂, ŝ). In this case, the first-order necessary

conditions (6) hold automatically.

In the remainder of this subsection, we assume that ŝ ∈ Rm
+\Rm

++ and shall give some CQs

for the quadratically relaxed problem (3) to possess the first-order necessary conditions (6). To

begin with, we show in the following lemma that the LICQ (resp. the MFCQ) holds at (x̂, ŝ)

for the quadratically relaxed problem (3) if and only if the LICQ (resp. the MFCQ) holds at

x̂ for the inequality system

ci(x) ≤ 0, ∀ i ∈ CS0(x̂, ŝ). (8)

Lemma 2.1 Assume that ŝ ∈ Rm
+\Rm

++. Consider the following CQs.

(a) The LICQ holds at x̂ for the inequality system (8), i.e., the vectors ∇ci(x̂) with i ∈
CS0(x̂, ŝ) are linearly independent.

(b) The MFCQ holds at x̂ for the inequality system (8), i.e., there exists some d ∈ Rn such

that

∇ci(x̂)Td < 0, ∀ i ∈ CS0(x̂, ŝ),

or in other words,∑
i∈CS0(x̂,ŝ)

yi∇ci(x̂) = 0, yi ≥ 0, ∀ i ∈ CS0(x̂, ŝ) =⇒ yi = 0, ∀ i ∈ CS0(x̂, ŝ). (9)
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Then (a) holds if and only if the LICQ holds at (x̂, ŝ) for the quadratically relaxed problem (3),

while (b) holds if and only if the MFCQ holds at (x̂, ŝ) for the quadratically relaxed problem

(3).

Proof. By definition, the MFCQ holds at (x̂, ŝ) for problem (3) if,∑
i∈S=(x̂,ŝ)∪CS0(x̂,ŝ)

yi∇ci(x̂) = 0

−2ŝiyi = 0, ∀ i ∈ S=(x̂, ŝ),

ui = 0, ∀ i ∈ S0(x̂, ŝ),

yi ≥ 0, ∀ i ∈ S=(x̂, ŝ) ∪ CS0(x̂, ŝ),

ui ≥ 0, ∀ i ∈ S0(x̂, ŝ)


=⇒


yi = 0, ∀ i ∈ S=(x̂, ŝ) ∪ CS0(x̂, ŝ),

ui = 0, ∀ i ∈ S0(x̂, ŝ)

(10)

Observing that ŝi > 0 for all i ∈ S=(x̂, ŝ), the equivalence of (9) and (10) follows immediately.

The case for the LICQ can be proved in a similar way.

Remark 2.1 It is well-known in the field of the nonlinear programming that the MFCQ

amounts to the boundedness of Lagrange multipliers. Thus, in the case of ŝ ∈ Rm
+\Rm

++, the

quadratically relaxed problem (3) has bounded Lagrange multipliers (y, u) as defined by (6) if and

only if Lemma 2.1 (b) is fulfilled. If the MFCQ holds at a feasible point x0 ∈ F for problem (1),

then for all (x̂, ŝ) with x̂ near x0, the quadratically relaxed problem (3) has bounded Lagrange

multipliers at (x̂, ŝ) provided that it is a local solution of problem (3).

Besides having the CQs in Lemma 2.1 for the first-order necessary conditions (6), we can

use the techniques in (24; 25; 39) to derive some other CQs, some of which turn out to be

strictly weaker than the ones in Lemma 2.1. We conduct the analysis in two lemmas below by

first showing the exactness of an ` 1
2
-penalty function for the quadratically relaxed problem (3)

defined by

f(x) + ρ
∑
i∈I

si + π

(∑
i∈I

√
max{ci(x)− s2

i , 0}+
∑
i∈I

√
max{−si, 0}

)
, (11)

and then requiring that the linearized tangent cone

LF̂ (x̂, ŝ) :=

(w, β) ∈ Rn × Rm

∣∣∣∣∣∣∣∣
〈∇ci(x̂), w〉 − 2ŝiβi ≤ 0, ∀ i ∈ S=(x̂, ŝ)

〈∇ci(x̂), w〉 ≤ 0, ∀ i ∈ CS0(x̂, ŝ)

−βi ≤ 0, ∀ i ∈ S0(x̂, ŝ)

 (12)
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to the feasible set F̂ of problem (3) at (x̂, ŝ) coincides with the kernel of the subderivative (or

Dini upper directional derivative) of the penalty term

φ(x, s) :=
∑
i∈I

√
max{ci(x)− s2

i , 0}+
∑
i∈I

√
max{−si, 0}. (13)

First we show that the penalty function (11) is exact at (x̂, ŝ) in the sense that it admits a

local minimum at (x̂, ŝ) when the penalty parameter π is greater than 1.

Lemma 2.2 Assume that ŝ ∈ Rm
+\Rm

++. Then (x̂, ŝ) is a local minimizer of the function (11)

whenever π ≥ 1.

Proof. To begin with, we show that for any two real numbers a and b,√
max{a− b, 0} ≥

√
max{a, 0} −

√
max{b, 0}. (14)

In fact, if a− b ≤ 0, we have
√

max{a, 0} ≤
√

max{b, 0} and hence (14) follows. If a− b > 0

and b ≥ 0, (14) follows immediately from (18, Lemma 4.1). And if a − b > 0 and b < 0, we

have a− b > a and hence√
max{a− b, 0} ≥

√
max{a, 0} =

√
max{a, 0} −

√
max{b, 0}.

That is, (14) holds in all cases.

Since (x̂, ŝ) is a local solution of problem (3). It follows from Proposition 2.1, we have

ŝi = [ci(x̂)]
1
2
+ for all i ∈ I, and that x̂ is a local solution of problem (2), or in other words, the

following inequality holds for all x in some neighborhood V of x̂:

f(x) + ρ
∑
i∈I

[ci(x)]
1
2
+ ≥ f(x̂) + ρ

∑
i∈I

[ci(x̂)]
1
2
+ = f(x̂) + ρ

∑
i∈I

ŝi.

Then for all x ∈ V and all s ∈ Rm with si ≥ −1
4

for all i ∈ I, it follows that

f(x) + ρ
∑
i∈I

si +
∑
i∈I

√
max{ci(x)− s2

i , 0}+
∑
i∈I

√
max{−si, 0}

≥ f(x) + ρ
∑
i∈I

si +
∑
i∈I

√
max{ci(x), 0} −

∑
i∈I

√
max{s2

i , 0}+
∑
i∈I

√
max{−si, 0}

= f(x) + ρ
∑
i∈I

[ci(x)]
1
2
+ +

∑
i∈I

(
si − |si|+

√
max{−si, 0}

)
≥ f(x) + ρ

∑
i∈I

[ci(x)]
1
2
+

≥ f(x̂) + ρ
∑
i∈I

ŝi,
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where the first inequality follows from (14) and the second inequality follows from the fact that

α − |α| −
√

max{−α, 0} ≥ 0 whenever α ≥ −1
4
. This shows that (x̂, ŝ) is a local minimizer of

the function (11) with π = 1, and hence with any π ≥ 1. This completes the proof.

Next we give characterizations in terms of the gradients and the Hessians of the functions

ci with i ∈ I for two equalities

LF̂(x̂, ŝ) = {(w, β) ∈ Rn+m | D+φ(x̂, ŝ)(w, β) = 0} (15)

and

LF̂(x̂, ŝ) = {(w, β) ∈ Rn+m | dφ(x̂, ŝ)(w, β) = 0}, (16)

where LF̂(x̂, ŝ) and φ are given by (12) and (13), respectively.

Lemma 2.3 Assume that s̄ ∈ Rm
+\Rm

++. Let

Ω := {w ∈ Rn | 〈∇ci(x̂), w〉 ≤ 0, ∀ i ∈ CS0(x̂, ŝ)}.

Consider the following CQs:

(a) The equality (15) holds.

(b) For each w ∈ Ω and i ∈ S=(x̂, ŝ), it follows that

2ŝ2
i 〈w,∇2ci(x̂)w〉 ≤ 〈∇ci(x̂), w〉2,

and for each w ∈ Ω and i ∈ CS0(x̂, ŝ) with 〈∇ci(x̂), w〉 = 0, it follows that

〈w,∇2ci(x̂)w〉 ≤ 0.

(c) For each w ∈ Ω and i ∈ CS0(x̂, ŝ) with 〈∇ci(x̂), w〉 = 0, it follows that

〈w,∇2ci(x̂)w〉 ≤ 0.

(d) For each w ∈ Ω and i ∈ CS0(x̂, ŝ) with 〈∇ci(x̂), w〉 = 0, there exists some z ∈ Rn such

that

〈∇ci(x̂), z〉+ 〈w,∇2ci(x̂)w〉 ≤ 0.

(e) For each w ∈ Ω, it follows that

max

 ∑
i∈CS0(x̂,ŝ)

λi〈w,∇2ci(x̂)w〉

∣∣∣∣∣∣
∑

i∈CS0(x̂,ŝ)

λi∇ci(x̂) = 0, λi ≥ 0, ∀ i ∈ CS0(x̂, ŝ)

 = 0.
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(f) The equality (16) holds.

Then we have

(a)⇐⇒ (b) =⇒ (c) =⇒ (d)⇐⇒ (e)⇐⇒ (f).

Proof. The implications (b) =⇒ (c) =⇒ (d) hold trivially. By a nonhomogeneous Farkas’

Lemma (34, Lemma 4.2), it is straightforward to verify that (d)⇐⇒ (e). To show (e)⇐⇒ (f),

we introduce another square root penalty term for the quadratically relaxed problem (3) as

follows:

φ̃(x, s) :=

√∑
i∈I

max{ci(x)− s2
i , 0}+

∑
i∈I

max{−si, 0}.

According to (18, Lemma 4.1), we have φ̃ ≤ φ ≤ 2mφ̃ and hence

{(w, β) | dφ̃(x̂, ŝ)(w, β) = 0} = {(w, β) | dφ(x̂, ŝ)(w, β) = 0}. (17)

Applying (24, Proposition 2.1), we have the equality

LF̂(x̂, ŝ) = {(w, β) | dφ̃(x̂, ŝ)(w, β) = 0} (18)

if and only if for all (w, β) ∈ LF̂(x̂, ŝ),

max

 ∑
i∈CS0(x̂,ŝ)

λi[〈w,∇2ci(x̂)w〉 − 2β2
i ]

∣∣∣∣∣∣
∑

i∈CS0(x̂,ŝ)

λi∇ci(x̂) = 0, λi ≥ 0, ∀ i ∈ CS0(x̂, ŝ)

 = 0.

The latter condition holds if and only if for all w ∈ Ω and β ∈ Rm with βi ≥ 0 for all

i ∈ CS0(x̂, ŝ),

max

 ∑
i∈CS0(x̂,ŝ)

λi[〈w,∇2ci(x̂)w〉 − 2β2
i ]

∣∣∣∣∣∣
∑

i∈CS0(x̂,ŝ)

λi∇ci(x̂) = 0, λi ≥ 0, ∀i ∈ CS0(x̂, ŝ)

 = 0,

because (w, β) ∈ LF̂(x̂, ŝ) amounts to that w ∈ Ω, βi ≥ 〈∇ci(x̂)
2s̄i

, w〉 for all i ∈ S=(x̂, ŝ) and

βi ≥ 0 for all i ∈ S=(x̂, ŝ) ∪ CS0(x̂, ŝ). Since λi[〈w,∇2ci(x̂)w〉 − 2β2
i ] ≤ λi〈w,∇2ci(x̂)w〉

whenever λi ≥ 0 and βi ≥ 0, the equality (18) holds if and only if (e) holds. In view of (17),

we have (e)⇐⇒ (f).

By (39, Lemma 2.3) or (25, Remark 2.2), (a) holds if and only if, for each i ∈ S=(x̂, ŝ) and

(w, β) ∈ LF̂(x̂, ŝ) with 〈∇ci(x̂), w〉 − 2ŝiβi = 0, it follows that

〈w,∇2ci(x̂)w〉 − 2β2
i ≤ 0 or 2ŝ2

i 〈w,∇2ci(x̂)w〉 ≤ 〈∇ci(x̂), w〉2,

11



and for each i ∈ CS0(x̂, ŝ) and (w, β) ∈ LF̂(x̂, ŝ) with 〈∇ci(x̂), w〉 = 0 (or in other words, for

each i ∈ CS0(x̂, ŝ) and w ∈ Ω with 〈∇ci(x̂), w〉 = 0), it follows that

〈w,∇2ci(x̂)w〉 ≤ 0.

That is, we have (a)⇐⇒ (b). This completes the proof.

Remark 2.2 It is clear to see that the CQ given by Lemma 2.3 (e) is implied by the CQ given

by Lemma 2.1 (b). But the converse may not hold as can be seen from (24, Example 2.3) in

the case of ŝ = 0.

In view of Lemma 2.2 and (24, Theorem 2.1), we now confirm that the first-order necessary

conditions (6) hold at (x̂, ŝ) for the quadratically relaxed problem (3) provided that one of

the CQs in Lemmas 2.1 and 2.3 is fulfilled. To be precise, we now summarize what we have

discussed so far on the first-order necessary conditions for the quadratically relaxed problem

(3) in the following theorem.

Theorem 2.1 Let ρ > 0 be fixed and let (x̂, ŝ) be a local solution of the quadratically relaxed

problem (3). Then the first-order necessary conditions (6) hold at (x̂, ŝ) if either ŝ ∈ Rm
++ or

ŝ ∈ Rm
+\Rm

++ with one of the CQs in Lemmas 2.1 and 2.3 being fulfilled.

3 Interior-Point `1
2
-Penalty Method

In this section, we introduce an interior-point ` 1
2
-penalty method for problem (1). Then we

establish the global convergence results for the proposed method under mild conditions.

3.1 A Primal-Dual Interior-Point Method

Throughout this subsection, we let the penalty parameter ρ > 0 be fixed and apply the primal-

dual interior-point method to solve the quadratically relaxed problem (3). Let (x, s) be a local

solution of problem (4). Then the first-order necessary conditions of problem (4) can be written

as

∇f(x) + A(x)y = 0, (19a)

ρe− 2Y s− u = 0, (19b)

Y
(
s2 − c(x)

)
− µ2e = 0, (19c)

Us− µe = 0, (19d)

12



where vectors y, u ∈ Rm
++ are the Lagrange multipliers. Y = diag(y) and U = diag(u) are the

diagonal matrices.

Remark 3.1 We note that it is reasonable to choose µ2 as the barrier parameter for the term∑
i∈I

log
(
s2
i − ci(x)

)
in problem (4). Indeed, suppose that the Lagrange multiplier y is bounded.

It follows from (19b) that the Lagrange multiplier u → ρe as s → 0+. By (19d), we have

µ = O(‖s‖). Thus µ2 = O(‖s2‖), which can be guaranteed by setting µ2 for the term
∑
i∈I

log
(
s2
i−

ci(x)
)

in problem (4).

Applying a modified Newton’s method (2) to the nonlinear system (19) in variables x, s, y

and u, we obtain

Ω(x, y, s, u,H)


4x
4s
4y
4u

 = −


∇f(x) + A(x)y

ρe− 2Y s− u
Y
(
s2 − c(x)

)
− µ2e

Us− µe

 (20)

where

Ω(x, y, s, u,H) :=


H(x, y) 0 A(x) 0

0 −2Y −2S −E
−Y A(x)T 2Y S S2 − C(x) 0

0 U 0 S

 ,

and

H(x, y) := ∇2f(x) +
∑
i∈I

yi∇2ci(x). (21)

Observing that Y s = Sy and Us = Su, we can reformulate (20) as follows

H(x, y)4x+ A(x)(y +4y) = −∇f(x), (22a)

2S(y +4y) + E(u+4u) + 2Y4s = ρe, (22b)

(S2 − C(x))(y +4y) + 2Y S4s− Y A(x)T4x = µ2e, (22c)

U4s+ S(u+4u) = µe. (22d)

Solving ŷ := y +4y and û := u+4u from (22c) and (22d), we get

ŷ =
(
S2 − C(x)

)−1(
µ2e− 2Y S4s+ Y A(x)T4x

)
, (23a)

û = S−1
(
µe− U4s

)
. (23b)

13



Substituting (23a) and (23b) into (22a) and (22b), we obtain

M

(
4x
4s

)
=

(
−∇f(x)− µ2A(x)

(
S2 − C(x)

)−1
e

2µ2S
(
S2 − C(x)

)−1
e+ µS−1e− ρe

)
(24)

where

M :=

(
Ĥ(x, s, y) −2A(x)NS
−2NSA(x)T 4SNS + S−1U − 2Y

)
(25)

with N :=
(
S2 − C(x)

)−1
Y and Ĥ(x, s, y) := H(x, y) + A(x)NA(x)T .

In order to establish the global convergence of the interior-point method, we need to ensure

the matrix M is sufficiently positive definite (13; 12). Assume that

u− 2Y s ≥ 0. (26)

SinceN � 0 and S � 0, it follows from the assumption above, we have 4SNS+S−1U−2Y �
0. To guarantee M� 0, by the Schur complement, we need to ensure

Ĥ(x, s, y)−
(

2NSA(x)T
)(

4SNS + S−1U − 2Y
)−1(

2A(x)NS
)
� 0.

Substituting Ĥ(x, s, y) into the last inequality, we achieve

H(x, y) + A(x)
{
N − 2NS

(
4SNS + S−1U − 2Y

)−1

2SN
}
A(x)T � 0. (27)

However, inequality (27) may not always hold in general. We can modify H(x, y) by adding

a term of the form δE where δ is chosen to be large enough to ensure that it holds, that is, we

can replace H(x, y) by H(x, y) + δE with a suitable δ so that (27) holds (2; 33; 35).

Remark 3.2 In order to use the Schur complement to matrixM, we force (26) to hold in every

iteration (see (31) and (32)). Here, we note that the assumption (26) is reasonable. Indeed, as

s→ 0+, assume that multiplier y is bounded above, it follows from (19b) that u→ ρe and (26)

holds automatically.

At the k-th iteration (xk, sk), we get (4xk,4sk) by solving (24). Then we let

xk+1 = xk + αkP4xk, (28a)

sk+1 = sk + αkP4sk, (28b)

14



where αkP := max{ %̄j | j = 0, 1, 2, . . .} with %̄ ∈ (0, 1) is a steplength, which satisfies the

following conditions:

(sk+1)2 − c(xk+1) > 0, (29a)

sk+1 > 0, (29b)

φB, 1
2
(xk+1, sk+1; ρ, µ)− φB, 1

2
(xk, sk; ρ, µ) ≤ τ1α

k
P

(
∇xφB, 1

2
(xk, sk; ρ, µ)T4xk+

∇sφB, 1
2
(xk, sk; ρ, µ)T4sk

)
, (29c)

for some τ1 ∈ (0, 1
2
), where the last inequality is a standard Armijo line search condition in (37)

on the decrease of the barrier objective function in problem (4).

Remark 3.3 In practice, τ1 is chosen to be quite small. In this paper, following (10), τ1 = 10−8

is set, see Table 1 in Section 4.

3.2 Updating the Lagrange Multipliers

Two steps are used to update the Lagrange multipliers (yk, uk) at the k-th iteration. We first

use the strategy introduced in (1; 6; 9) to update them as follows,

ỹk+1
i :=


min{γminyki ,

µ2

(ski )2−ci(xk)
}, if ŷk+1

i < min{γminyki ,
µ2

(ski )2−ci(xk)
},

µ2γmax

(ski )2−ci(xk)
, if ŷk+1

i > µ2γmax

(ski )2−ci(xk)
,

ŷk+1
i , otherwise,

(30a)

ũk+1
i :=


min{γminuki ,

µ
ski
}, if ûk+1

i < min{γminuki ,
µ
ski
},

µγmax

ski
, if ûk+1

i > µγmax

ski
,

ûk+1
i , otherwise,

(30b)

where γmin and γmax satisfy 0 < γmin < 1 < γmax.

The second step is to guarantee the new Lagrange multipliers (yk+1, uk+1) satisfying the

assumption (26). Specifically, if (ỹk+1, ũk+1) satisfies (26), we let (yk+1, uk+1) := (ỹk+1, ũk+1) as

the new Lagrange multipliers, otherwise, we set

yk+1 := γ1ỹ
k+1, uk+1 := γ2ũ

k+1, (31)

where 0 < γ1 ≤ 1 and γ2 ≥ 1 satisfy

γ2

γ1

≥ max
i∈I

{2sk+1
i ỹk+1

i

ũk+1
i

}
. (32)
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Remark 3.4 Here note that, to guarantee the dual multipliers (yk, uk) being bounded, the

sequences {(ŷk, ûk)} is truncated in (30) through choosing a proper γmax. In practice, γmax

should be very large, for example, γmax = 1020 was used in (9). In this paper, γmax = 1023 is

chosen, see Table 1 in Section 4.

Rather than solving the barrier subproblem (4) accurately, our iteration continues until the

condition (19) is satisfied within a tolerance εµ for the current barrier parameter µ, that is,

Res(x, s, ŷ, û; ρ, µ) :=

∥∥∥∥∥∥∥∥∥∥
∇f(x) + A(x)ŷ

ρe− 2Ŷ s− û
Ŷ (s2 − c(x))− µ2e

Ûs− µe

∥∥∥∥∥∥∥∥∥∥
< εµ, (33a)

(ŷ, û) � −εµ(e, e), (33b)

where εµ is a µ-related tolerance parameter, which goes to zero from above as µ→ 0.

3.3 Specific Algorithms

In this subsection, we describe three specific algorithms to solve problem (1) by virtue of the ` 1
2
-

penalty function. More implementation details will be stated in Section 4. The first algorithm

gives a description of the approximate solution of problem (4) with a fixed penalty parameter

ρ > 0 and a barrier parameter µ > 0.

Algorithm 1: Inner algorithm for solving problem (4).

Step 0 Initialization. Set τ1, γmin and γ1 ∈ (0, 1), γmax and γ2 > 1. Let k := 0;

Step 1 If (33) holds at (xk, sk, ŷk, ûk), stop;

Step 2 If (27) dose not hold then replace H(xk, yk) by H(xk, yk)+δE with a proper

δ > 0 such that it is positive definite;

Step 3 Compute (4xk,4sk) from (24) and (ŷk+1, ûk+1) from (23); we compute

the primal step length αkP such that (29) is satisfied and compute (xk+1,

sk+1) from (28); based on (30)-(31) we update the dual multipliers to obtain

(yk+1, uk+1);

Step 4 Let k := k + 1, go to Step 1.

16



In order to solve the quadratically relaxed problem (3), we need to solve a series of barrier

subproblems (4) for decreasing the values of the barrier parameter µ with a fixed penalty

parameter ρ > 0.

Algorithm 2: Inner algorithm for solving problem (3).

Step 0 Initialization. Set µ0 > 0, εµ0 > 0 and γ ∈ (0, 1). Let j := 0;

Step 1 If Res(xj , sj , ŷj , ûj ; ρ, 0) ≤ ε̄ and (ŷj , ûj) � 0, stop;

Step 2 Starting from (xj , sj , ŷj , ûj), we apply Algorithm 1 to solve problem (4) with

the barrier parameter µj and the stopping tolerance εµj . Let the solution be

(xj+1, sj+1, ŷj+1, ûj+1);

Step 3 Set µj+1 := γµj and εµj+1 := γεµj , let j := j + 1 and go to Step 1.

If ‖sj‖ is sufficiently small at (xj, sj), we declare that point xj as a KKT or FJ point

of problem (1). Otherwise, we increase the penalty parameter ρ and solve the quadratically

relaxed problem (3) again. A formal description of the algorithm to solve problem (1) is given

as follows.

Algorithm 3: Outer algorithm for solving problem (1).

Step 0 Initialization. Set x0 ∈ Rn, ρ0 > 0, y0 = ŷ0 > 0, u0 = û0 > 0, ν > 1, ī > 1,

ε̄ ≥ 0 and s0
l ≥

√
max{cl(x0), 0}+ 1

2 for all l ∈ I. Let i := 0;

Step 1 If ‖si‖ ≤ ε̄, stop;

Step 2 Starting from (xi, si, ŷi, ûi), we apply Algorithm 2 to solve problem (3) with

the penalty parameter ρi, let the solution be (xi+1, si+1, ŷi+1, ûi+1);

Step 3 Set ρi+1 := νρi and i := i+ 1, go to Step 1.

Remark 3.5 Generally, we set ε̄ = 0 to establish the convergence analysis for the sequence

{xi} to some stationary point of problem (1). In numerical experiments, ε̄ should be set a

sufficiently small constant. We let ε̄ = 10−6 in our numerical experiments, please see Table 1.
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3.4 Convergence Analysis

In this subsection, we establish the global convergence results for the interior-point ` 1
2
-penalty

method. The following assumptions are needed.

Assumption 1: The feasible set F is nonempty.

Assumption 2: The functions f(x) and ci(x), for all i ∈ I are twice continuously differentiable

on Rn.

Assumption 3: The primal iterate sequence {xk} generated by Algorithm 1 lies in a bounded

set.

Assumption 4: The Hessian matrix sequence {Hk} := {H(xk, yk)} lies in a bounded set.

Remark 3.6 Assumptions 3 and 4 are standard assumptions in establishing the global

convergence of the interior-point method, see (6, Assumptions 3 and 4).

We define the strictly feasible set of problem (3) as follows

F̂+ := {(x, s) ∈ Rn+m | ci(x) < s2
i , si > 0, ∀ i ∈ I}.

Lemma 3.1 The set F̂+ is nonempty.

Proof. Let x̃ ∈ Rn and s̃i >
2
√

max{ci(x̃), 0}, for all i ∈ I. Doing so ensures that s̃2
i −ci(x̃) > 0

and s̃i > 0 for all i ∈ I. Therefore, the point (x̃, s̃) lies in the interior of the feasible region of

problem (3). This proves that the strictly feasible set F̂+ is nonempty.

The next lemma shows that the sequence {(4xk,4sk)} generated by Algorithm 1 is a

descent direction of the merit function φB, 1
2
(xk, sk; ρ, µ) provided that Mk � 0 or has been

modified to be so.

Lemma 3.2 Let the penalty parameter ρ > 0 and the barrier parameter µ > 0 be fixed. Suppose

that Assumptions 2-4 hold and, at the k-th iteration of Algorithm 1, the linear system (22) has

a solution (4xk,4sk, ŷk+1, ûk+1). Then we have

φ′
B, 1

2
(xk, sk; ρ, µ;4xk,4sk) ≤ −(4xk,4sk)TMk(4xk,4sk), (34)

where φ′
B, 1

2

(xk, sk; ρ, µ;4xk,4sk) denotes the directional derivative of the function

φB, 1
2
(x, s; ρ, µ) at point (xk, sk) in the direction (4xk,4sk).
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Proof. Since the merit function φB, 1
2
(x, s; ρ, µ) is continuously differentiable, it follows that

∇xφB, 1
2
(xk, sk; ρ, µ) = ∇f(xk) + µ2A(xk)

(
(Sk)2 − C(xk)

)−1
e, (35a)

∇sφB, 1
2
(xk, sk; ρ, µ) = ρe− 2µ2Sk

(
(Sk)2 − C(xk)

)−1
e− µ(Sk)−1e, (35b)

φB, 1
2

′(xk, sk; ρ, µ;4xk,4sk) = ∇xφB, 1
2
(xk, sk; ρ, µ)T4xk +∇sφB, 1

2
(xk, sk; ρ, µ)T4sk. (35c)

Substituting (35a) and (35b) into (35c) and combining (20) and (24), we obtain the

inequality (34).

In spite of the descent property of the sequence {(4xk,4sk)}, we cannot conclude its

tendency to zero. A possible case is that instead of the search direction, the line search

steplength may tend to zero. The following two lemmas prove that the line search steplength

is sufficiently positive.

Lemma 3.3 Let the penalty parameter ρ > 0 and the barrier parameter µ > 0 be fixed. Suppose

that Assumptions 2-4 hold and Algorithm 1 does not terminate at Step 1 in the (k + 1)-th

iteration. Then we have (4xk,4sk) 6= 0.

Proof. Assume to the contrary that (4xk,4sk) = 0. From (23a) and (23b), we have that

ŷk+1 = µ2
(
(Sk)2 − C(xk)

)−1
e,

ûk+1 = µ(Sk)−1e.
(36)

By (29a) and (29b), we see that (ŷk+1, ûk+1) > 0. It follows from inequality (27) we have the

matrix Mk is positive definite. Combining (24), we have

−∇f(xk)− µ2A(xk)
(
(Sk)2 − C(xk)

)−1
e = 0,

2µ2Sk
(
(Sk)2 − C(xk)

)−1
e+ µ(Sk)−1e− ρe = 0.

(37)

By (36) and (37), we conclude that the point (xk+1, sk+1, ŷk+1, ûk+1) satisfies the termination

condition (33). Then the Algorithm 1 will terminate at the (k+1)-th iteration, which contradicts

the assumption.

Lemma 3.4 Let the penalty parameter ρ > 0 and the barrier parameter µ > 0 be fixed. Suppose

that Assumptions 2-4 hold and Algorithm 1 does not terminate at Step 1 in the (k + 1)-th

iteration. Then there exists a constant ᾱkP ∈ (0, 1] such that line search condition (29) holds

for all αkP ∈ (0, ᾱkP ].
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Proof. Let the function R(x, s) : Rn × Rm
+ → Rm be defined as R(x, s) = s2 − c(x). Then we

have the function R(x, s) is continuous and strictly positive at point (xk, sk). Therefore, there

exists a constant α̃kP > 0 such that condition (29a) holds for all αkP ∈ (0, α̃kP ]. By sk > 0, there

exists a constant α̂kP > 0 such that condition (29b) holds for all αkP ∈ (0, α̂kP ]. By Lemma 3.3,

we have (4xk,4sk) 6= 0, and it follows from (34) that φB, 1
2

′(xk, sk; ρ, µ;4xk,4sk) < 0. Hence,

we conclude that there exists a ᾰkP > 0 such that condition (29c) holds for all αkP ∈ (0, ᾰkP ].

Letting ᾱkP = min{α̃kP , α̂kP , ᾰkP}, we have proved this lemma.

Lemma 3.5 Let the penalty parameter ρ > 0 and the barrier parameter µ > 0 be fixed. Suppose

that Assumptions 2-4 hold. Then the sequences {(sk)2−c(xk)} and {sk} generated by Algorithm

1 are bounded from above and componentwise bounded away from zero, so is the sequence

{(yk, uk)} generated by our update strategy (30)-(31).

Proof. Since the sequence {(xk, sk)} is generated by a descent line search method, it follows

that φB, 1
2
(xk, sk; ρ, µ) ≤ φB, 1

2
(x0, s0; ρ, µ) for all k ≥ 1. Specifically, we have

f(xk) + ρ
∑
i∈I

ski − µ2
∑
i∈I

log
(
(ski )

2 − ci(xk)
)
− µ

∑
i∈I

logski ≤ φB, 1
2
(x0, s0; ρ, µ), (38)

for all k ≥ 1. Assume to the contrary that the sequence {sk} is unbounded. Then we have

(taking a subsequence of the sequence {sk} if necessary) lim
k→∞

∑
i∈I

ski = +∞, as ski ≥ 0, for all

i ∈ I and k ≥ 1. Since the sequence {xk} lies in a bounded set, there exists a vector x∗ ∈ Rn

(taking a subsequence if necessary) such that lim
k→∞

xk = x∗. By the continuity of functions f

and ci, i ∈ I, we have lim
k→∞

f(xk) = f(x∗) and lim
k→∞

ci(x
k) = ci(x

∗), i ∈ I. Dividing on both

sides of inequality (38) by
∑
i∈I

ski and taking the limit as k → ∞, we have 1 ≤ 0 as the facts

lim
k→∞

µ2
∑

i∈I log
(

(ski )2−ci(xk)
)

∑
i∈I

ski
= 0, lim

k→∞

µ
∑

i∈I logski∑
i∈I

ski
= 0 and the right hand side of inequality (38)

is bounded. Therefore, we have proved that the sequence {sk} is bounded above, so is the

sequence {(sk)2− c(xk)}. There exists a vector s∗ ∈ Rm (taking a subsequence of the sequence

{sk} if necessary) such that lim
k→∞

sk = s∗. Similarly, we can prove that lim
k→∞

(sk)2 − c(xk) =

(s∗)2 − c(x∗) > 0 and s∗ > 0. The last part can be proved by virtue of the rules (30)-(31) for

updating the dual multipliers. Here, the details are omitted.

Lemma 3.6 Let the penalty parameter ρ > 0 and barrier parameter µ > 0 be fixed. Assume

that Assumptions 2-4 hold. Then the sequence {(ŷk, ûk)} generated by Algorithm 1 is bounded.

Proof. Assume to the contrary that the sequence {(ŷk, ûk)} is unbounded. Then we have

(taking a subsequence if necessary) that ‖(ŷk, ûk)‖ → ∞ as k → ∞. By Assumptions 3 and
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4, there exist a vector x∗ and a matrix H∗ such that lim
k→∞

xk = x∗ and lim
k→∞

Hk = H∗. By

Assumption 2, we have that

lim
k→∞
∇f(xk) = ∇f(x∗), lim

k→∞
c(xk) = c(x∗), lim

k→∞
A(xk) = A(x∗).

It follows from inequality (27) there exists a positive definite matrix M∗ such that lim
k→∞
Mk =

M∗. By Lemma 3.5, there exist vectors s∗ > 0, (y∗, u∗) > 0 and a constant M > 0 such that

lim
k→∞

sk = s∗, lim
k→∞

(yk, uk) = (y∗, u∗) and

(s∗)2 − c(x∗) > 0, ‖s∗‖ ≤M, ‖(s∗)2 − c(x∗)‖ ≤M, ‖(y∗, u∗)‖ ≤M.

It follows from equation (23) that we have

ŷk =
(
(Sk)2 − C(xk)

)−1(
µ2e− 2Y kSk4sk + Y kA(xk)T4xk

)
ûk = (Sk)−1

(
µe− Uk4sk

)
.

Taking limit as k → ∞ on both sides of the above two equations, we conclude that

lim
k→∞
‖(4xk,4sk)‖ =∞. By equation (24), we have

Mk

(
4xk

4xk

)
=

(
−∇f(xk)− µ2A(xk)

(
(Sk)2 − C(xk)

)−1
e

2µ2Sk
(
(Sk)2 − C(xk)

)−1
e+ µ(Sk)−1e− ρe

)

Taking limit as k → ∞ on both sides of the above equation, we conclude that lim
k→∞
‖Mk‖ =

‖M∗‖ = 0, which contradicts the fact that the matrixM∗ is positive definite. We have proved

this lemma.

Similar to the proof of (6, Lemma 4.11), we can prove the next lemma. Here the details are

omitted.

Lemma 3.7 Let the penalty parameter ρ > 0 and barrier parameter µ > 0 be fixed. Suppose

that Assumptions 2-4 hold. Then the sequence {(4xk,4sk)} generated by Algorithm 1 is

bounded from above and ‖(4xk,4sk)‖ → 0 as k →∞.

Next we prove that the sequence {(xk, sk)} generated by Algorithm 1 converges to an

approximate KKT point of problem (4).

Theorem 3.1 Let the penalty parameter ρ > 0 and the barrier parameter µ > 0 be fixed.

Suppose that Assumptions 2-4. Then the sequence {(xk, sk)} generated by Algorithm 1 converges

to a KKT point of problem (4).
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Proof. By Assumption 3, Lemmas 3.5 and 3.6, we have the sequence {(xk, sk, ŷk, ûk)} lies

in a bounded set. Then there exists a vector (x∗, s∗, y∗, u∗) such that lim
k→∞

(xk, sk, ŷk, ûk) =

(x∗, s∗, y∗, u∗) (taking a subsequence if necessary). By Assumption 4, there exists a matrix H∗

such that lim
k→∞

Hk = H∗. By Assumption 2, we have that

lim
k→∞
∇f(xk) = ∇f(x∗), lim

k→∞
c(xk) = c(x∗), lim

k→∞
A(xk) = A(x∗).

By Lemma 3.5, there exist a vector (y∗∗, u∗∗) > 0 and a constant M > 0 such that lim
k→∞

(yk, uk) =

(y∗∗, u∗∗) and

(s∗)2 − c(x∗) > 0, ‖s∗‖ ≤M, ‖(s∗)2 − c(x∗)‖ ≤M, ‖(y∗∗, u∗∗)‖ ≤M.

By Lemma 3.7, we have ‖(4xk,4sk)‖ → 0 as k →∞. At the k-th iteration, by (22), we have

∇f(xk) +H(xk, yk; ρ)4xk + A(xk)(yk +4yk) = 0,

2Sk(yk +4yk) + E(uk +4uk) + 2Y k4sk = ρe,

((Sk)2 − C(xk))(yk +4yk) + 2Y kSk4sk − Y kA(xk)T4xk = µ2e,

Uk4sk + Sk(uk +4uk) = µe.

Taking limit as k →∞ on both sides of the above equations, we have

∇f(x∗) + A(x∗)y∗ = 0,

2S∗y∗ + u∗ = ρe,

((S∗)2 − C(x∗))y∗ = µ2e,

S∗u∗ = µe.

Therefore, we have proved that the sequence {(xk, sk)} converges to a KKT point of problem

(4).

We establish the convergence results of the sequence {(xj, sj)} generated by Algorithm 2 in

the next theorem.

Theorem 3.2 Let the penalty parameter ρ > 0 be fixed. Suppose that Assumptions 2-4 hold

and that the sequence {(xj, sj, ŷj, ûj)} is generated by Algorithm 2. Then we conclude that

(i) If the sequence {(ŷj, ûj)} is unbounded, then the sequence {(xj, sj)} converges to a FJ

point of problem (3);

(ii) If the sequence {(ŷj, ûj)} is bounded, then the sequence {(xj, sj)} converges to a KKT

point of problem (3).
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Proof. We first suppose that the sequence {(ŷj, ûj)} is unbounded. By Assumptions 2 and 3,

we have (taking a subsequence if necessary) that there exists a vector x∗ such that lim
j→∞

xj = x∗,

lim
j→∞

f(xj) = f(x∗), lim
j→∞

c(xj) = c(x∗), lim
j→∞
∇f(xj) = ∇f(x∗), lim

j→∞
A(xj) = A(x∗). By

Lemma 3.7, there exist a vector s∗ ≥ 0 and a constant M > 0 such that (sj)2 − c(xj) →
(s∗)2 − c(x∗) ≥ 0 and sj → s∗ ≥ 0 as j → ∞; moreover, ‖(s∗)2 − c(x∗)‖ ≤ M and ‖s∗‖ ≤ M .

Let $j := max{‖ŷj‖, ‖ûj‖, 1}, ȳj := ($j)−1ŷj and ūj := ($j)−1ûj. We have the sequence

{(ȳj, ūj)} is bounded. Then we have (taking a subsequence if necessary) there exists a vector

(ȳ, ū) such that (ȳj, ūj)→ (ȳ, ū) as j →∞; furthermore, ‖(ȳ, ū)‖ = 1.

At the j-th iteration, dividing on both sides of inequalities (33a) and (33b) by $j and taking

limit as j →∞, we reach that

A(x∗)ȳ = 0,

2S∗ȳ + ū = 0,

((S∗)2 − C(x∗))ȳ = 0,

S∗ū = 0,

and (ȳ, ū) ≥ 0. Consequently, we conclude that the limit point (x∗, s∗) is a FJ point of problem

(3).

We then consider the case when the sequence {(ŷj, ûj)} is bounded. Since the sequences

{xj} and {sj} are all bounded, there exists a vector (x∗, s∗, y∗, u∗) such that (xj, sj, ŷj, ûj) →
(x∗, s∗, y∗, u∗) as j →∞ (taking a subsequence if necessary). Algorithm 2 implies that εµj → 0

as j →∞. By (33a), we conclude that lim
j→∞

Res(xj, sj, ŷj, ûj; ρ, µj) = Res(x∗, s∗, y∗, u∗; ρ, 0) = 0.

Specifically, we have

∇f(x∗) + A(x∗)y∗ = 0,

ρe− 2S∗y∗ − u∗ = 0,

((S∗)2 − C(x∗))y∗ = 0,

S∗u∗ = 0.

By (33b), we have (y∗, u∗) ≥ 0. Combining (s∗)2 − c(x∗) ≥ 0 and s∗ ≥ 0, we have proved that

(x∗, s∗) is a KKT point of problem (3).

We are now ready to prove the global convergence results of Algorithm 3.

Theorem 3.3 Suppose that Assumptions 1-4 hold and that the sequence {(xi, si, ŷi, ûi)} is

generated by Algorithm 3. Moreover, we assume that the sequence {si} is bounded above. Then

we conclude that:
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(i) If there exists a constant ρ̂ > 0 such that the penalty parameter ρi ≤ ρ̂ for all i ≥ 1, and

the sequence {(ŷi, ûi)} is bounded, then the sequence {xi} converges to a KKT point of

problem (1);

(ii) If the penalty parameter ρi goes to infinite, then the sequence {xi} converges to a FJ point

of problem (1).

Proof. We consider the following two cases.

Case 1. Assume that there exists a constant ρ̂ > 0 such that ρi ≤ ρ̂ for all i ≥ 1. Then the

penalty parameter updates in a finite number of times before the termination condition ‖si‖ = 0

is satisfied. If the sequence {(ŷi, ûi)} is bounded, by Theorem 3.2, the sequence {(xi, si, ŷi, ûi)}
satisfies the conditions as follows

∇f(xi) + A(xi)ŷi = 0,

ρie− 2Siŷi − ûi = 0,

((Si)2 − C(xi))ŷi = 0,

Siûi = 0,

(si)2 − c(xi) ≥ 0,

si ≥ 0,

(ŷi, ûi) ≥ 0,

(42)

which reduces to the KKT conditions of problem (1) since ‖si‖ = 0 at the final iteration.

Therefore, we have proved the statement (i).

Case 2. It follows from Algorithm 3 that we have the sequence {(xi+1, si+1, ŷi+1, ûi+1, ρi)}
satisfying

Res(xi+1, si+1, ŷi+1, ûi+1; ρi, 0) ≤ ε̄, (ŷi+1, ûi+1) � 0.

Therefore, we have the sequence {(ŷi, ûi)} is unbounded above as ρi goes to infinite. Let

$i := max{ρi, ‖ŷi+1‖, ‖ûi+1‖, 1}, ρ̄i := ($i)−1ρi, ȳi+1 := ($i)−1ŷi+1 and ūi+1 := ($i)−1ûi+1 for

all i = 0, 1, . . .. Since the sequence {(xi, si)} and {ρ̄i} are all bounded, there exists a vector

(x∗, s∗, y∗, u∗, ρ̄) such that (xi, si, ȳi, ûi, ρ̄i)→ (x∗, s∗, y∗, u∗, ρ̄) as i→∞ (taking a subsequence

if necessary). After the i-th iteration, dividing on both sides of inequalities (33a) and (33b) by

$i and taking limit as i → ∞, we reach that x∗ is a FJ point of problem (1). Therefore, we

have proved the statement (ii).
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4 Numerical Experiments

In this section, we present numerical results for the proposed method using MATLAB 7.10.0.

We conduct numerical testing on Ubuntu 9.04 with 1.689GB of main memory and Intel(R)

Core(TM) 2 Duo 3.0GHz processors.

We refer to the implementation of Algorithms 1-3 as the IPLOP method, which stands for

the Interior-Point Lower-Order Penalty method. We carry out the numerical experiments on

266 inequality constrained optimization problems from the CUTEr collection1, COPS2, MITT3

and GLOBAL Library4 test sets. See Table 2. In order to show the robustness of the IPLOP

method, we compare its numerical performance with two existing interior-point `1-penalty

methods PIPAL-a and PIPAL-c implemented in PIPAL1.05 in (10) in terms of the number of

iterations and the values of the penalty parameter.

Before presenting the numerical results, we illustrate the implementation details as follows.

In the implementation, we use the same initial point x0 ∈ Rn as the one provided for every

test problem from the test problem collections and set s0
i =

√
max{ci(x0), 0} + 1

2
for all i ∈ I

unless specified otherwise. We set MaxiterI=1000, that is, the maximum number of iterations

for Algorithm 1 is 1000, and similarly we also set MaxiterII=1000 and MaxiterIII=1000 for

Algorithm 2 and Algorithm 3, respectively.

Next, we illustrate our strategy for choosing δ large enough such that the matrix M (see

(25)) with Ĥ(x, s, y) being replaced by Ĥ(x, s, y)+δE is sufficiently positive definite. However,

we would also like to keep it as small as possible as well in order to make our method work more

efficiently in practice, as large values of δ will make the algorithm behave like a steepest descent

method, which is not desirable. Since M is symmetric and the matrix 4SNS + S−1U − 2Y is

diagonal and positive definite, it follows from the LDLT factorization for a symmetric indefinite

matrix in (35; 36) that we can find a sufficiently small δ such thatM is positive definite. In our

implementation, we use the factorization routine MA57 in MATLAB 7.10.0 for this purpose.

Having computed search directions from (24), the steplength αkP ∈ (0, 1] has to be

determined in order to obtain the next iterate by (28). In our implementation, we first

obtain ᾱkP := max{ ρ̄j1 | j = 0, 1, 2, . . .} with ρ̄1 ∈ (0, 1) such that (29c) holds. Then, we

1http://orfe.princeton.edu/vrvdb/ampl/nlmodels/
2http://www.mcs.anl.gov/vmore/cops/
3http://plato.asu.edu/ftp/ampl−files/lukvl−ampl/lukvl/
4http://www.gamsworld.org/global/globallib.htm
5http://coral.ie.lehigh.edu/vfrankecurtis/software
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let αkP := max{ᾱkP ρ̄
j
2 | j = 0, 1, 2, . . .} with ρ̄2 ∈ (0, 1) satisfying

(sk+1)2 − c(xk+1) ≥ (1− η̂)
(

(sk)2 − c(xk)
)
, (43a)

sk+1 ≥ (1− η̂)sk, (43b)

where η̂ = max{0.99, 1− µ} in our implementation. Obviously, (43a)-(43b) imply (29a)-(29b).

The modification (29a) as (43a) is due to the nonlinearity of (sk+1)2 in (29a), in which case the

classical fraction-to-boundary rule cannot be used anymore. The above strategy of computing

steplength αkP is efficient in our numerical experiments. In Algorithm 2, we set εµj = µj and

εµj+1 = max{γεµj , 10−7}.

The default values of input parameters are listed in Table 1 below.

Table 1: Input parameter values for the IPLOP method.

Parameter Value Parameter Value

ρ0 0.1 ν 5

µ0 0.1 γ 0.1

γmin 0.5 γmax 1023

γ1 1 ρ̄2 0.1

τ1 10−8 ρ̄1 0.5

ε̄ 10−6

Table 2: Names of the inequality constrained optimization problems

Problem Problem Problem Problem Problem

3pk allinit avgasa avgasb bearing−50−100

bearing−50−50 bearing−50−70 biggsb1 biggsc4 bqpgabim

bqpgasim camel6 camshape−100 cantilvr cb2

cb3 chaconn1 chaconn2 circle congigmz

coshfun deer demymalo dipigri eg1

eigena emfl−vareps esfl−socp ex14−1−2m ex14−1−4

ex14−1−5m ex14−1−8 ex14−1−9 ex14−2−1m ex14−2−2m

ex14−2−3m ex14−2−4m ex14−2−4m ex14−2−5m ex14−2−7m

ex14−2−8m ex14−2−9m ex2−1−1 ex2−1−10 ex2−1−3

ex2−1−4 ex2−1−5 ex2−1−6 ex2−1−7 ex3−1−2

ex3−1−3 ex3−1−4 ex4−1−5 ex4−1−9 ex7−2−1

ex7−2−5 ex7−2−6 ex7−3−1 ex8−1−1 ex8−6−2

expfita expfitb expquad fekete fekete2

fekete3 fir−convex fir−linear fir−socp gpp

hadamals haifam haifas haldmads hart6

hatfldc himmelp1 himmelp2 himmelp5 himmelp6

hs001 hs002 hs003 hs004 hs005

hs010 hs011 hs012 hs015 hs016
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Table 2: (continued)

Problem Problem Problem Problem Problem

hs017 hs018 hs020 hs021 hs022

hs023 hs024 hs029 hs030 hs031

hs033 hs034 hs035 hs036 hs037

hs038 hs043 hs044 hs045 hs059

hs064 hs065 hs066 hs076 hs083

hs084 hs086 hs088 hs093 hs095

hs096 hs097 hs098 hs100 hs100mod

hs108 hs110 hs113 hs117 hs118

hubfit jbearing100 jbearing25 jbearing50 jbearing75

kiwcresc least logcheb lootsma lowpass

madsen madsschj makela1 makela3 matrix2

median−exp median−nonconvex mifflin1 mifflin2 minmaxrb

minsurf−50−100 minsurf−50−50 minsurf−50−75 mistake oet7

optprloc pacman palmer1 palmer1a palmer1b

palmer2 palmer2a palmer2b palmer3 palmer3a

palmer3b palmer4 palmer4a palmer4b palmer5a

palmer5b palmer5e palmer6a palmer6e palmer7a

palmer7e palmer8a palmer8e pentagon polak4

polygon−100 polygon−50 polygon25 polygon75 prolog

pspdoc qr3d qr3dbd qr3dls qrtquad

rbrock s222 s223 s224 s225

s226 s227 s228 s229 s230

s231 s232 s233 s234 s236

s237 s238 s239 s242 s244

s249 s250 s251 s253 s257

s259 s264 s268 s270 s277

s278 s279 s280 s284 s285

s315 s323 s324 s326 s330

s331 s337 s339 s340 s341

s343 s346 s354 s356 s357

s359 s360 s361 s365 s365mod

s366 s368 s384 s385 s387

s388 s389 sineali spiral springs

springs−nonconvex stancmin synthes1 torsion−50−50 turtle

twobars weeds yfit zecevic3 zecevic4

zy2

Our results show that there are 6, 10 and 9 test problems which cannot be solved successfully

by the IPLOP, PIPAL-a and PIPAL-c methods, respectively. So we plot only the corresponding

results for solved ones. Using the performance profiles of Dolan and Moré in (11), we plot Figure

1, where the plots πs(τ) denote the scaled performance profile

πs(τ) :=
number of problems p̂ where log2(rp̂,s) ≤ τ

total number of problems
, τ ≥ 0,
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where log2(rp̂,s) is the scaled performance ratio between the iteration number to solve problem

p̂ by solver s over the fewest iteration number required by the solvers IPLOP, PIPAL-a and

PIPAL-c. It is clear that πs(τ) is the probability for solver s that a scaled performance ratio

log2(rp̂,s) is within a factor τ ≥ 0 of the best possible ratio. See (11) for more details regarding

the performance profiles.

Figure 1 shows that the IPLOP method uses the least number of iterations on approximate

58% of test problems and shares the nearly same robustness with other two solvers.

0 0.5 1 1.5 2 2.5 3 3.5 4

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π
s
(τ

)

Log2 scaled performance profile

 

 

IPLOP

PIPAL−a

PIPAL−c

Figure 1: Performance profiles based on the number of iterations for the IPLOP, PIPAL-a and

PIPAL-c methods.

Figure 2 is plotted by the values of the penalty parameter ρ, which shows that the IPLOP

method uses smaller values of the penalty parameter than that of the PIPAL-c method which

employs the same strategy for updating the penalty parameter.
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Figure 2: Performance profiles based on the values of the penalty parameter for the IPLOP,

PIPAL-a and PIPAL-c methods.

We plot Figure 3 using the CPU time for the IPLOP, PIPAL-a and PIPAL-c methods,

which shows that the proposed method outperforms both the PIPAL-a and PIPAL-c methods

in CPU time.
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Figure 3: Performance profiles based on CPU time for the IPLOP, PIPAL-a and PIPAL-c

methods.

5 Conclusion

We have proposed an interior-point ` 1
2
-penalty method for solving the inequality constrained

nonlinear optimization by virtue of the ` 1
2
-penalty function. The quadratic relaxation was

introduced and different kinds of constraint qualifications were investigated to establish the

first-order necessary conditions of the quadratically relaxed problem. Moreover, we proved

the global convergence of the proposed method under mild conditions. We conducted our

numerical experiments on 266 inequality constrained optimization problems to compare the

performance of the proposed method with existing interior-point `1-penalty methods in terms

of the number of iterations, the values of the penalty parameter and the CPU time. Numerical

results indicate that the ` 1
2
-penalty function is competitive with the `1-penalty function from

the view of numerical implementation. However, there are many other issues that are needed

to deal with in our future work. We summarize them as follows.

(I) As pointed out by Fletcher (14) that the strategy of updating the penalty parameter

plays a central role in the numerical implementation for penalty methods, some adaptive

strategies have been introduced in (3; 4) to update the penalty parameter for the `1-
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penalty method. It is well-known that the smallest exact penalty parameter of the ` 1
2
-

exact penalty function is smaller than that of the `1-exact penalty function. However, a

precise criterion for adjustment of the penalty parameter in the numerical implementation

has not been studied in the paper.

(II) We have run both the interior-point ` 1
2
-penalty method and two interior-point `1-penalty

methods developed by Curtis (10) with the same stopping criterion on 38 test problems

with degenerate constraints and the same starting point. Our numerical results showed

that the interior-point ` 1
2
-penalty method can find a local minimum more accurately than

that of the interior-point `1-penalty methods. However, our numerical findings are lack

of the theoretical justification.

(III) In our further research, we will introduce an interior-point ` 1
p
-penalty method for solving

the inequality constrained optimization problems by combining the interior-point method

and extending the quadratic relaxation to the p-order relaxation for the ` 1
p
(p > 1)-penalty

function.
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