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Abstract

In some species, larvae and adults experience competition in completely different
ways. Simple stage-structured models without larval competition usually yield a single
delay equation for the adults. Using an age structured system incorporating competi-
tion among both larvae and adults, we derive a system of distributed delay equations
for the numbers of larvae and adults. The system is neither cooperative nor reducible
to a single equation for either variable. Positivity, boundedness and uniform strong
persistence are established. Linear stability analysis of equilibria is difficult due to the
strong coupling, but results are proved for small delays using monotone systems theory
and exponential ordering. For small delay we prove a theorem on generic convergence
to equilibria, which does not directly follow from standard theory but can be proved
indirectly using comparison arguments. Finally, we consider an extension to two-strain
competition and prove theorems on the linear stability of the boundary equilibria.
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1 Introduction

In species that have distinct life stages, the juvenile and adult individuals of the species
often have very different characteristics. This is particularly true in the case of insect and

1

https://doi.org/10.1016/j.jde.2015.09.048 This is the Pre-Published Version.

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.



amphibian species that generally have a larval stage and undergo metamorphosis. Larvae
often have a completely different diet from the adults, are often adapted to a different (often
aquatic) environment, and have completely different dispersal characteristics. Adult insects
can disperse great distances while their larvae are often confined and relatively immobile.
On the other hand, with some marine species such as barnacles it is the larvae that move
while adults do not. These differences have implications for the study of competition and
highlight the importance of paying careful attention to competition among larvae as well as
among the adults of a species.

It is known that competition among mosquito larvae occurs in confined environments and
there have been studies of its effects on adult body size and adult longevity (eg. Reiskind
and Lounibos [18]). This is important because competition among mosquito larvae can be
significant in the transmission of diseases such as dengue fever, yellow fever, chikungunya
and malaria. Larval competition can affect traits such as adult longevity which has a ma-
jor impact on malaria transmission due to the relatively long developmental stage of the
malaria parasite in the adult mosquito. Larval competition may also alter susceptibility of
adult mosquitoes to dengue infection (Alto et al [3]). Armistead et al [4] describe interspe-
cific competition between the larvae of two mosquito species in the USA, Aedes albopictus
and Aedes japonicus, suggesting that Ae. albopictus larvae have a competitive advantage
over those of Ae. japonicus. Gilpin [9] discusses larval competition as a growth-regulating
mechanism in Drosophila. Schade and Vamosi [21] and Messina [16] describe the effects of
competition among the larvae of seed beetles. Prado et al [17] present evidence of intraspe-
cific competition among the larvae of pit-trapping antlions in Brazil. Blanchard et al [5]
describe competition between the larvae of the American slipper limpet Crepidula fornicata
and the Japanese oyster Crassostrea gigas, and report results which suggest that limpet lar-
vae compete with oyster larvae by depleting phytoplankton concentrations. In the context of
invasive species, Smith [25] has examined the competitive effects of the larvae of two widely
introduced anurans, the cane toad and the Cuban treefrog, on the growth and development
of the larvae of native anurans.

In this paper we assume that an individual larva competes with all other larvae but not
with any adults, and similarly that adults compete only with other adults. Thus, competi-
tion is solely within age classes and does not occur between individuals at different life stages.
These assumptions should be realistic for some insect and amphibian species that undergo
metamorphoses, since in such species the larvae and adults often have a different diet and
do not compete for food, and moreover larvae and adults are often adapted to different envi-
ronments. In amphibians it is often the case that the larvae live in an aquatic environment
and the adults in a terrestrial one, as is usually the case for the urodeles, a carnivorous
order that includes salamanders (Wells [26]). On the other hand, in beetles of the genus
helichus the larvae are terrestrial and the adults are aquatic, living mostly in running water
(Clifford [6]). Some beetles, for example the elmidae (riffle beetles), are actually aquatic as
both larvae and adults, leading to the possibility of competition between all individuals. For
such species the modelling in this paper may not be so realistic.

Using the well known McKendrick von-Forster equation as a starting point, we propose
a simple single species age-structured model with two age classes (larvae and adults) that
incorporates intra-specific competition within those classes based on the assumptions de-
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scribed in the previous paragraph. Using the technique of integration along characteristics,
the model is reduced to a system of two delay differential equations for the numbers I(t) and
M(t) of immature (larval) and mature (adult) individuals at time t. The system involves
both discrete and distributed time delay terms since the maturation rate at time t depends
on the birth rate at the time t−τ , where τ is the larval developmental time, and also because
at each stage of its development a larva competes with all other larvae present, which leads
to a distributed delay term. Unusually in stage-structured population models of this type,
there is no decoupling in the system and it is not possible to reduce the model equations
to a single equation for the number of adults. After establishing basic but important prop-
erties of the model, we prove population persistence (in the strong uniform sense) under a
natural condition. Then the problem of the linear stability of equilibria is treated, which is
surprisingly difficult. The structure of the model equations, the absence of certain mono-
tonicity properties and the inability to decouple leads to characteristic equations that do not
immediately lend themselves to commonly applied theorems that, in other simpler systems,
might make it possible to restrict attention to real roots (such as the results in Chapter 5 of
Smith [22]). However, under some restriction on the delay, it is possible to treat the linear
stability problem with the aid of the concept of exponential ordering. A central result of
this paper is a result on generic convergence to equilibria under certain conditions including
smallness of the delay. Again, this result does not follow immediately from known theorems
but it can be established with the aid of a comparison argument. Generic convergence to
equilibria, and information on the local stability of equilibria, can make it possible to make
statements about the global stability of a positive equilibrium if it is further known that only
one such equilibrium exists. Uniqueness or otherwise of positive equilibria is itself dependent
on the model parameters, coefficient functions and the function that describes how the egg-
laying rate depends on the number of adults, and we investigate this dependence. Finally,
we propose an extension of the model to the case of competition between two strains of a
species. Here, again, competition is only within age classes but larvae of a particular strain
compete both among themselves and with those of the other strain, and similarly for adults.
With the aid of the results established for the single species case, we are able to completely
determine the local stability of the boundary equilibria in terms of verifiable inequalities,
leading to insights into which strain may win the competition and the effect on this of both
larval and adult competition.

Systems with both discrete and distributed delays are common in the neural networks
literature (Liu et al [15], Ruan and Filfil [20]) and in fuzzy systems theory (Yoneyama [27]),
though the distributed delays in these contexts tend to assume other forms.

2 Single species model

2.1 Model derivation

Suppose the population can be divided into immature and mature individuals defined
respectively as those of age less than some threshold age τ (the maturation age) and those
of age greater than τ . Within each age group, all individuals have the same birth and death
rates, which may be density-dependent. Let u(t, a) be the population density of age a at
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time t, then the numbers I(t) and M(t) of immature and mature individuals, respectively,
are given by

I(t) =

∫ τ

0

u(t, a) da and M(t) =

∫ ∞
τ

u(t, a) da. (1)

In this section we derive alternative formulations of a model to be solved for these variables
I(t) andM(t). One of these models consists of a pair of differential equations with distributed
delay (system (4)). The other consists of a pair of integral equations (system (5,6)). In fact,
as we shall see, it can sometimes work to our advantage to couple one of the differential
equations of (4) with the integral equation variant of the other differential equation.

According to the McKendrick von-Foerster equation for an age-structured population,
which is usually considered as a starting point for describing an age structured population
(see, e.g., [7, 10] and the references therein), we have

∂u(t, a)

∂t
+
∂u(t, a)

∂a
= −dIu(t, a)− u(t, a)f(I(t)), a < τ

∂u(t, a)

∂t
+
∂u(t, a)

∂a
= −dMu(t, a)− u(t, a)g(M(t)), a ≥ τ

(2)

where dI and dM are the density-independent death rates for immature and adult individuals,
and the functions f(·) and g(·) represent intraspecific competition between individuals of
the same age group, which each depend on the total population size of the respective group.
Integrating each equation of (2) over the age interval to which it relates, we obtain the
following equations for I(t) and M(t):

dI(t)

dt
= −dII(t)− I(t)f(I(t)) + u(t, 0)− u(t, τ),

dM(t)

dt
= −dMM(t)−M(t)g(M(t)) + u(t, τ)− u(t,∞).

The term u(t, 0) represents the birth rate of the population and therefore we assume that
u(t, 0) = b(M(t)), a function of the mature population size M(t). The density of age ∞
is assumed to be zero, that is, u(t,∞) = 0. To close the system, we calculate u(t, τ) in
terms of u(t − τ, 0) = b(M(t − τ)) which is achieved by the technique of integration along
characteristics with the aid of the variable V s(t) = u(t, t − s). By direct calculations, we
arrive at

d

dt
V s(t) = −(dI + f(I(t)))V s(t)

for t− s ≤ τ , with V s(s) = u(s, 0) = b(M(s)). It follows that

V s(t) = V s(s) exp

[
−
∫ t

s

(dI + f(I(ξ))) dξ

]
= b(M(s)) exp

[
−dI(t− s)−

∫ t

s

f(I(ξ)) dξ

]
.

Setting s = t− τ , we have, for t ≥ τ ,

u(t, τ) = V t−τ (t) = b(M(t− τ))e−dIτ−
∫ t
t−τ f(I(ξ)) dξ = b(M(t− τ))e−dIτ−

∫ τ
0 f(I(t−τ+ξ)) dξ. (3)
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Therefore, the age structured model (2) can be reduced into the following system of differ-
ential equations with distributed delay:

dI(t)

dt
= −dII(t)− I(t)f(I(t)) + b(M(t))− b(M(t− τ)) exp

[
−dIτ −

∫ τ

0

f(I(t− τ + ξ)) dξ

]
,

dM(t)

dt
= −dMM(t)−M(t)g(M(t)) + b(M(t− τ)) exp

[
−dIτ −

∫ τ

0

f(I(t− τ + ξ)) dξ

]
.

(4)

The functions b(·), f(·) and g(·) are all nonnegative, nondecreasing and vanish at zero.
All terms are easily interpreted. The maturation rate, which features as the last term in
each equation, contains three factors: (i) b(M(t − τ)), the egg laying rate at time t − τ ;
(ii) e−dIτ , the probability of surviving natural death and (iii) exp(−

∫ τ
0
f(I(t − τ + ξ)) dξ),

the survival probability due to intra-specific competition which incorporates competitive
pressure experienced by an immature individual at all stages of development. This last term
brings new features to the model. The key feature of the model described by (4) is that the
equation for the adult population size M(t) cannot be decoupled from the system, which
makes system (4) more challenging than most previously studied stage-structured models
described by delay-differential equations; see for example the models in [11, 1, 2, 19, 14].
System (4) can, however, be cast into an integral equation form. It is easily checked, by
differentiation, that

I(t) =

∫ t

t−τ
b(M(ξ)) exp

(∫ t

ξ

(−dI − f(I(η))) dη

)
dξ (5)

is the integral equation formulation of the I(t) equation of (4). For ages a > τ , solving the
second equation of (2) by integration along characteristics, we find that

u(t, a) = u(τ + t− a, τ) exp

(
−
∫ a

τ

(dM + g(M(η + t− a))) dη

)
for a > τ and t ≥ a. We then calculate u(τ + t− a, τ) using (3), to find that

u(t, a) = b(M(t−a))e−dIτ exp

(
−
∫ τ

0

f(I(t− a+ ξ)) dξ

)
exp

(
−
∫ a

τ

(dM + g(M(η + t− a))) dη

)
for a > τ and t ≥ a. For adult ages a > τ , but at times t < a, we need an alternative
expression for u(t, a), since in this case the characteristic lines pass through the a axis. In
this case the solution depends on the initial age distribution u(0, a) = u0(a), where u0(a) ≥ 0
is prescribed. The outcome is that

u(t, a) = u0(a− t) exp

(
−
∫ t

0

(dM + g(M(η))) dη

)
for a > τ and t < a. The total adult population M(t) is then calculated from the integral
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in (1):

M(t) =

∫ t

τ

b(M(t− a))e−dIτ exp

(
−
∫ τ

0

f(I(t− a+ ξ)) dξ

)
× exp

(
−
∫ a

τ

(dM + g(M(η + t− a))) dη

)
da

+

∫ ∞
t

u0(a− t) exp

(
−
∫ t

0

(dM + g(M(η))) dη

)
da

(6)

for t ≥ τ .

2.2 Positivity and boundedness of solutions

From the basic theory of delay differential equations (e.g., Hale and Verduyn Lunel [12]),
we know that system (4) with the initial conditions

I(θ) = φ1(θ) and M(θ) = φ2(θ), θ ∈ [−τ, 0]

has a unique solution (I(t, φ),M(t, φ)) which is defined for all positive time provided that
all solutions are bounded. To analyze model (4), we first make the following biologically
reasonable assumptions:

1. The birth rate function b(M) is a nonnegative and increasing function for all M ≥ 0,
and b(0) = 0;

2. the density-dependent death rate function f(I) is positive and increasing for I > 0
while g(M) is nonnegative and nondecreasing for all M ≥ 0; moreover, f(0) = 0 and
g(0) = 0;

3. there exists an increasing function B such that b(M) ≤ B(M), and the function B
satisfies one of the following:

(a) B is strictly sublinear, that is, for any α ∈ (0, 1), M > 0, B(αM) > αB(M); or

(b) B is sublinear, that is, for any α ∈ (0, 1), M ≥ 0, B(αM) ≥ αB(M) and g(M) is
strictly increasing.

Since system (4) describes populations, it is important to establish positivity and bounded-
ness of its solutions, and we do so in the following theorem.

Theorem 2.1 Suppose assumptions (1)–(3) above are satisfied and that I(t) ≥ 0 and M(t) ≥
0 for all t ∈ [−τ, 0], and also M(0) > 0. Then the solution (I(t),M(t)) of system (4) exists
for all t ≥ 0 and satisfies M(t) > 0 and I(t) > 0 for all t > 0. Moreover, every solution is
eventually bounded, that is, lim sup

t→∞
M(t) ≤ K and lim sup

t→∞
I(t) ≤ K for some constant K.

Proof. We first establish positivity of solutions. It follows from [22, Theorem 5.2.1] that
M(t) ≥ 0 in its maximal interval of existence. Suppose M(t̃) = 0 for some values of t̃.
By continuity of solutions, any such values of t̃ must be greater than zero and Ṁ(t̃) ≤ 0.
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Let t0 = inf{t̃ : t̃ > 0, M(t̃) = 0}, then Ṁ(t̃) > 0 from the second equation of (4), a
contradiction. Therefore, no such t0 exists and M(t) > 0 for all t ≥ 0. Knowing this, we
find from the integral equation (5) that I(t) > 0 for all t > 0.

Next, we show that solutions remain bounded. From the second equation of (4), we have

dM(t)

dt
≤ B(M(t− τ))− dMM(t)−M(t)g(M(t)).

Moreover, according to Theorem 3.2 of [29], the equation

du(t)

dt
= B(u(t− τ))− dMu(t)− u(t)g(u(t)) (7)

admits a globally asymptotically stable equilibrium which attracts all positive solutions.
Therefore, any solution of equation (7) is bounded. Since B(M) is an increasing function, the
comparison principle (see for example [22, Theorem 5.1.1]) holds and implies that M(t) ≤
u(t) with u(θ) = M(θ) for θ ∈ [−τ, 0]. Therefore, we have boundedness of M(t), which
implies that I(t) is also bounded since I(t) ≤

∫ t
t−τ b(M(ξ)) dξ.

A byproduct of the boundedness of solutions is the global existence of solutions, that is,
the solution of system (4) with initial data (I(θ),M(θ)), θ ∈ [−τ, 0], (I(t),M(t)) exists for
all t ≥ 0.

2.3 Persistence

Intra-specific competition goes away as populations go to zero. At low densities, one
adult, with a life expectancy of 1/dM , produces b′(0) eggs per unit time, and these hatch
and mature to the adult stage with probability e−dIτ . The product of these three terms gives
the average number of adults produced by one adult over its life span. This product, the
basic reproduction number R0, is given by

R0 =
b′(0)e−dIτ

dM
.

We prove the following result on persistence of the species.

Theorem 2.2 Suppose the hypotheses of Theorem 2.1 hold and, in addition, that b(M) ≤
b′(0)M for all M ≥ 0. Then:

• if R0 < 1, every solution (I(t),M(t)) of system (4) goes to (0, 0);

• if R0 > 1, there exists η > 0, which is independent of the initial conditions, such that

lim inf
t→∞

I(t) > η and lim inf
t→∞

M(t) > η.

Proof. From the second equation of (4),

dM(t)

dt
≤ b′(0)e−dIτM(t− τ)− dMM(t).
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When R0 < 1, the zero equilibrium of the equation

du(t)

dt
= b′(0)e−dIτu(t− τ)− dMu(t)

is globally asymptotically stable, that is, lim
t→∞

u(t) = 0. The comparison principle (see, for

example, [22, Theorem 5.1.1]) implies that M(t) ≤ u(t) for any solution of system (4) with
M(θ) = u(θ) for θ ∈ [−τ, 0]. Therefore, lim

t→∞
M(t) = 0. Since I(t) ≤

∫ t
t−τ b(M(ξ)) dξ, we

have lim
t→∞

I(t) = 0 also.

Next we establish population persistence in the case R0 > 1. Let

M := C([−τ, 0],R2
+), M0 := {φ ∈M : φi(0) > 0, i = 1, 2} and ∂M0 :=M\M0.

Clearly, M0 is an open set relative to M. Define the solution semiflow Φ(t) by

Φ(t)φ(θ) = (I(t+ θ),M(t+ θ)),

where (I(t),M(t)) is the solution of system (4) with initial data (I(θ),M(θ)) = φ(θ) for all
θ ∈ [−τ, 0]. It then follows from Theorem 2.1 that Φ(t) is point dissipative and Φ(t)M0 ⊂
M0. Let ω(φ) be the omega limit set of the orbit

γ+(φ) := {Φ(t)φ : ∀t ≥ 0}

and define
M∂ := {φ ∈ ∂M0 : Φ(t)φ ∈ ∂M0, ∀t ≥ 0}.

Then the proof of Theorem 2.1 implies that

M∂ = {φ ∈ ∂M0 : φ2 = 0}.

Hence,
ω(φ) = {(0, 0)}, ∀φ ∈M∂.

For the function b(·), there exist positive constants k and η such that b(M) ≥ (b′(0) −
kη)M for all M ∈ [0, η]. Since R0 > 1, we can choose η small enough such that

(b′(0)− kη)e−dIτe−τf(b(η)τ)

dM + g(η)
> 1. (8)

Next, we establish the following weak persistence for R0 > 1.

Claim: For all solutions (I(t),M(t)) with M(θ) 6≡ 0 on [−τ, 0], we have

lim sup
t→∞

M(t) ≥ η.

Suppose the claim is false. Then there is a solution with

lim sup
t→∞

M(t) < η
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and, since the inequality is strict, there exists T such that M(t) < η for all t > T . From the
integral equation for I(t) (equation (5)), I(t) < b(η)τ for all t > T + τ and it follows that

dM(t)

dt
≥ b(M(t− τ))e−dIτe−τf(b(η)τ) − (dM + g(η))M(t)

≥ (b′(0)− kη)e−dIτe−τf(b(η)τ)M(t− τ)− (dM + g(η))M(t).

Since (8) holds, the nonzero solutions of the equation

du(t)

dt
= (b′(0)− kη)e−dIτe−τf(b(η)τ)u(t− τ)− (dM + g(η))u(t)

will grow without bound and, by the comparison principle, the same is true for M(t). This
contradicts boundedness of solutions and, therefore, the claim holds.

The above claim shows that the element (0, 0) ∈ M is a uniform weak repeller for M0

in the sense that
lim sup
t→∞

‖Φ(t)φ− (0, 0)‖ ≥ η for all φ ∈M0,

with the maximum norm ‖ · ‖. Define a continuous function p :M→ R+ by

p(φ) = min(φ1(0), φ2(0)), ∀φ = (φ1, φ2) ∈M.

Thus, p is a generalized distance function for the semiflow Φ(t) (see Definition 1.3.1 in [28]).
It then follows from Theorem 1.3.2 of [28] that there exists ε > 0 such that min{p(ψ) : ψ ∈
ω(φ)} > ε for any φ(θ) 6≡ 0 on [−τ, 0]. Hence,

lim inf
t→∞

I(t) ≥ ε and lim inf
t→∞

M(t) ≥ ε

uniformly for all solutions with M(0) > 0.

2.4 Linear stability of equilibria

Introduction of competition among immature individuals, as modelled in (2), may have
the effect of increasing the number of positive equilibria in the model. Either the differential
form of the model, or the variant system of integral equations, yield that any equilibrium
(I∗,M∗) satisfies

M∗(dM + g(M∗)) = b(M∗) exp{−τ(dI + f(I∗))},

I∗(dI + f(I∗)) = b(M∗)
(

1− exp{−τ(dI + f(I∗))}
)
.

(9)

Letting (I∗,M∗) denote any equilibrium, we investigate its linear stability. This can be
achieved by linearising at the equilibrium one of system (4), the variant system (5,6), or a
system comprised of the differential form of one equation and the integral form of the other.
The characteristic equations obtained in each case look very different, but their equivalence
can be confirmed through tedious calculations. The approach that lends itself best to further
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analytic study is through linearising the first equation of (4) and the integral equation (5).
Setting M = M∗ + M̃ , I = I∗ + Ĩ, these linearised equations assume the form

M̃ ′(t) = −[dM + g(M∗) +M∗g′(M∗)]M̃(t)

+ e−τ(dI+f(I∗))

[
b′(M∗)M̃(t− τ)− b(M∗)f ′(I∗)

∫ τ

0

Ĩ(t− τ + ξ) dξ

]
(10)

and

Ĩ(t) = b′(M∗)

∫ τ

0

e−ξ(dI+f(I∗))M̃(t−ξ) dξ−b(M∗)f ′(I∗)

∫ τ

0

e−ξ(dI+f(I∗))

∫ t

t−ξ
Ĩ(η) dη dξ. (11)

Solutions of the linearised system of the form (Ĩ(t), M̃(t)) = (c1, c2) exp(λt) exist whenever
λ satisfies a characteristic equation that can be cast into the form

λ+ dM + g(M∗) +M∗g′(M∗) = b′(M∗) exp {−τ(λ+ dI + f(I∗))}

− b(M∗)b′(M∗)f ′(I∗)τ 2e−τ(dI+f(I∗))k(λτ)k(τ(λ+ dI + f(I∗)))

1 + b(M∗)f ′(I∗)τ
{
k(τ(dI + f(I∗)))− k(τ(λ+ dI + f(I∗)))

}
/λ

(12)

where

k(x) =
1− e−x

x
(13)

which satisfies k(x) > 0, k′(x) < 0 and k′′(x) > 0 for all x ∈ R. The properties of the
right hand side of (12) as a function of λ are important and it turns out to be convenient to
express the characteristic equation in the form

λ+ dM + g(M∗) +M∗g′(M∗) = e−τ(dI+f(I∗))b′(M∗)H(λτ, c, A) (14)

where

H(x, c, A) = e−x − Ak(x)k(x+ c)

1 + A
{
k(c)− k(x+ c)

}
/x

(15)

and
c = τ(dI + f(I∗)), A = b(M∗)f ′(I∗)τ 2. (16)

In the subsequent analysis, we always assume that b(M∗) > 0, b′(M∗) > 0 and f ′(I∗) > 0.
We prove under certain further conditions that the dominant root (the root of greatest real
part) of the characteristic equation (12) is a real number, so that only the real roots of the
characteristic equation need to be considered. This is proved using Proposition 3.2 in Smith
and Thieme [23]. That result concerns the linear stability of an equilibrium x0 of a scalar
delay equation of the form

x′(t) = f(xt) (17)

where f is a functional in C([−τ, 0],R) and xt(s) = x(t+ s), s ∈ [−τ, 0]. Let Kµ be the cone
in C([−τ, 0],R) defined by

Kµ = {φ ∈ C : φ ≥ 0 and φ(s)eµs is nondecreasing on [−τ, 0]}
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and let ≤µ be the partial ordering on C([−τ, 0],R) induced by Kµ, that is

φ ≤µ ψ ⇐⇒ φ ≤ ψ and (ψ(s)− φ(s))eµs is nondecreasing on [−τ, 0]. (18)

Let df(x̂0) denote the linearisation of f at the equilibrium x0, where x̂0 is the function in
C([−τ, 0],R) which is identically equal to x0 ∈ R. By Proposition 3.2 in [23], if there exists
µ ≥ 0 such that

df(x̂0)(φ) + µφ(0) ≥ 0 for all φ ∈ C([−τ, 0],R) such that φ ≥µ 0, (19)

then the stability of x0 can be determined by examining only the real roots of the charac-
teristic equation of the linearisation of (17) at x0. The results in [23] are actually for scalar
equations, but our system can be interpreted as scalar if we take the view that we are solving
the integral equation (11) for Ĩ(t) as a functional of M̃t, where M̃t(s) = M̃(t + s), s ≤ 0,
and inserting the solution into (10) which thereby becomes a scalar equation for M̃(t). In
fact (11) can be solved explicitly using the Laplace transform technique. We assume that
Ĩ ≡ 0 for t < 0. Under these circumstances the following property holds:

L
{∫ t

t−ξ
Ĩ(η) dη

}
=

1

s
(1− e−ξs)L{Ĩ(t)} (20)

for ξ > 0, where L denotes the Laplace transform and s is the transform variable. Applying
the Laplace transform to (11) in the form

Ĩ(t) = K(t)− b(M∗)f ′(I∗)

∫ τ

0

e−ξ(dI+f(I∗))

∫ t

t−ξ
Ĩ(η) dη dξ, (21)

and using property (20) and the Laplace convolution theorem, gives

Ĩ(t) =

∫ t

0

%(t− t̄)K(t̄) dt̄ (22)

where

%(t) = L−1

{
1

1 + b(M∗)f ′(I∗)τ
{
k(τ(dI + f(I∗)))− k(τ(s+ dI + f(I∗)))

}
/s

}
(23)

or, alternatively,

%(t) = L−1


1

1 + b(M∗)f ′(I∗)

∫ τ

0

e−ξ(dI+f(I∗))

(
1− e−ξs

s

)
dξ

 . (24)

The properties of %(t), a delicate function, need to be carefully understood and are stated
in the following result.
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Proposition 2.1 Assume that b(M∗) > 0, b′(M∗) > 0 and f ′(I∗) > 0. Then the function
%(t) defined by (23) or (24) behaves as a Dirac delta function at t = 0 and drops instanta-
neously from %(0) =∞ to a finite (negative) value such that

lim
t→0+

%(t) = −b(M∗)f ′(I∗)

(
1− e−τ(dI+f(I∗))

dI + f(I∗)

)
. (25)

On the interval t ∈ (0,∞), %(t) converges to zero in an oscillatory manner.

Proof. Note that %(t) is independent of K(t). Information about %(t) can therefore be
gained from particular choices of K(t). In particular, we find that %(t) is the solution of (21)
in the particular case when K(t) = δ(t), the Dirac delta function. Thus, %(t) satisfies % ≡ 0
for t < 0 and

%(t) = δ(t)− b(M∗)f ′(I∗)

∫ τ

0

e−ξ(dI+f(I∗))

∫ t

t−ξ
%(η) dη dξ (26)

for t ≥ 0. Owing to the behaviour at t = 0, the limit in (25) does not follow from the initial
value formula for the Laplace transform. However, it can be deduced from (26) with care,
as follows. The inner integral may include zero in its interval [t− ξ, t]. On the interval (0, t],
%(η) is finite and its integral over such an interval tends to zero as t→ 0 and can be ignored
in the evaluation of the limit limt→0+ %(t). So, only values of ξ greater than t are important
and the outer integral is effectively over the interval ξ ∈ [t, τ ]. Also %(η) = 0 for η < 0. So

the inner integral approaches
∫ 0+

0− %(η) dη =
∫ 0+

0− δ(η) dη = 1 as t→ 0. In the end, as t→ 0,
we end up with (25).

The fact that %(t) is oscillatory follows directly from (26). The role played by the delta
function is transitory; for times t > τ it plays no further role and can be ignored. The two
remaining terms, which involve %(t), have opposite sign. It is easily seen that on any time
interval of length at least τ , %(t) cannot remain positive, nor remain negative, because in
either case (26) produces a contradiction. To check that limt→∞ %(t) = 0 we will show that
all the poles of L{%(t)} (i.e. all the zeros of the denominator in (24)) satisfy Re s < 0. Then,
if we compute %(t) using (24), the inversion formula for Laplace transforms and Cauchy’s
residue theorem, we shall find %(t) in the form of a sum of the residues at those poles and
those residues will be decaying exponentials if the poles all satisfy Re s < 0.

For t > τ , by differentiating (26) we find that %(t) also satisfies

%′(t) = −b(M∗)f ′(I∗)

(
1− e−τ(dI+f(I∗))

dI + f(I∗)

)
%(t)+b(M∗)f ′(I∗)

∫ τ

0

e−ξ(dI+f(I∗))%(t−ξ) dξ. (27)

The ansatz %(t) = est yields a characteristic equation for (27) which has s = 0 as one of
its roots, and no other real roots. Dividing that characteristic equation by s yields the
characteristic equation satisfied by the poles of L{%(t)}, namely

1 + b(M∗)f ′(I∗)

∫ τ

0

e−ξ(dI+f(I∗))

(
1− e−ξs

s

)
dξ = 0. (28)

The two characteristic equations have the same roots except for the fact that s = 0 does not
satisfy (28). This distinction is crucial because (27), with its delay term having a positive
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coefficient, lends itself to the application of Theorem 5.5.1 on page 92 of Smith [22], from
which we conclude that the dominant root of the characteristic equation associated with (27)
is a real number. But we know that the only real root of that characteristic equation is s = 0.
Therefore, any other root satisfies Re s < 0 and we deduce that this is the case for all the
roots of (28) since that equation lacks the zero root. Thus, all the poles of L{%(t)} satisfy
Re s < 0 and so limt→∞ %(t) = 0.

We are now in a position to prove the following.

Proposition 2.2 If b(M∗) > 0, b′(M∗) > 0, f ′(I∗) > 0 and if τ is small enough so that
there exists µ ≥ 0 such that

µ− (dM + g(M∗) +M∗g′(M∗)) ≥

e−τ(dI+f(I∗))b(M∗)b′(M∗)f ′(I∗)

(
1− e−τ(dI+f(I∗)−µ)

dI + f(I∗)− µ

)(
eµτ − 1

µ

)∫ ∞
0

%+(r)eµr dr,
(29)

where %+(t) = max(%(t), 0) and %(t) is defined by (23) or (24), then the dominant root of the
characteristic equation (12) is a real number.

Proof. We need to check condition (19) as it applies to our problem. First we satisfy
ourselves that it is possible to choose µ > 0 satisfying (29). On a first glance this appears
to be clear, since we could pick any µ such that the left hand side of (29) is positive, and
then (for that particular µ) simply pick τ sufficiently small such that (29) holds, which
appears to work on the basis of the apparent behaviour of the right hand side of (29) as
τ → 0. However, %(t), and hence also %+(t), depend on τ and it is not immediately clear
that

∫∞
0
%+(r)eµr dr < ∞. However, we know from Proposition 2.1 that limt→∞ %(t) = 0.

Moreover, since the convergence is exponential, it suffices to drop the superscript on % here
and assure ourselves of the finiteness of the integral

∫∞
0
%(r)eµr dr. This integral is finite if

the exponential decay of %(r) to zero is fast enough to overcome the exponentially growing
term eµr in the integrand. For a µ chosen as described above, pick any c > µ. Then, the
decay of %(r) to zero will be sufficiently fast if Re s < −c for all roots s of the characteristic
equation (28). We claim that this is the case if τ is chosen sufficiently small such that

b(M∗)f ′(I∗)

c

[
1− e−τ(dI+f(I∗)−c)

dI + f(I∗)− c
− 1− e−τ(dI+f(I∗))

dI + f(I∗)

]
< 1. (30)

The square bracketed quantity in (30) is positive because c > 0 and k(x), defined in (13),
is decreasing. Let s be a root of (28). Assuming (30) we claim, for a contradiction, that
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Re s ≥ −c. From (28), this root satisfies

1 ≤ b(M∗)f ′(I∗)

∫ τ

0

e−ξ(dI+f(I∗))

∣∣∣∣1− e−ξss

∣∣∣∣ dξ
= b(M∗)f ′(I∗)

∫ τ

0

e−ξ(dI+f(I∗))

∣∣∣∣∫ ξ

0

e−ηs dη

∣∣∣∣ dξ
≤ b(M∗)f ′(I∗)

∫ τ

0

e−ξ(dI+f(I∗))

∫ ξ

0

e−ηRe s dη dξ

≤ b(M∗)f ′(I∗)

∫ τ

0

e−ξ(dI+f(I∗))

∫ ξ

0

ecη dη dξ

=
b(M∗)f ′(I∗)

c

[
1− e−τ(dI+f(I∗)−c)

dI + f(I∗)− c
− 1− e−τ(dI+f(I∗))

dI + f(I∗)

]
which contradicts (30). Thus, for τ sufficiently small, µ can be chosen to satisfy (29).

In (19) we take φ(s) = M̃t(s), and so φ(0) = M̃(t). Basically df(x̂0)(φ) + µφ(0) is the
right hand side of (10) with the addition of µM̃(t), and with Ĩ(t) given by (22) and K(t)
chosen as in (11), so that

Ĩ(t) = b′(M∗)

∫ t

0

%(t− t̄)
∫ τ

0

e−ξ(dI+f(I∗))M̃(t̄− ξ) dξ dt̄.

Even though M̃ is a perturbation from a steady state value, and therefore need not be
positive, we only need to check (19) for M̃ ≥µ 0 which, by (18), includes the requirement
that M̃ ≥ 0. For M̃ ≥ 0,

Ĩ(t) ≤ b′(M∗)

∫ t

0

%+(t− t̄)
∫ τ

0

e−ξ(dI+f(I∗))M̃(t̄− ξ) dξ dt̄

and therefore

−
∫ τ

0

Ĩ(t− τ + ξ) dξ = −
∫ t

t−τ
Ĩ(η) dη

≥ −b′(M∗)

∫ t

t−τ

∫ η

0

%+(η − t̄)
∫ τ

0

e−ξ(dI+f(I∗))M̃(t̄− ξ) dξ dt̄ dη.

Since we check (19) for M̃ ≥µ 0, from (18) we have that M̃(s)eµs is nondecreasing on [−τ, 0]
so that

M̃(t̄− ξ)eµ(t̄−ξ) ≤ M̃(t̄)eµt̄

and therefore

−
∫ τ

0

Ĩ(t− τ + ξ) dξ ≥ −b′(M∗)

∫ t

t−τ

∫ η

0

%+(η − t̄)M̃(t̄)

(
1− e−τ(dI+f(I∗)−µ)

dI + f(I∗)− µ

)
dt̄ dη.

Since t̄ ≤ η we may now use M̃(t̄)eµt̄ ≤ M̃(η)eµη to obtain

−
∫ τ

0

Ĩ(t− τ + ξ) dξ ≥ −b′(M∗)

(
1− e−τ(dI+f(I∗)−µ)

dI + f(I∗)− µ

)∫ t

t−τ
M̃(η)

∫ η

0

%+(η − t̄)eµ(η−t̄)dt̄ dη.

14



Since η ≤ t we have M̃(η)eµη ≤ M̃(t)eµt and therefore, after some simplification,

−
∫ τ

0

Ĩ(t− τ + ξ) dξ ≥ −b′(M∗)

(
1− e−τ(dI+f(I∗)−µ)

dI + f(I∗)− µ

)
M̃(t)

∫ t

t−τ

∫ η

0

%+(η − t̄)eµ(t−t̄) dt̄ dη

= −b′(M∗)

(
1− e−τ(dI+f(I∗)−µ)

dI + f(I∗)− µ

)
M̃(t)

∫ τ

0

∫ t−η̄

0

%+(t− t̄− η̄)eµ(t−t̄) dt̄ dη̄

= −b′(M∗)

(
1− e−τ(dI+f(I∗)−µ)

dI + f(I∗)− µ

)
M̃(t)

∫ τ

0

eµη̄
∫ t−η̄

0

%+(r) eµr dr dη̄

≥ −b′(M∗)

(
1− e−τ(dI+f(I∗)−µ)

dI + f(I∗)− µ

)
M̃(t)

∫ τ

0

eµη̄
∫ ∞

0

%+(r) eµr dr dη̄

= −b′(M∗)

(
1− e−τ(dI+f(I∗)−µ)

dI + f(I∗)− µ

)
M̃(t)

(
eµτ − 1

µ

)∫ ∞
0

%+(r) eµr dr.

Using this and the fact that M̃(t− τ) ≥ 0 (which follows from M̃ ≥µ 0), we now check (19)
using the right hand side of (10) as follows:

df(x̂0)(φ) + µφ(0)

= −[dM + g(M∗) +M∗g′(M∗)]M̃(t) + µM̃(t)

+ e−τ(dI+f(I∗))

[
b′(M∗)M̃(t− τ)− b(M∗)f ′(I∗)

∫ τ

0

Ĩ(t− τ + ξ) dξ

]
≥ −[dM + g(M∗) +M∗g′(M∗)]M̃(t) + µM̃(t)

− e−τ(dI+f(I∗))b(M∗)b′(M∗)f ′(I∗)

(
1− e−τ(dI+f(I∗)−µ)

dI + f(I∗)− µ

)
M̃(t)

(
eµτ − 1

µ

)∫ ∞
0

%+(r) eµr dr

which is non-negative for M̃ ≥ 0, by (29).

The next result is concerned with obtaining a good bound, valid for x ≥ 0, for the
function H(x, c, A) defined in (15). This function need not be monotone in x.

Proposition 2.3 For x, c, A ≥ 0,

H(x, c, A) ≤ max

{
0, 1− Ak(c)

1 + A/2

}
(31)

with k(x) given by (13).

Proof. First note that, for some θ between c and x + c, k(c) − k(x + c) = −xk′(θ) ≤
−xk′(0) = 1

2
x since k′′(x) > 0 and k′(0) = −1

2
. Hence

H(x, c, A) ≤ e−x − Ak(x)k(x+ c)

1 + A/2
:= H(x, c, A).

Next, we prove that H(x, c, A) ≤ max(0, H(0, c, A)), even though H(x, c, A) is not neces-
sarily monotone in x. Note that H(∞, c, A) = 0. We claim that at any stationary point of
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the function x → H(x, c, A), we must have H < 0. Routine computation shows that, at a
value x with ∂H/∂x = 0,

H(x, c, A) = − A

1 + A/2

(
k(x)k′(x+ c) + k′(x)k(x+ c) + k(x)k(x+ c)

)
. (32)

The function k(x) defined by (13) can be expressed as

k(x) =

∫ 1

0

e−tx dt

and therefore

k(x)k′(x+ c) + k′(x)k(x+ c) + k(x)k(x+ c) =

∫ 1

0

∫ 1

0

e−tx−s(x+c)(1− t− s) dt ds := F (x, c).

Now F (0, 0) = 0 and, since x, c ≥ 0,

∂F

∂c
= −

∫ 1

0

∫ 1

0

s e−tx−s(x+c)(1− t− s) dt ds

≥ −
∫ 1

0

∫ 1

0

s(1− t− s) dt ds =
1

12

so F (x, c) increases with c for each fixed x ≥ 0 and therefore, for x ≥ 0,

F (x, c) ≥ F (x, 0) =

∫ 1

0

∫ 1

0

e−(t+s)x(1− t− s) dt ds

=
x− 2 + 4e−x − (x+ 2)e−2x

x3
.

Finally, we show that the numerator of this expression is non-negative. Letting ϕ(x) =
x− 2 + 4e−x − (x+ 2)e−2x, we have ϕ(0) = 0, ϕ′(0) = 0 and ϕ′′(x) = 4e−2x(ex − 1− x) ≥ 0
for all x ≥ 0. Hence ϕ(x) ≥ 0 for all x ≥ 0, and so F (x, c) ≥ 0 for all x, c ≥ 0. It follows
from (32) that H < 0 at any stationary point of the function x → H(x, c, A), as claimed.
From this, it follows that, for any c, A ≥ 0, the function x → H(x, c, A) is either negative
for all x ≥ 0 or attains its maximum at x = 0. Therefore H(x, c, A) ≤ max(0, H(0, c, A))
and the estimate (31) follows.

We present our main linear stability result as follows.

Theorem 2.3 Let (I∗,M∗) 6= (0, 0) be any non-trivial equilibrium of system (4), so that I∗

and M∗ satisfy (9). Assume that the hypotheses of Proposition 2.2 hold and that

e−τ(dI+f(I∗))b′(M∗) max

{
0, 1− b(M∗)f ′(I∗)τ 2k(c)

1 + b(M∗)f ′(I∗)τ 2/2

}
< dM + g(M∗) +M∗g′(M∗) (33)

with k(x) given by (13) and c in (16). Then (I∗,M∗) is locally asymptotically stable.
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Proof. Working with the characteristic equation in its alternative form (14), we know
from Proposition 2.2 that only its real roots need to be considered. Using the bound in
Proposition 2.3, with the value of A given in (16), any real root λ ≥ 0 of the characteristic
equation must satisfy

dM + g(M∗) +M∗g′(M∗) ≤ λ+ dM + g(M∗) +M∗g′(M∗)

= e−τ(dI+f(I∗))b′(M∗)H(λτ, c, A)

≤ e−τ(dI+f(I∗))b′(M∗) max

{
0, 1− Ak(c)

1 + A/2

}
.

Since A is given in (16), it follows that if (33) holds then in fact no real roots with λ ≥ 0
can exist. The stability assertion follows.

2.5 Generic convergence to equilibria

Note that, when τ = 0, system (4) reduces to a scalar ordinary differential equation and
every bounded solution converges to an equilibrium. The folklore in the theory of delay
differential equations says that small delays are harmless and can be ignored (see, e.g., [22]).
In this section, among other things, we verify this folklore in the sense that the generic
convergence to equilibria remains valid for system (4) when τ is sufficiently small.

The theory in Smith and Thieme [24] is often appropriate for establishing results on
generic convergence. However, the monotonicity condition assumed in [24] is not satisfied
for system (4) because the recruitment term for the mature population, namely

b(M(t− τ)) exp

[
−dIτ −

∫ τ

0

f(I(t− τ + ξ)) dξ

]
,

is decreasing in the immature population, and the recruitment term for the immature pop-
ulation:

b(M(t))− b(M(t− τ)) exp

[
−dIτ −

∫ τ

0

f(I(t− τ + ξ)) dξ

]
is not nondecreasing in the mature population. Thus, a quasi-positive matrix used to con-
struct an exponential ordering may not exist.

Our approach is to combine comparison arguments and the persistence of linear stabil-
ity/instability of equilibria when the time delay is small. More precisely, we first employ
the implicit function theorem to show that small delay does not alter the local stability or
instability of equilibria. Then we sandwich the equation for the mature population between
two auxiliary equations which fit the framework of monotone semiflows established in [22]
when the delay is small. These two auxiliary equations become indistinguishable in the limit
when the delay tends to zero. Such a property enables us to use the persistence of local
asymptotic stability of equilibria to establish the generic convergence to equilibria when the
delay is small.

2.5.1 Equilibria

To study the persistence of global dynamics when the delay τ is small, we first introduce
a set of sufficient conditions under which the number, location and stability of equilibria do
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not change too much. We use Eτ , τ ≥ 0, to denote the set of all non-negative equilibria of
system (4). Note that E0 is the set of such equilibria for the model without delay, which
reduces to a one-dimensional undelayed ODE for the variable M only. Equilibria in the
absence of delay take the form (I,M) = (0,M0) ∈ E0 and, at such an equilibrium, there
is just one (real) eigenvalue, denoted λ0 in Lemma 2.2 below. Once delay is present, there
are always infinitely many eigenvalues associated with an equilibrium and stability is then
determined by the dominant eigenvalue.

Lemma 2.1 Assume that b, g ∈ C1(R,R+) satisfy

lim inf
x→∞

|b(x)− (dM + g(x))x| > 0 (34)

and
b′(M0)− dM − g′(M0)M0 − g(M0) 6= 0, ∀q0 := (0,M0) ∈ E0. (35)

Then the following two statements are valid:

(i) E0 consists of finitely many elements;

(ii) there exist τ0 > 0 and ε0 > 0 such that

Eτ ⊂
⋃

q0∈E0

Nε0(q0)

and the set Nε0(q0)∩Eτ ,∀q0 ∈ E0, τ ∈ [0, τ0], is a singleton {qτ}, where Nε0(q0) is the
ball in R2 centred at q0 with radius ε0. Furthermore, qτ is continuous in τ ∈ [0, τ0].

Proof. Assumption (34) ensures that E0 is bounded and assumption (35) ensures that E0

does not have an accumulation point. Therefore, the first statement of the theorem holds.

From the implicit function theorem, one can see from assumption (35) that in a neigh-
bourhood of each q0 ∈ E0, there is a unique equilibrium qτ ∈ Eτ when τ is small. Assump-
tion (34) excludes the possibility of a bifurcation of equilibria from infinity as τ increases
from 0 to a positive value. This, together with assumption (35), implies that each qτ is
isolated in Eτ and that Eτ is uniformly bounded for τ sufficiently small.

2.5.2 Persistence of linear stability

Lemma 2.2 Assume that the conditions in Lemma 2.1 hold. Let λ0 be the eigenvalue at the
equilibrium q0 ∈ E0. Then, for small positive τ , there is a continuous function λτ of τ such
that λτ is the dominant eigenvalue at the equilibrium qτ ∈ Eτ , where qτ := (Iτ ,M τ ) → q0

as τ → 0. An associated eigenfunction is given by (γ, 1)eλ
τ θ with

γ = γ(τ, λτ ) :=
b′(M τ )

∫ τ
0
e−ξ(λ

τ+dI+f(Iτ )) dξ

1 + b(M τ )f ′(Iτ )
∫ τ

0
e−ξ(dI+f(Iτ ))

∫ 0

−ξ e
λτ θ dθ dξ

.

18



Proof. For convenience, we rewrite the characteristic equation (14) as the following
system, with λ = c1 + ic2:{

0 = c1 + dM + g(M τ ) +M τg′(M τ )− b′(M τ )e−τ(dI+f(Iτ ))Re{H(λτ, cτ , Aτ )} := G1(λ, τ),

0 = c2 − b′(M τ )e−τ(dI+f(Iτ ))Im{H(λτ, cτ , Aτ )} := G2(λ, τ).

(36)
Since ∂G1(λ0, 0)/∂c1 = 1, applying the implicit function theorem to the first equation of
(36), with λ being real, we obtain the existence of a real eigenvalue λτ which is the unique
real eigenvalue near λ0 when τ is sufficiently small. Since

∂G1

∂c1

(λ0, 0)
∂G1

∂c2

(λ0, 0)

∂G2

∂c1

(λ0, 0)
∂G2

∂c2

(λ0, 0)

 =

(
1 0
0 1

)
,

we may apply the implicit function theorem to (36) with λ complex to conclude that, for
sufficiently small τ , the real eigenvalue λτ near λ0 is unique not only in R but also in C.

From relation (11) it is clear that (γ, 1)eλ
τ θ is an associated eigenfunction of λτ . Moreover,

γ is well defined when τ is small and γ → 0 as τ → 0.

Let λ = µτ be an eigenvalue at the equilibrium qτ such that

Reµτ ≥ λτ .

We show that, in fact, λτ = µτ when τ is sufficiently small. From (36),

|µτ | ≤ C0 + C1|H(µττ, cτ , Aτ )|
where C0 and C1 are two constants independent of small τ . Next we show that µτ is uniformly
bounded in small τ . Indeed, note that

H(µττ, cτ , Aτ ) = e−µ
τ τ − γ(τ, µτ )

b(M τ )f ′(Iτ )

b′(M τ )

∫ τ

0

eµ
τ (−τ+ξ) dξ

and

|γ(τ, µτ )| ≤
|b′(M τ )|

∫ τ
0
|e−ξ(µτ+dI+f(Iτ ))| dξ

1− b(M τ )|f ′(Iτ )|
∫ τ

0
e−ξ(dI+f(Iτ ))

∫ 0

−ξ |eµ
τ θ| dθ dξ

≤
|b′(M τ )|

∫ τ
0
e−ξ(Reµτ+dI+f(Iτ )) dξ

1− b(M τ )|f ′(Iτ )|
∫ τ

0
e−ξ(dI+f(Iτ ))

∫ 0

−ξ e
Reµτ θ dθ dξ

≤
|b′(M τ )|

∫ τ
0
e−ξ(λ

τ+dI+f(Iτ )) dξ

1− b(M τ )|f ′(Iτ )|
∫ τ

0

∫ 0

−ξ e
λτ θ dθ dξ

:= C2(τ),

where C2(τ) is uniformly bounded in small τ . It then follows that

|H(µττ, cτ , Aτ )| ≤ |e−µτ τ |+
∣∣∣∣γ(τ, µτ )

b(M τ )f ′(Iτ )

b′(M τ )

∫ τ

0

eµ
τ (−τ+ξ) dξ

∣∣∣∣
≤ e−λ

τ τ + C2(τ)

∣∣∣∣b(M τ )f ′(Iτ )

b′(M τ )

∣∣∣∣ ∫ τ

0

eλ
τ (−τ+ξ) dξ

:= C3(τ),
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where C3(τ) is uniformly bounded in small τ . Hence,

|µτ | ≤ C0 + C1C3(τ)

and therefore |µτ | is bounded in small τ .

Now we are ready to show that λτ = µτ when τ is small. As τ → 0, the boundedness
implies that µτ has a convergent subsequence. Denote the limit by µ0. Then µ0 is an
eigenvalue at q0, and hence, µ0 = λ0. By the uniqueness of the eigenvalue guaranteed by the
implicit function theorem, λτ = µτ when τ is small.

Notation. Let R+ := [0,+∞) and define A,B : R→ R by

A(s) = dI + f(s), B(s) = dM + g(s).

Obviously, both A and B are nondecreasing. For s > 0, define Xs = C([−s, 0],R). We equip
Xs with the topology induced by the maximum norm ‖ · ‖. Let Xs

+ = C([−s, 0],R+). For
any φ, ψ ∈ X, we write φ ≥ ψ provided that φ − ψ ∈ Xs

+. For any φ, ψ ∈ X, we write
φ > ψ provided that φ ≥ ψ but φ 6≡ ψ. For any φ, ψ ∈ X, we write φ > ψ provided that
φ− ψ ∈ IntXs

+.

Using the above notation, we may rewrite (5) in the form I(t) = h(It,Mt), where h :
Xτ ×Xτ → R is defined by

h(φ1, φ2) =

∫ 0

−τ
b(φ2(ξ))e−

∫ 0
ξ A(φ1(η)) dη dξ.

Note that relation (5) between the mature and immature populations holds at time t if and
only if, during the period [t−τ, t], there is no artificial introduction of immature individuals.
Therefore, model (4) is meaningful for t > 0 if and only if the initial functions defined in the
time interval [−τ, 0] belong to the set

Y τ
+ =

{
φ = (φ1, φ2) : φ2 ∈ Xτ

+, φ1(θ) =

∫ θ

−τ
b(φ2(ξ))e−

∫ θ
ξ A(φ1(η)) dη dξ

}
.

Clearly, Y τ
+ is much smaller than Xτ

+×Xτ
+ because φ1 is uniquely determined by φ2. We use

Zr
+ to denote the set of all functions φ = (φ1, φ2) : [−r, 0] → R2

+ having the following three
properties:

(i) there exists at most one discontinuous point s ∈ (−r,−τ ];

(ii) φ|[−r,s] = 0;

(iii) φ1(θ) = h((φ1)θ, (φ2)θ), θ ∈ [s, 0].

Then, Y τ
+ can be naturally extended to be a subset of Zr

+ by choosing s = −τ . We use U r
+

to denote the second component of such an extended set, that is,

U r
+ = {φ : [−r, 0]→ R+ : φ|[−r,−τ) ≡ 0, φ|[−τ,0] ∈ Xτ

+}.

In what follows, we are interested in the global dynamics of solutions of (4) with initial
functions in Y τ

+ .
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2.5.3 Two auxiliary equations

The recruitment term for the mature population at time t > 0 can be written as R(It,Mt),
where R : Zr

+ → R is defined by

R(φ1, φ2) = b(φ2(−τ)) exp

{∫ 0

−τ
−A(h((φ1)ξ, (φ2)ξ)) dξ

}
.

If f(s) is nondecreasing in s, then h(φ1, φ2) is non increasing in φ1 and R(φ1, φ2) is nonde-
creasing in φ1. Therefore, the recruitment term can be controlled in the following way:

b(φ2(−τ))e−A(0)τ ≥ R(φ1, φ2) ≥ b(φ2(−τ)) exp

{∫ 0

−τ
−A(h(0, (φ2)ξ)) dξ

}
. (37)

Also, when τ → 0, the immature population vanishes and the above three quantities all tend
to b(φ2(0)). Inequality (37) enables us to treat the equation for the mature population only.

We use relation (37) to construct two auxiliary equations which admit the comparison
principle under certain conditions. One of these is{

v′(t) = −B(v(t))v(t) + b(v(t− τ))e−A(0)τ ,

v0 = φ ∈ Xτ
+,

(38)

and the other is{
w′(t) = −B(w(t))w(t) + b(w(t− τ)) exp

{
−
∫ 0

−τ A(h(0, wt+ξ)) dξ
}
,

w0 = φ ∈ U r
+.

(39)

Assume that b is bounded by a nondecreasing function b1 with lims→∞ b1(s)/s = 0. Then one
may show that there exists K0 > 0 such that, for any K ≥ K0, [0, K] is positively invariant
for both (38) and (39), and any solution eventually enters [0, K]. Define

bmax = max
s∈[0,K0+1]

b(s), b′max = max
s∈[0,K0+1]

b′(s), b′min = min
s∈[0,K0+1]

b′(s), A′max = max
s∈[0,K0+1]

A′(s).

Let L1 ≥ A(0) be a Lipschitz constant for the function s→ sB(s), s ∈ [0, K0 + 1]. Define

τ1 := sup
µ>L1

1

µ− A(0)
ln

µ− L1

max{0+,−b′min}
(40)

and

τ2 := sup
µ>L1

1

2µ
ln

µ− L1

max{0+,−b′min}+ bmaxb′maxA
′
maxµ

−2
, (41)

where 0+ is understood as the limit to 0 from the right. The above simple expression for
τ2 has the advantage of being explicit but the most important requirement is for a number
µ > 0 such that the curly bracketed term in (43) is positive. This may in practice be the
case over a larger interval of τ than [0, τ2] with τ2 given by (41). In fact, if we vary b′min and
A′max, we find that τ2 → ∞ as max{0,−b′min} → 0 and A′max → 0. Similarly, τ1 → ∞ as
max{0,−b′min} → 0. In particular, when A′max = 0, that is, f ≡ 0, the model (4) is uncoupled
and the two auxiliary equations reduce to the second component of the decoupled model.

We have the following results on generic convergence for the two auxiliary equations.
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Lemma 2.3 (i) For φ ∈ Xτ
+, if τ ≤ τ1, then either v(t;φ) converges to some equilibrium

or there is a strictly decreasing sequence φn converging to φ such that v(t;φn) converges
to the same equilibrium for all n.

(ii) For φ ∈ U r
+, if τ ≤ τ2, then either w(t;φ) converges to some equilibrium or there is

a strictly increasing sequence φn converging to φ such that w(t;φn) converges to the
same equilibrium for all n.

Proof. We only prove (ii). The proof for (i) is similar and will be briefly commented on at
the end. Fix φ ∈ U r

+. There exists t1 > r such that

wt ∈ Xr
+, ‖wt‖ ≤ K0, t ≥ t1.

We use an argument similar to that in [22, Proposition 1.2, Ch. 6] to verify that the solution
semiflow {wt(t1; ·)}t≥0 on [0, K0 + 1] is strongly order preserving provided that τ ≤ τ2, with
τ2 defined in (41). In the notation introduced at (17) and thereafter, we write (39) in the
form w′(t) = f̆(wt) with

f̆(wt) = −B(w(t))w(t) +R(0, wt)

and we work with the exponential ordering ≤µ defined in (18). The application of the idea
in [22, Proposition 1.2, Ch. 6] requires that we check the existence of a µ > 0 such that,
whenever φ ≤µ ψ,

µ(ψ(0)− φ(0)) + f̆(ψ)− f̆(φ) ≥ 0.

Now take φ and ψ such that φ ≤µ ψ. Then

µ(ψ(0)− φ(0)) + f̆(ψ)− f̆(φ)

= µ(ψ(0)− φ(0)) + b(ψ(−τ)) exp

{
−
∫ 0

−τ
A

(∫ 0

−τ
b(ψ(ξ + η))edIη dη

)
dξ

}
− b(φ(−τ)) exp

{
−
∫ 0

−τ
A

(∫ 0

−τ
b(φ(ξ + η))edIη dη

)
dξ

}
−

(
B(ψ(0))ψ(0)−B(φ(0))φ(0)

)
.

From (18), φ ≤ ψ and so, by the Lipschitz property,

B(ψ(0))ψ(0)−B(φ(0))φ(0) ≤ |B(ψ(0))ψ(0)−B(φ(0))φ(0)| ≤ L1|ψ(0)−φ(0)| = L1(ψ(0)−φ(0))

giving a bound on the last term. The difference of the two terms involving exponentials can
be written as

b(ψ(−τ))

[
exp

{
−
∫ 0

−τ
A

(∫ 0

−τ
b(ψ(ξ + η))edIη dη

)
dξ

}
− exp

{
−
∫ 0

−τ
A

(∫ 0

−τ
b(φ(ξ + η))edIη dη

)
dξ

}]
+
[
b(ψ(−τ))− b(φ(−τ))

]
exp

{
−
∫ 0

−τ
A

(∫ 0

−τ
b(φ(ξ + η))edIη dη

)
dξ

}
(42)

22



and estimated as follows. By the mean value theorem, with c some unknown intermediate
value, and using the second property of (18), the last term in (42) can be bounded in absolute
value as follows:[

b(ψ(−τ))− b(φ(−τ))
]

exp

{
−
∫ 0

−τ
A

(∫ 0

−τ
b(φ(ξ + η))edIη dη

)
dξ

}
= b′(c)[ψ(−τ)− φ(−τ)] exp

{
−
∫ 0

−τ
A

(∫ 0

−τ
b(φ(ξ + η))edIη dη

)
dξ

}
≥ min{0, b′min}[ψ(−τ)− φ(−τ)]e−A(0)τ

≥ min{0, b′min}[ψ(0)− φ(0)]e(µ−A(0))τ .

By the mean value theorem applied to the function x → e−x, the first term in (42) can be
written in the form

−e−θb(ψ(−τ))

∫ 0

−τ

{
A

(∫ 0

−τ
b(ψ(ξ + η))edIη dη

)
− A

(∫ 0

−τ
b(φ(ξ + η))edIη dη

)}
dξ

for an unknown (positive) θ. Next we apply the mean value theorem to the integrand, and
then to the difference b(ψ(ξ + η))− b(φ(ξ + η)) that arises, giving

−e−θb(ψ(−τ))

∫ 0

−τ
A′(a(ξ))

∫ 0

−τ
b′(ζ(ξ, η))(ψ(ξ + η)− φ(ξ + η))edIη dη dξ

for some unknown positive functions a(ξ) and ζ(ξ, η). Since ξ+η ≤ 0, by the second property
in (18), ψ(ξ + η)− φ(ξ + η) ≤ (ψ(0)− φ(0))e−µ(ξ+η). Using also that edIη ≤ 1, the first term
in (42) can be bounded below by

−bmaxA
′
maxb

′
max(ψ(0)− φ(0))

∫ 0

−τ

∫ 0

−τ
e−µ(ξ+η)dη dξ,

i.e. by −bmaxA
′
maxb

′
max(ψ(0)− φ(0))(eµτ − 1)2/µ2. Putting all these estimates together,

µ(ψ(0)− φ(0)) + f̆(ψ)− f̆(φ)

≥
{
µ− L1 + min{0, b′min}e(µ−A(0))τ − bmaxA

′
maxb

′
max(eµτ − 1)2/µ2

}
(ψ(0)− φ(0))

(43)

and we need to find a µ > 0 for which the curly bracketed coefficient is non-negative. It
suffices to find a µ > 0 such that

µ− L1 + min{0, b′min}e2µτ − bmaxA
′
maxb

′
max

e2µτ

µ2
≥ 0 (44)

holds, since the latter requirement is stronger. A number µ > 0 satisfying (44) exists if
τ ≤ τ2, where τ2 is defined by (41).

The proof for case (i) is similar, but simpler. In this case we can show, with

f̆(v) = −B(v(0))v(0) + b(v(−τ))e−A(0)τ ,

that

µ(ψ(0)− φ(0)) + f̆(ψ)− f̆(φ) ≥
{
µ− L1 + min{0, b′min}e(µ−A(0))τ

}
(ψ(0)− φ(0))

and a suitable µ can be found if τ ≤ τ1, with τ1 defined by (40).

Note that wt1(θ, φ) can be approximated from below and above in [0, K0 + 1]. The proof
is then complete, by [22, Proposition 4.4, Ch. 1].
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2.5.4 Comparison principle

Let v(t;φ), t > 0 be the solution of (38) with v0 = φ ∈ Xτ
+, w(t;ψ) be the solution of

(39) with w0 = ψ ∈ U τ
+, and (I(t;ϕ),M(t;ϕ)) be the solution of model (4) with (I0,M0) =

ϕ := (ϕ1, ϕ2) ∈ Xτ
+ ×Xτ

+.

Lemma 2.4 Let K > K0 be fixed. Then there exists τ3 = τ3(K) > 0 such that for τ ≤ τ3,
v(t;φ) ≥M(t;ϕ) ≥ w(t;ψ), t > 0 provided that

K ≥ φ(θ) ≥ ϕ2(θ) ≥ ψ(θ), θ ∈ [−τ, 0].

Proof. The proof is similar to that of [22, Theorem 1.1, Ch. 6]. We omit the details.

2.5.5 Generic convergence to equilibria when the delay is small

Let Eτ , τ ≥ 0, be the equilibria set of (4). For ε > 0, define the set

E0
ε :=

⋃
q0∈E0

Nε(q0),

where Nε(q0) ⊂ R2 is the ball centred at q0 with radius ε. For K ≥ K0, define the set

Qτ
K :=

{
φ2 : φ = (φ1, φ2) ∈ Y τ

+ with ‖φ2‖ ≤ K and lim
t→∞

(I(t;φ),M(t;φ)) ∈ Eτ
}
.

Theorem 2.4 Assume that the conditions in Lemma 2.1 are satisfied. Then, for K ≥ K0,
there exists τ4 = τ4(K) > 0 such that Qτ

K is dense in [0, K]Xτ
+

when τ ≤ τ4.

Proof. Define the set

P := {x ∈ R+ : (0, x) ∈ E0 is unstable}

and
S = {φ = (φ1, φ2) ∈ Y τ

+ : φ2(0) 6∈ P}.
Clearly, S is dense in Y τ

+ . We divide the proof into two steps.

Step 1. Show that for ε > 0 and φ ∈ S, there exists q0 ∈ E0, τ5 and t2 > 0 such that

(I(t;φ),M(t, φ)) ∈ Nε(q0), τ ∈ [0, τ5], t ≥ t2.

Indeed, assume, without loss of generality, that φ2 > 0. Otherwise, M(t;φ) ≡ 0. We use
φ̃2 ∈ U r

+ to denote the natural extension of φ2. Then there exists ψτ,+n ∈ Xτ
+ and ψτ,−n ∈ U r

+

such that
ψτ,−n < ψτ,−n+1 < · · · < φ̃2

and
φ2 < · · · < ψτ,+n+1 < ψτ,+n , n ≥ 1.

By [22, Proposition 4.4, Ch.1], we see that when τ ≤ min{τ1, τ2, τ5} there exists an equilib-
rium vτ of (38) such that either

lim
t→∞

v(t, φ2) = vτ
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or
lim
t→∞

v(t;ψτ,+n ) = vτ , ∀n ≥ 1.

Similarly, there exists an equilibrium wτ of (39) such that either

lim
t→∞

w(t, φ̃2) = wτ

or
lim
t→∞

w(t;ψτ,−n ) = wτ , ∀n ≥ 1.

By the comparison principle, we have

wτ ≤ lim inf
t→∞

M(t) ≤ lim sup
t→∞

M(t) ≤ vτ .

Next, we show that |wτ−vτ | → 0 as τ → 0. We argue by contradiction assuming that, up
to a subsequence, limτ→0w

τ = w0 6= v0 = limτ→0 v
τ . Note that, when τ → 0, the functions

w(t, φ2), w(t;ψτ,−n ), v(t, φ2) and v(t;ψτ,+n ) converge (up to a subsequence) uniformly in t ≥ 0
to z1(t), z2,n(t), z3(t) and z4,n(t) which are all solutions of

z′(t) = −B(z(t))z(t) + b(z(t))

with initial values φ2(0), limτ→0 φ
τ,−
n (0), φ2(0) and limτ→0 φ

τ,+
n (0), respectively. Since

lim
n→∞

lim
τ→0

φτ,±n (0) = φ2(0) 6∈ P,

solutions z1(t), z2,n(t), z3(t) and z4,n(t) converge to the same equilibrium z∗ as t → ∞ for
large n. This contradicts w0 6= v0. Thus, the first step is complete.

Step 2. We show that the unique equilibrium qτ in Nε(q0) found in Step 1 is linearly
asymptotically stable and

lim
t→∞

(I(t;φ),M(t, φ)) = qτ .

Indeed, from Step 1 we know that q0 must be linearly stable. Let λτ < 0 be the dominant
eigenvalue at the equilibrium qτ . Since limτ→0 λ

τ = λ0, we may define a negative number

λmax = max
τ≤τ4
{λτ}.

We rewrite (4) as an abstract ODE of the form

y′(t) = Ly(t) +H(y(t)),

where y(t) = (It,Mt) − qτ , L is the linear part and H is the higher order term. For ε > 0,
there exists δ > 0 such that

‖H(y(t))‖ ≤ ε‖y(t)‖ when ‖y(t)‖ ≤ δ.

Then we can choose τ and δ small enough such that

‖y(t)‖ ≤ ‖y(0)‖eλmaxt +

∫ t

0

eλ
max(t−s)−λmax

2
|y(s)| ds.

By Grownwall’s inequality, ‖y(t)‖X ≤ ‖y(0)‖Xe
1
2
λmaxt → 0 as t→∞.
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Theorem 2.5 Assume that the conditions in Lemma 2.1 are satisfied. If E0 consists of no
more than two elements, then there exists τ6 > 0 such that all solutions of (4) starting from
Y τ

+ are convergent to the unique stable equilibrium when τ ≤ τ6, where τ6 is independent of
the initial functions.

Proof. If E0 consists of no more than two elements, then there exists a unique linearly
stable equilibrium in Eτ when τ is small. At the same time, if M(t) 6≡ 0, then M(t) > 0 for
all large time for any τ .

Now we repeat the arguments in the proof of Theorem 2.4 but with the initial time being
taken as a large number t3 such that M(t3) > 0 and the solution (It,Mt) lies in a small
neighborhood of the global attractor for all time t ≥ t3. The rest of the proof is the same as
that of Theorem 2.4.

Remark 2.1 The global convergence result established in Theorem 2.5 is also valid for (4)
with initial functions in Xτ

+ ×Xτ
+.

2.6 Uniqueness of positive equilibria and global stability

One by-product of the threshold dynamics result (Theorem 2.2) is the existence of at
least one positive equilibrium when R0 > 1. In what follows, we show that under certain
conditions there is just one positive equilibrium.

Proposition 2.4 Assume that

(i) the birth rate function b is increasing and subhomogeneous (sublinear), that is b(αx) ≥
αb(x) for any α ∈ [0, 1] and x ≥ 0;

(ii) the nonnegative functions f , g are nondecreasing.

Then, the positive equilibrium (if it exists) is unique.

Proof. If (I,M) is an equilibrium for system (4), then it satisfies

dII + f(I)I = b(M)− b(M)e−dIτ−f(I)τ ,

dMM +Mg(M) = b(M)e−dIτ−f(I)τ .

If there are two positive equilibria, say (I1,M1) and (I2,M2), then it is easy to see that
I1 6= I2 and M1 6= M2. Without loss of generality, we assume M1 < M2 and, therefore, there
is α ∈ (0, 1) such that M1 = αM2. Since the function b is subhomogeneous, we have

b(αM2) ≥ αb(M2).

Therefore,

e−dIτ−f(I1)τ =
dMM1 +M1g(M1)

b(M1)
=
α[dMM2 +M2g(αM2)]

b(αM2)

≤ α[dMM2 +M2g(αM2)]

αb(M2)
≤ α[dMM2 +M2g(M2)]

αb(M2)

= e−dIτ−f(I2)τ ,
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from which we see that I1 > I2, since f is nondecreasing and I1 6= I2. Define

h(x) =
dIx+ f(x)x

1− e−dIτ−f(x)τ
=

A(x)x

1− e−A(x)τ

with A(x) = dI + f(x), as in Section 2.5. Then, A′(x) ≥ 0 for all x > 0 and

h′(x) =
(A(x) + xA′(x))(1− e−A(x)τ )− A(x)xA′(x)τe−A(x)τ

(1− e−A(x)τ )2
.

We estimate the numerator of h′(x) as follows:

(A(x) + xA′(x))(1− e−A(x)τ )− A(x)xA′(x)τe−A(x)τ

>(A(x) + xA′(x))(1− e−A(x)τ )− (A(x) + xA′(x))A(x)τe−A(x)τ

=(A(x) + xA′(x))(1− e−A(x)τ − A(x)τe−A(x)τ ) ≥ 0

since 1− e−A(x)τ −A(x)τe−A(x)τ ≥ 0 for all τ . Therefore, h(x) is an increasing function and

b(M1) = h(I1) > h(I2) = b(M2),

a contradiction. Hence, we must have I1 = I2 and M1 = M2.

Combining the previous proposition with the persistence (Theorem 2.2), local stability
(Theorem 2.3) and generic convergence results (Theorem 2.4), we have the global stability
of the positive equilibrium when the delay τ is small.

Theorem 2.6 Assume that

(i) the birth rate function b is increasing and strictly subhomogeneous (sublinear), that is
b(αx) > αb(x) for any α ∈ (0, 1) and x > 0;

(ii) the nonnegative functions f , g are nondecreasing.

Then, if R0 > 1, system (4) admits a positive equilibrium which is globally asymptotically
stable to all nontrivial solutions.

3 Two-strain competition

In this section we consider competition between two strains u(t, a) and v(t, a). The
variables

Iu(t) =

∫ τ

0

u(t, a) da, Iv(t) =

∫ τ

0

v(t, a) da, Mu(t) =

∫ ∞
τ

u(t, a) da, Mv(t) =

∫ ∞
τ

v(t, a) da

(45)
stand for the total numbers at time t of larvae (I) and adults (M) of each of the strains u
and v. The following equations describe competition at the immature stage and are therefore
for ages a ∈ (0, τ):

∂u(t, a)

∂t
+
∂u(t, a)

∂a
= −dIuu(t, a)− u(t, a)fuu(Iu(t))− u(t, a)fuv(Iv(t)),

∂v(t, a)

∂t
+
∂v(t, a)

∂a
= −dIvv(t, a)− v(t, a)fvv(Iv(t))− v(t, a)fvu(Iu(t)).

(46)
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For competition at the mature stage, i.e. for ages a > τ :

∂u(t, a)

∂t
+
∂u(t, a)

∂a
= −dMuu(t, a)− u(t, a)guu(Mu(t))− u(t, a)guv(Mv(t)),

∂v(t, a)

∂t
+
∂v(t, a)

∂a
= −dMvv(t, a)− v(t, a)gvv(Mv(t))− v(t, a)gvu(Mu(t)).

(47)

The functions fuu(·), fuv(·), fvu(·), fvv(·) in (46) all increase with respect to their single
variable. Intra-specific competition among the larvae of strain u is described by fuu(·), while
fuv(·) describes the competitive effect of the larvae of strain v on the larvae of strain u.
Similar interpretations can be given to fvu(·) and fvv(·). Similar assumptions and simi-
lar interpretations apply to the g functions in (47) which describe intra- and interspecific
competition among the adults of the two strains. From (45), (46) and (47),

dIu(t)

dt
= u(t, 0)− u(t, τ)− [dIu + fuu(Iu(t)) + fuv(Iv(t))]Iu(t),

dIv(t)

dt
= v(t, 0)− v(t, τ)− [dIv + fvv(Iv(t)) + fvu(Iu(t))]Iv(t),

dMu(t)

dt
= u(t, τ)− [dMu + guu(Mu(t)) + guv(Mv(t))]Mu(t),

dMv(t)

dt
= v(t, τ)− [dMv + gvv(Mv(t)) + gvu(Mu(t))]Mv(t). (48)

The terms u(t, 0) and v(t, 0) are the birth rates for strains u and v and we assume

u(t, 0) = bu(Mu(t),Mv(t)), v(t, 0) = bv(Mu(t),Mv(t)),

and that bu and bv satisfy

bu(0,Mv) = 0 and bv(Mu, 0) = 0 (49)

where bu and bv are functions representing the egg laying rates for strains u and v. The
egg laying rate for strain u must be zero if no adults of that strain are present, hence the
assumption bu(0,Mv) = 0 and similarly for strain v. We allow the egg laying rate bu for strain
u to depend not only on the number of adults Mu(t) of that strain, but also on the number
of adults Mv(t) of the other strain. Dependence on both Mu(t) and Mv(t) is likely if the
adults of two strains compete for a common limited food resource, since a significant increase
in the number of adults of one strain will make it more difficult for the adults of the other
strain to find enough food, and this in turn will affect their egg-laying rate. A particular
case would be to have bu depending only on Mu(t), and bv depending only on Mv(t), which
would probably be reasonable if the two strains consume different food resources or share a
resource available in abundance. Note that both intra- and interspecific competition among
adults is also modelled by terms in the right hand sides of (47). The terms u(t, τ) and v(t, τ)
are the maturation rates for the two strains, and these can be computed using the equations
of system (46) using integration along characteristics as explained in Section 2. The outcome
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is that, for ages a ≤ τ ,

u(t, a) = bu(Mu(t− a),Mv(t− a))

× exp

(
−
∫ a

0

{dIu + fuu(Iu(η + t− a)) + fuv(Iv(η + t− a))} dη
)
,

v(t, a) = bv(Mu(t− a),Mv(t− a))

× exp

(
−
∫ a

0

{dIu + fvv(Iv(η + t− a)) + fvu(Iu(η + t− a))} dη
)
,

from which we calculate u(t, τ) and v(t, τ). Equations (48) become

dIu(t)

dt
= bu(Mu(t),Mv(t))− bu(Mu(t− τ),Mv(t− τ))

× exp

(
−
∫ τ

0

{dIu + fuu(Iu(η + t− τ)) + fuv(Iv(η + t− τ))} dη
)

(50)

− [dIu + fuu(Iu(t)) + fuv(Iv(t))]Iu(t),

dIv(t)

dt
= bv(Mu(t),Mv(t))− bv(Mu(t− τ),Mv(t− τ))

× exp

(
−
∫ τ

0

{dIu + fvv(Iv(η + t− τ)) + fvu(Iu(η + t− τ))} dη
)

(51)

− [dIv + fvv(Iv(t)) + fvu(Iu(t))]Iv(t),

dMu(t)

dt
= bu(Mu(t− τ),Mv(t− τ))

× exp

(
−
∫ τ

0

{dIu + fuu(Iu(η + t− τ)) + fuv(Iv(η + t− τ))} dη
)

(52)

− [dMu + guu(Mu(t)) + guv(Mv(t))]Mu(t),

dMv(t)

dt
= bv(Mu(t− τ),Mv(t− τ))

× exp

(
−
∫ τ

0

{dIu + fvv(Iv(η + t− τ)) + fvu(Iu(η + t− τ))} dη
)

(53)

− [dMv + gvv(Mv(t)) + gvu(Mu(t))]Mv(t).

Assumption (49) implies that if either strain is absent the above model reduces to the form
of model (4) for the remaining strain.

We are interested in the stability of the boundary equilibria of model (50)–(53), i.e. those
equilibria in which one strain is absent. This enables us to make predictions about the roles
of larval vs. adult competition in determining the outcome of the competition between the
two strains. In an equilibrium in which the v strain is absent, the I and M components of
the u strain, denoted I∗u and M∗

u , satisfy

M∗
u(dMu + guu(M

∗
u)) = bu(M

∗
u , 0) exp{−τ(dIu + fuu(I

∗
u))},

I∗u(dIu + fuu(I
∗
u)) = bu(M

∗
u , 0)

(
1− exp{−τ(dIu + fuu(I

∗
u))}

)
.

(54)

On setting Iu = I∗u + Ĩu, Mu = M∗
u + M̃u, Iv = Ĩv and Mv = M̃v, with ∼ denoting a small

perturbation, we find that the linearisation of system (50)–(53) about the steady state with
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Iu = I∗u, Mu = M∗
u and Iv = Mv = 0 is as follows, where the subscript ∗ denotes evaluation

at (M∗
u , 0):

dĨu(t)

dt
= M̃u(t)

[
∂bu
∂Mu

]
∗

+ M̃v(t)

[
∂bu
∂Mv

]
∗

− exp{−τ(dIu + fuu(I
∗
u))}

[
M̃u(t− τ)

[
∂bu
∂Mu

]
∗

+ M̃v(t− τ)

[
∂bu
∂Mv

]
∗

−bu(M∗
u , 0)

∫ τ

0

{
f ′uu(I

∗
u)Ĩu(η + t− τ) + f ′uv(0)Ĩv(η + t− τ)

}
dη

]
−
(
dIu + fuu(I

∗
u) + I∗uf

′
uu(I

∗
u)
)
Ĩu(t)− I∗uf ′uv(0)Ĩv(t), (55)

dĨv(t)

dt
=

[
∂bv
∂Mv

]
∗
M̃v(t)− e−τ(dIu+fvu(I∗u))

[
∂bv
∂Mv

]
∗
M̃v(t− τ)− (dIv + fvu(I

∗
u))Ĩv(t),(56)

dM̃u(t)

dt
= exp{−τ(dIu + fuu(I

∗
u))}

[
M̃u(t− τ)

[
∂bu
∂Mu

]
∗

+ M̃v(t− τ)

[
∂bu
∂Mv

]
∗

−bu(M∗
u , 0)

∫ τ

0

{
f ′uu(I

∗
u)Ĩu(η + t− τ) + f ′uv(0)Ĩv(η + t− τ)

}
dη

]
−
(
dMu + guu(M

∗
u) +M∗

ug
′
uu(M

∗
u)
)
M̃u(t)−M∗

ug
′
uv(0)M̃v(t), (57)

dM̃v(t)

dt
= e−τ(dIu+fvu(I∗u))

[
∂bv
∂Mv

]
∗
M̃v(t− τ)− (dMv + gvu(M

∗
u))M̃v(t), (58)

where in various places we have used assumption (49), which implies in particular that
bv(M

∗
u , 0) = [∂bv/∂Mu](M∗

u ,0) = 0. We may now prove the following theorem concerning the
local stability of any equilibrium in which the v strain is absent. Inequality (60) ensures
the stability of such an equilibrium to perturbations in which the v strain remains absent.
The addition of inequality (59) ensures that the equilibrium remains stable to perturbations
involving small introductions of the v strain.

Theorem 3.1 Let (I∗u, 0,M
∗
u , 0) be an equilibrium of (50)–(53) with I∗u > 0 and M∗

u > 0
satisfying (54). Suppose the birth functions bu and bv satisfy (49) and that the functions fij
and gij, for i, j ∈ {u, v}, are all strictly increasing, differentiable and all satisfy fij(0) =
gij(0) = 0. Suppose also that [∂bu/∂Mu](M∗

u ,0) > 0 and that

e−τ(dIu+fvu(I∗u))

∣∣∣∣∣
[
∂bv
∂Mv

]
(M∗

u ,0)

∣∣∣∣∣ < dMv + gvu(M
∗
u) (59)

and

e−τ(dIu+fuu(I∗u))

[
∂bu
∂Mu

]
(M∗

u ,0)

max

{
0, 1− bu(M

∗
u , 0)f ′uu(I

∗
u)τ 2k(cu)

1 + bu(M∗
u , 0)f ′uu(I

∗
u)τ 2/2

}
< dMu + guu(M

∗
u) +M∗

u g
′
uu(M

∗
u)

(60)

with k(x) given by (13) and cu = τ(dIu + fuu(I
∗
u)). Then the equilibrium (I∗u, 0,M

∗
u , 0) is

locally asymptotically stable as a solution of (50)–(53).
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Proof. Inequality (59) and Theorem 3.2.1 in Kuang [13] imply that the solution M̃v(t)
of (58) satisfies M̃v(t) → 0 as t → ∞. It then follows from (56) that Ĩv(t) → 0. It is
then sufficient to prove that (Ĩu(t), M̃u(t)) → (0, 0) in the case when Ĩv(t) = M̃v(t) = 0.
But in this case the linearised analysis reduces to the corresponding analysis for the single
species model presented in Section 2; see in particular Theorem 2.3. Inequality (60) is just
inequality (33) of Theorem 2.3, adapted to the notation of system (50)–(53).

4 Simulations

We present the results of some numerical simulations of system (4), using mosquito
growth as a case study. It is generally accepted that mosquito populations are regulated
by density-dependent factors, particularly in the larval stage of development when there
is additional density-dependent mortality [4]. We assume that intra-specific competition
increases the death rate for both immature and adult mosquitoes, and therefore we made
the following choices for the functions f and g in (2) and (4):

f(x) = µIx and g(x) = µMx (61)

where µI = 0.01 per larva, and µM=0.001 per adult, per day. The density-independent
contributions to the per-capita larval and adult mortality rates were taken as dI = 0.2 and
dM = 0.03 per day. The female mosquito birth rate was taken as b(M(t)) = bM(t), with
b = 3 per day. These parameters are consistent with those suggested in [8]. The maturation
delay τ is sensitive to the local weather conditions, and tends to decrease as temperature
increases [8].

If, due to a temperature drop, the maturation delay increases from τ = 10 to τ = 23.5,
then the basic reproduction number drops from 13.53 to 0.91. Simulations for both scenarios
support the hypothesis that if R0 > 1 all non-trivial non-negative solutions of system (4)
approach the positive equilibrium (see Figs. 1(b) and 2), while if R0 < 1 solutions approach
zero (see Fig. 1(a)). Other simulations not included here suggest that the global stability
of the non-zero equilibrium holds, for the parameter values just mentioned, for any other
τ such that R0 > 1. Moreover, increasing the parameter µI , which was introduced in (61)
and measures the density-dependent contribution to per-capita larval mortality, significantly
decreases the equilibrium numbers of both larval and adult mosquitoes (see Fig. 2). However,
R0 is independent of µI andR0 > 1 for the chosen values of the other parameters. Therefore,
for those parameter values, the mosquito population persists for arbitrarily large µI .
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(a) τ = 23.5 days.
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(b) τ = 10 days.

Figure 1: Solutions of (4) for various initial values and two values of τ . In (a) the numbers of
immature and adult mosquitoes tend to zero; in (b) they tend to positive equilibrium values.
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Figure 2: Solutions of (4) for various values of the parameter µI , introduced in (61), which
measures the density-dependent contribution to per-capita larval mortality. For the chosen
parameter values, R0 = 13.53 independently of µI .
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