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Abstract: Pan-sharpening is a technique to combine the fine spatial resolution panchromatic (PAN) 11 

band with the coarse spatial resolution multispectral bands of the same satellite to create a fine 12 

spatial resolution multispectral image. In this paper, area-to-point regression kriging (ATPRK) is 13 

proposed for pan-sharpening. ATPRK considers the PAN band as the covariate. Moreover, 14 

ATPRK is extended with a local approach, called adaptive ATPRK (AATPRK), which fits a 15 

regression model using a local, non-stationary scheme such that the regression coefficients change 16 

across the image. The two geostatistical approaches, ATPRK and AATPRK, were compared to the 17 

13 state-of-the-art pan-sharpening approaches summarized in Vivone et al. (2015) in experiments 18 

on three separate datasets. ATPRK and AATPRK produced more accurate pan-sharpened images 19 

than the 13 benchmark algorithms in all three experiments. Unlike the benchmark algorithms, the 20 

two geostatistical solutions precisely preserved the spectral properties of the original coarse data. 21 

Furthermore, ATPRK can be enhanced by a local scheme in AATRPK, in cases where the residuals 22 

from a global regression model are such that their spatial character varies locally. 23 
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1. INTRODUCTION 26 

Satellite sensors such as WorldView, QuickBird, IKONOS, SPOT and Landsat ETM+ can 27 

acquire information about the same area on the Earth’s surface at different spatial resolutions and 28 

in different wavebands. For example, the WorldView multispectral sensor can acquire images in 29 

eight bands with a spatial resolution of 2 m, while the WorldView panchromatic (PAN) sensor can 30 

acquire a single band image with a spatial resolution of 0.5 m. It is of great interest to fuse such fine 31 

spatial resolution PAN band images with coarse spatial resolution multispectral bands covering the 32 

same area to generate a fine spatial resolution multispectral image. Pan-sharpening is an image 33 

fusion technique developed for this purpose. By taking full advantage of images in different 34 

wavebands from the same satellite, pan-sharpened data are able to provide more detailed 35 

land-cover/land-use (LCLU) information than the original multispectral data. 36 

Pan-sharpening has been a lively topic in the remote sensing community and has motivated 37 

considerable research over the past decades. Several reviews on pan-sharpening approaches exist 38 

(Vivone et al., 2015; Pohl et al., 1998; Wang et al., 2005; Zhang and Mishra, 2014; Zhang, 2010). 39 

Vivone et al. (2015) reviewed some widely used pan-sharpening algorithms and categorized them 40 

into two main types, including component substitution (CS) and multiresolution analysis (MRA). 41 

The core idea of CS is to transform the original multispectral data into another space and substitute 42 

one of the components with the PAN band. Algorithms falling into this type include 43 

intensity-hue-saturation (IHS) (Tu et al., 2001; Zhou et al., 2014), Brovey transformation 44 

(Gillespie et al., 1987), principal component analysis (PCA) (Shettigara et al., 1992), 45 

Gram-Schmidt (GS) transformation (Laben and Brower, 2000), adaptive GS (GSA) (Aiazzi et al., 46 

2007), and partial replacement adaptive component substitution (PRACS) (Choi et al., 2011). The 47 

MRA approach injects the spatial detail produced by multiresolution decomposition of the PAN 48 

band. Common MRA examples are high-pass filtering (HPF) (Chavez Jr. et al., 1991), smoothing 49 

filter-based intensity modulation (SFIM) (Liu, 2000), decimated wavelet transform using an 50 
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additive injection model (Indusion) (Khan et al., 2008), a trous wavelet transform (ATWT) 51 

(Vivone et al., 2014), additive wavelet luminance proportional (AWLP) (Nunez et al., 1999), 52 

ATWT using the Model 2 (ATWT-M2) (Ranchin and Wald, 2000) and Model 3 (ATWT-M3) 53 

(Ranchin and Wald, 2000), generalized Laplacian pyramid (GLP) with modulation transfer 54 

function (MTF)-matched filter (MTF-GLP) (Aiazzi et al., 2006), and GLP with MTF-matched 55 

filter and multiplicative injection model (MTF-GLP-HPM) (Lee and Lee, 2010). In addition, 56 

sparse representation-based pan-sharpening approaches have also received increasing attentions 57 

(Cheng et al., 2015). 58 

Geostatistical solutions provide another family of approaches for pan-sharpening. They have the 59 

significant advantage of preserving the spectral properties of the observed coarse images: that is, 60 

when upscaling the pan-sharpened image to the original coarse spatial resolution, the result is 61 

identical to the original one, a property referred to as perfect coherence. Pardo-Iguzquiza et al. 62 

(2006) sharpened Landsat ETM+ images with downscaling cokriging (DSCK), which treats each 63 

observed coarse band as the primary variable and the PAN band as the secondary variable. DSCK 64 

was extended with a spatially adaptive filtering scheme (Pardo-Iguzquiza et al., 2006), in which the 65 

cokriging weights change across the whole image. Tang et al. (2015) considered multiple-point 66 

statistics as a post-processing step of DSCK to increase the accuracy of pan-sharpening. Atkinson 67 

et al. (2008) extended the DSCK approach to increase the spatial resolution of the multispectral 68 

bands beyond that of any input images including the PAN band. However, the one-stage DSCK 69 

approach requires complex auto-semivariogram and cross-semivariogram modeling for each 70 

coarse band, which makes it difficult to automate (Sales et al., 2013). 71 

Similarly to the issue defined for pan-sharpening, some other geostatistical solutions were 72 

developed for fusing MODIS bands 1-2 and bands 3-7. Specifically, Sales et al. (2013) proposed a 73 

kriging with external drift (KED) approach. KED requires only auto-semivariogram modeling for 74 

the observed coarse band and is easier to implement than DSCK (Sales et al., 2013). KED, however, 75 
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suffers from expensive computational cost, as it computes kriging weights locally for each fine 76 

pixel (Sales et al., 2013). The computing time is related directly with the number of fine pixels to be 77 

predicted. In view of this, in previous work (Wang et al., 2015), we proposed an area-to-point 78 

regression kriging (ATPRK) approach for MODIS image downscaling. ATPRK is faster than KED 79 

and more user-friendly than DSCK. Moreover, ATPRK can incorporate readily other 80 

supplementary data for possible enhancement. 81 

The objective of fusing MODIS bands 1-2 and bands 3-7 is physically different from that for 82 

pan-sharpening other data (e.g., very high resolution (VHR) images). First, MODIS bands 1-2 and 83 

bands 3-7 are not acquired in the same spectral range, while the PAN and corresponding 84 

multispectral bands of the satellite sensor are almost in the same spectral range. Thus, the PAN 85 

band can, theoretically, provide more relevant fine spatial resolution information for sharpening. 86 

Second, due to the differences in spatial resolution, the spatial content in MODIS data is generally 87 

different from that in Landsat and VHR images. The 500 m MODIS images are commonly used for 88 

global monitoring of large scale LCLU information, such as in relation to vegetation, water and 89 

snow cover. The 2-4 m VHR images are used generally for local detection or monitoring of 90 

small-sized LCLU objects of interest, including impervious surfaces, urban objects, and military 91 

targets (such as planes and ships). 92 

In this paper, based on encouraging performance in relation to MODIS image fusion (Wang et 93 

al., 2015) and its theoretical advantages, ATPRK is proposed for pan-sharpening. ATPRK models 94 

the overall trend in the target variables (i.e., fine spatial resolution pixels to be predicted) by 95 

regression of the primary variables (i.e., coarse spatial resolution bands to be downscaled) on a 96 

covariate (i.e., the PAN band degraded to coarse spatial resolution) (Hengl et al., 2004,2007). 97 

Area-to-point kriging (ATPK) (Kyriakidis and Yoo, 2005; Kyriakidis, 2004; Atkinson, 2013) is 98 

then performed as the second step to downscale the coarse residuals from the regression process, 99 



 

 

5 

the output of which are finally added back to the regression predictions to produce pan-sharpened 100 

images. 101 

In Wang et al. (2015), the regression model was built using the global image (i.e., all pixels in the 102 

coarse band and the PAN band) and the regression coefficients were fixed for each coarse pixel. 103 

However, the spatial structure of LCLU sometimes demands a non-stationary model, that is, with 104 

parameters that vary spatially (Wang et al., 2014). For example, in the studied image, some large 105 

regions may be dominated by impervious surfaces in urban areas, while some other large regions 106 

may be mainly covered by vegetation. The obvious difference in spectra of the LCLU classes will 107 

lead to the requirement for non-stationary parameters and, thus, the relationship between the coarse 108 

band and the PAN band may not be sufficiently characterized by a single, global regression model. 109 

To this end, a secondary objective of this paper was to extend the recently developed ATPRK with 110 

a spatially adaptive scheme, called adaptive ATPRK (AATPRK). AATPRK characterizes the 111 

relationship between each coarse band and the PAN band using the local spatial structure and a 112 

regression model fitted on a per-coarse pixel basis. 113 

The contributions of this paper are, thus, threefold. 114 

1) A new geostatistical approach, ATPRK, is applied for pan-sharpening VHR images for the 115 

first time. The problem of pan-sharpening VHR images is an important one, is commonly 116 

encountered in remote sensing, and is different from the fusion of medium spatial resolution 117 

images (e.g., MODIS images), as mentioned above. 118 

2) A systematic comparison between ATPRK and the state-of-the-art approaches to 119 

pan-sharpening, as introduced above. 120 

3) Extension of ATPRK with the proposed non-stationary spatially adaptive scheme, that is, 121 

AATPRK. 122 

The remainder of this paper is organized into four sections. Section 2 introduces the principles of 123 

ATPRK and AATPRK in detail. In Section 3, the experimental results for two WorldView-2 124 
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datasets and one Landsat ETM+ dataset are provided to demonstrate the applicability of ATPRK 125 

and AATPRK in pan-sharpening. Section 4 further discusses the proposed approach, followed by a 126 

conclusion in Section 5. 127 

2. METHODS 128 

Let ( )l

C iZ x  be the measurements (i.e., gray value) of pixel C centered at ix  (i=1,…,M, where M 129 

is the number of pixels) in coarse band l (l=1,…,B, where B is the number of bands), and ( )F jZ x  130 

be the measurements of pixel F centered at jx  (j=1,…, 2MG , where G is the spatial resolution 131 

(zoom) ratio between the coarse and PAN bands) in the PAN band. The notations F and C denote 132 

the fine and coarse pixels, respectively. The objective of pan-sharpening is to predict target 133 

variables ( )l

FZ x  for all fine pixels in all B coarse bands. 134 

2.1.ATPRK 135 

ATPRK contains two steps: regression modelling and ATPK-based residual downscaling. 136 

Suppose 
1

ˆ ( )l

FZ x  and 
2

ˆ ( )l

FZ x  are predictions of the regression and ATPK parts, the ATPRK 137 

prediction is 138 

1 2
ˆ ˆ ˆ( ) ( ) ( )l l l

F F FZ Z Z x x x .                                                      (1) 139 

Details of the calculation processes are given in the following. 140 

1) Regression modelling. In ATPRK, the covariate (i.e., the PAN band) is used to predict the 141 

overall trend of ( )l

FZ x  and is critical in pan-sharpening, as it provides valuable finer spatial 142 

resolution textural information than the observed coarse data. The regression step aims to make full 143 

use of the fine spatial resolution textural information in the PAN band by characterizing the 144 

relationship between each coarse band and the PAN band. 145 

The PAN band FZ  is first upscaled to CZ  to match the spatial resolution of the coarse bands 146 
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= ( )* ( ) ( ) ( )dC C F C FZ h Z h Z x x x y y y                                           (2) 147 

where ( )Ch x  is the point spread function (PSF) for the PAN band and * is the convolution 148 

operator. 149 

The relationship between CZ  and each coarse band l is then modelled by linear regression 150 

( ) ( ) ( )l

C l C lZ a Z b R  x x x .                                                   (3) 151 

In (3), ( )R x  is a residual term. The two coefficients la  and lb  can be estimated by ordinary least 152 

squares (Kitanidis, 1994). Based on the assumption of scale-invariance, la  and lb  estimated at 153 

coarse spatial resolution in (3) is used for regression prediction at fine spatial resolution. 154 

Specifically, with the available fine spatial resolution PAN band, the regression prediction at a 155 

specific location 0x  at fine spatial resolution, that is, 
1 0

ˆ ( )l

FZ x , is calculated as 156 

1 0 0
ˆ ( ) ( )l

F l F lZ a Z b x x .                                                       (4) 157 

2) ATPK-based residual downscaling. The regression model in (3) does not hold strictly for all 158 

coarse pixels and there are generally residuals from the model. The coarse residual in band l, 159 

denoted as 2( )l

CZ x , is 160 

2( ) ( ) ( ) [ ( ) ]l l

C C l C lZ R Z a Z b   x x x x .                                           (5) 161 

The regression process alone is insufficient for sharpening, as it does not make full use of the 162 

spectral information in the observed coarse data. ATPK-based residual downscaling is performed 163 

as a complement to the regression step to honor the spectral properties of the coarse data. ATPK is 164 

a downscaling technique that predicts values on a support smaller than that of the original data 165 

(Kyriakidis and Yoo, 2005; Kyriakidis, 2004; Atkinson, 2013). It is different from conventional 166 

(centroid-based) kriging, which treats each observation as a centroid and ignores the spatial support 167 

of the observation. ATPK accounts for the size of support, spatial correlation, and the PSF of the 168 

sensor. In addition, an important advantage of ATPK is its coherence property (Kyriakidis and Yoo, 169 



 

 

8 

2005; Kyriakidis, 2004), that is, it can perfectly preserve the spectral properties of the observed 170 

coarse data. 171 

Based on ATPK, the fine residual at a specific location 0x , 
2 0

ˆ ( )l

FZ x , is a linear combination of 172 

the observed coarse residuals 173 

2 0 2

1 1

ˆ ( ) ( ), s.t. 1
N N

l l

F i C i i

i i

Z Z 
 

    x x                                             (6) 174 

where i  is the weight for the ith coarse residual centered at ix  and N is the number of coarse 175 

observations used in the prediction, such as the N=5×5 window of coarse pixels surrounding the 176 

fine pixel. Fig. 1 summarizes the whole calculation process in ATPK-based residual downscaling. 177 

The N weights 1{ ,..., }N   in (6) are calculated by minimizing the prediction error variance and 178 

the corresponding kriging matrix is 179 

1 1 1

1

( , ) ... ( , )
. . . .
. . . .

. . .
( , ) ...

l l

CC CC N

l l

CC N CC

 

 

  
   
   
  

 

x x x x

x x

0 11

0

( , )
. .
. .
. .

( , ) ( , )
1 ... 1

l

FC

l
NN N FC N



 


    
     

       
    
           

x x

x x x x

.                               (7) 180 

In (7), the term ( , )l

CC i j x x  is the coarse-to-coarse residual semivariogram between coarse pixels 181 

centered at ix  and jx  in band l, 
0( , )l

FC j x x  is the fine-to-coarse residual semivariogram between 182 

fine and coarse pixels centered at 0x  and jx  in band l, and   is the Lagrange multiplier.  183 

Let s be the Euclidean distance between the centroids of any two pixels, ( )l

FF s  be the 184 

fine-to-fine residual semivariogram between two fine pixels, and ( )l

Ch s  be the PSF for band l. 185 

( )l

CC s  and ( )l

FC s  in (7) are calculated by convoluting ( )l

FF s  with the PSF ( )l

Ch s  as follows 186 

( ) ( )* ( )l l l

FC FF Ch s s s                                                          (8) 187 

( ) ( )* ( )* ( )l l l l

CC FF C Ch h  s s s s .                                                 (9) 188 

By assuming that the coarse pixel value is the average of the fine pixel values within it, the PSF 189 
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is 190 

1
, if ( )

( )

0, otherwise
C C

C
h S


  

 
 

x x
x                                                     (10) 191 

where CS  is the size of pixel C and ( )C x  is the spatial support of pixel C centered at x. Given the 192 

PSF in (10), the calculation of 
0( , )l

FC j x x  and ( , )l

CC i j x x  are simplified as 193 

0

1

1
( , ) ( )l l

FC j FF m

m



 
 

 x x s                                                   (11) 194 

2
1 1

1
( , ) ( )l l

CC i j FF mm

m m

 

 




 

 x x s                                               (12) 195 

in which 2=G  is the pixel size ratio between the coarse and fine pixels, ms  is the distance between 196 

the centroid 0x  of fine pixel F and the centroid of any fine pixel within the coarse pixel C centered 197 

at jx , and mms  is the distance between the centroid of any fine pixel within the coarse pixel 198 

centered at ix and the centroid of any fine pixel within the coarse pixel centered at jx . The 199 

fine-to-fine residual semivariogram ( )l

FF s  is derived by deconvolution of the coarse residual 200 

semivariogram of the coarse residual of band l (denoted as ( )l

C s , see (13)). 201 

( )
2

2 2

1

1
( ) [ ( ) ( )]

2 ( )

N
l l l

C C C

n

Z Z
N




  
s

s x x s
s

                                       (13) 202 

where N(s) is the number of paired pixels at a specific lag s from the center pixel x. 203 

( )l

FF s

( )l

FC s

( )l

CC s

i 2
ˆ l

FZ

(8)

(9)

(7) (6)
( )l

C s

Deconvolution

 204 

Fig. 1. Calculation process of ATPK-based residual downscaling. 205 

 206 

As for the deconvolution process, the empirical approach in Wang et al. (2015) was applied in 207 
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this paper. We suppose the semivariogram function of ( )l

FF s  can be characterized by two 208 

parameters, sill and range, and there is zero nugget effect. First, a candidate pool of ( )l

FF s  is 209 

generated by referring to the known ( )l

C s . For each parameter of ( )l

FF s , two multipliers are 210 

defined empirically to generate an interval for selecting the optimal one. More precisely, in this 211 

paper, the interval for punctual sill selection was set to between 1 and 3 times that of the sill of 212 

( )l

C s , while the interval for punctual range selection was set to between 0.5 and 2.5 times that of 213 

the range of ( )l

C s . The selection step was 0.1. Second, each ( )l

FF s  characterized by the two 214 

parameters is convolved to the regularized semivariogram, ( )R

C s , by ( ) ( ) (0)R l l

C CC CC   s s . 215 

Finally, the optimal ( )l

FF s  is determined as the one with the parameter combination leading to the 216 

smallest difference between ( )R

C s  and ( )l

C s . 217 

2.2.AATPRK 218 

ATPRK uses the fixed regression model (characterized by two coefficients la  and lb  in (3)) 219 

fitted using the entire coarse image and PAN image. The single, global regression model may not 220 

be able to satisfactorily deal with local variation, where the relation between the coarse and PAN 221 

bands changes from site to site. In this case, the coarse residuals may be larger than is necessary, 222 

placing a lot of emphasis on the geostatistics-based approach (i.e., ATPK) for downscaling. 223 

Moreover, if the residuals from the global regression model are such that their spatial character 224 

varies locally then presents challenges for downscaling using a spatially stationary ATPK model. 225 

This encourages the development of an adaptive, non-stationary ATPRK approach (i.e., AATPRK) 226 

in this paper to enhance the performance of pan-sharpening. 227 

In AATPRK, for each coarse pixel, a linear regression model is fitted using the coarse and 228 

(upscaled) PAN pixels within a W×W local window. The regression coefficients are estimated on a 229 
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coarse pixel basis and they are functions of the pixel locations. The relationship in (3) is, thus, 230 

modified to 231 

( ) ( ) ( ) ( ) ( )l

C l C lZ a Z b R  x x x x x .                                            (14) 232 

Correspondingly, for any fine pixel in band l, say, a fine pixel centered at 0x , the regression 233 

prediction 
1 0

ˆ ( )l

FZ x  becomes 234 

1 0 0 0 0
ˆ ( ) ( ) ( ) ( )l

F l F lZ a Z b x X x X                                               (15) 235 

where 0X  is the center of the coarse pixel in which the fine pixel centered at 0x  falls. 236 

PAN Coarse band

Upscaled PAN

Regression 

prediction 

ATPRK: 

AATPRK: 

l

CZ FZ

CZ
,l la b

( ), ( )l la bx x

Regression 

modelling

Residual image

2

l

CZ

1

lF
l

F
l

Z
a

Z
b




ATPRK 

1
0

0
0

0
ˆ

(
)

(
)

(
)

(
)

lF
l

F
l

Z
a

Z
b




x
X

x
X

AATPRK 

1

l

FZ

ATPK 

prediction 

2

l

FZ

Downscaling

(A)ATPRK 

Prediction 

1 2

l l l

F F FZ Z Z 

 237 

Fig. 2. Flowchart of ATPRK and AATPRK. 238 
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After the regression modelling step, coarse residual images are obtained for each coarse band. 239 

Similarly, ATPK is performed to downscale the residual images to the target fine spatial resolution 240 

residuals 
2

ˆ ( )l

FZ x  according to (6). The ATPK prediction is finally added back to the regression 241 

prediction in (15) to achieve the AATPRK prediction. Fig. 2 sketches the flowchart of ATPRK and 242 

AATPRK. 243 

3. EXPERIMENTS 244 

3.1.Datasets 245 

Three datasets, including two WorldView-2 datasets and one Landsat ETM+ dataset, were used 246 

to examine the performances of ATPRK and AATPRK in pan-sharpening. 247 

The WorldView-2 datasets contain eight multispectral bands with a spatial resolution of 2 m and 248 

a PAN band with a spatial resolution of 0.5 m. Both WorldView-2 multispectral images contain 249 

500 by 500 pixels, whereas the PAN bands contain 2000 by 2000 pixels. Both datasets were 250 

acquired in April, 2011. One covers a suburb area of Hong Kong, while the other covers an urban 251 

area of Shenzhen, China. Fig. 3(a) and Fig. 3(b) show the false color composite of the two 252 

WorldView-2 multispectral images. 253 

(a) 254 

 255 
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(b) 256 

  257 

(c) 258 

 259 

Fig. 3. Datasets used in the experiments (bands 4, 3 and 2 as RGB). (a) The 2 m WorldView-2 dataset of Hong Kong 260 

(500 by 500 pixels). (b) The 2 m WorldView-2 dataset of Shenzhen (500 by 500 pixels). (b) The 30 m Landsat ETM+ 261 

dataset of Alberta (512 by 512 pixels). 262 

 263 

The Landsat dataset covers a 15 km by 15 km area in Alberta in Canada. The 30 m green, red, 264 

and near-infrared bands (i.e., bands 2, 3, and 4) and 15 m PAN band 8 were used in the experiments. 265 

The 30 m bands and PAN band contain 512 by 512 and 1024 by 1024 pixels, respectively. The 266 

false color composite of the Landsat image is shown in Fig. 3(c). 267 
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3.2.Experimental setup 268 

The 2 m WorldView-2 multispectral bands can be fused with the 0.5 m PAN band to produce 0.5 269 

m pan-sharpened WorldView-2 images, while the 30 m Landsat ETM+ multispectral bands can be 270 

fused with the 15 m PAN bands to produce 15 m pan-sharpened images. Following this strategy, 271 

however, no reference at 0.5 m and 15 m can be used to examine the sharpened results objectively. 272 

To ensure the existence of perfect fine spatial resolution reference images, the 2 m WorldView-2 273 

multispectral bands and 30 m Landsat ETM+ multispectral bands were upscaled by a factor to 274 

synthesize coarse images, see the upscaling model in (2). More precisely, the 2 m WorldView-2 275 

multispectral bands and 0.5 m PAN band were simultaneously upscaled by a factor of four to create 276 

8 m multispectral bands and 2 m PAN bands. The pan-sharpening approaches were then 277 

implemented to fuse the 8 m multispectral bands and the 2 m PAN band to produce 2 m 278 

multispectral bands, which could be compared to the original 2 m multispectral bands for objective 279 

assessment. Similarly, for the Landsat ETM+ dataset, all bands were upscaled by a factor of two to 280 

synthesize 60 m multispectral bands and a 30 m PAN band. The task of ATPRK- and 281 

AATPRK-based pan-sharpening was then to predict the 30 m multispectral bands, based on the 282 

assumption that the PSF in (10) is known. 283 

The two geostatistical solutions, ATPRK and AATPRK, were compared to 13 state-of-the-art 284 

algorithms summarized in Vivone et al. (2015) to illustrate the benefits of the new pan-sharpening 285 

approaches. They are PCA, GS, GSA, PRACS, HPF, SFIM, Indusion, ATWT, AWLP, ATWT-M2, 286 

ATWT-M3, MTF-GLP, and MTF-GLP-HPM. Six indices were used for quantitative evaluation, 287 

including the root mean square error (RMSE), correlation coefficient (CC), universal image quality 288 

index (UIQI) (Wang and Bovik, 2002), relative global-dimensional synthesis error (ERGAS) 289 

(Ranchin and Wald, 2000), spectral angle mapper (SAM) and coherence. For RMSE, CC and UIQI, 290 

they were first calculated for each band, and then the values for all bands were averaged. Regarding 291 

SAM, values for spectra of all pixels were first calculated and then averaged. 292 
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As mentioned in Wald et al. (1997), any synthetic image, once degraded to its original spatial 293 

resolution, should be as close as possible to the original image. Coherence (quantified by the CC) is 294 

an index measuring the relation between the observed coarse image and the coarse image obtained 295 

by upscaling the pan-sharpened image. For each multispectral band, a coherence value was 296 

calculated and the values for all bands were averaged. 297 

3.3.Experiments on the WorldView-2 datasets 298 

1) Hong Kong WorldView-2 dataset. As mentioned in Section 2.2, the difference between 299 

ATPRK and AATPRK lies in regression modelling. The former uses the entire image to build a 300 

single linear regression model, whereas the latter fits the regression model in units of coarse pixels. 301 

In this section, a 5 by 5 local window (i.e., W=5) for regression modelling in AATPRK was 302 

considered. The influence of the local window size W can be found in the later Section 3.3 3). 303 

Table 1 lists the regression coefficients of ATRPK and Fig. 4 shows the regression coefficients 304 

of AATRPK for bands 1-8. As can be observed from Fig. 4, for each multispectral band, both 305 

coefficients change across the entire image, and they are functions of the pixel locations. The 306 

changes are large in some bands. For example, the change ranges of al are much larger in bands 7 307 

and 8. The coarse residuals for bands 1-8 from the regression models in ATPRK and AATPRK are 308 

shown in Fig. 5. It is obvious that by using the local regression model, AATPRK greatly decreased 309 

the residuals in ATPRK. This is particularly noticeable in band 4, where the water (in ponds and 310 

river) pixels in ATPRK show residuals over 40 (in units of DN) but in AATPRK the residuals 311 

decreased to be between -5 and 5 (in units of DN). The residual image of AATPRK visually shows 312 

less local variation than that of ATPRK. This is of great significance for the geostatistical solution 313 

(i.e., ATPK) to downscaling the residuals, which is performed based on the stationarity assumption. 314 

The results in Fig. 5 and Fig. 6 demonstrate that in the Hong Kong WorldView-2 dataset, the 315 

relation between the coarse and PAN bands changes from area-to-area and it cannot be 316 

characterized sufficiently by a fixed regression model. 317 
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(a) 318 

 319 
(b) 320 

 321 
(c) 322 

 323 
(d) 324 

 325 
(e) 326 

 327 
(f) 328 

 329 
(g) 330 

 331 
(h) 332 

 333 
Fig. 4. Regression coefficients of AATPRK for the Hong Kong WorldView-2 multispectral bands. Left: al. Right: bl. 334 

(a)-(h) Bands 1-8. 335 
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(a) 336 

 337 
(b) 338 

 339 
(c) 340 

 341 
(d) 342 

 343 
(e) 344 

 345 
(f) 346 

 347 
(g) 348 

 349 
(h) 350 

 351 
Fig. 5. Coarse residuals (the units are DN) from the regression models in ATPRK and AATPRK for the Hong Kong 352 

WorldView-2 multispectral bands. Left: ATPRK. Right: AATPRK. (a)-(h) Bands 1-8. 353 
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(a)                                         (b) 354 

 355 
(c)                                         (d)                                         (e)                                         (f) 356 

 357 
(g)                                         (h)                                         (i)                                         (j) 358 

 359 
(k)                                         (l)                                         (m)                                         (n) 360 

 361 
(o)                                         (p)                                         (q)                                         (r) 362 

 363 
Fig. 6. Pan-sharpening results for the Hong Kong WorldView-2 dataset (bands 4, 3 and 2 as RGB). (a) 8 m coarse 364 

image. (b) 2 m PAN image. (c) 2 m reference image. (d) PCA. (e) GS. (f) GSA. (g) PRACS. (h) HPF. (i) SFIM. (j) 365 

Indusion. (k) ATWT. (l) AWLP. (m) ATWT-M2. (n) ATWT-M3. (o) MTF-GLP. (p) MTF-GLP-HPM. (q) ATPRK. (r) 366 

AATPRK. 367 

 368 
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Table 1 Regression coefficients of ATPRK for the Hong Kong WorldView-2 multispectral bands (l denotes the band 369 

number) 370 

 l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 

al 0.3184 0.3746 0.8117 1.1681 0.7304 1.3041 1.0081 1.5319 

bl 0.3514 0.1511 0.0758 -0.0529 -0.0867 -0.0367 -0.0003 -0.0229 

 371 

Table 2 Quantitative assessment of the pan-sharpening methods for the Hong Kong WorldView-2 dataset 372 

 RMSE CC ERGAS UIQI SAM(°) Coherence 

Ideal 0 1 0 1 0 1 

PCA 34.9921 0.8697 2.9433 0.8640 0.0859 0.8965 

GS 21.5963 0.9528 1.7772 0.9425 0.0540 0.9771 

GSA 15.3475 0.9744 1.2819 0.9735 0.0427 0.9968 

PRACS 16.6791 0.9678 1.4437 0.9645 0.0446 0.9978 

HPF 16.2255 0.9700 1.3533 0.9697 0.0436 0.9967 

SFIM 15.3575 0.9724 1.2744 0.9720 0.0410 0.9971 

Indusion 19.1221 0.9587 1.5978 0.9581 0.0496 0.9861 

ATWT 16.5085 0.9699 1.3821 0.9699 0.0439 0.9940 

AWLP 17.5778 0.9669 1.4737 0.9662 0.0464 0.9931 

ATWT-M2 19.9606 0.9556 1.6435 0.9474 0.0508 0.9873 

ATWT-M3 20.1494 0.9579 1.6668 0.9509 0.0533 0.9882 

MTF-GLP 16.6121 0.9699 1.3941 0.9699 0.0443 0.9943 

MTF-GLP-HPM 15.6441 0.9725 1.3036 0.9723 0.0411 0.9948 

ATPRK 14.0129 0.9776 1.1768 0.9773 0.0414 1 

AATPRK 13.4886 0.9794 1.1322 0.9793 0.0387 1 

 373 

Fig. 6 displays the pan-sharpening results of the two geostatistical approaches (i.e., ATPRK and 374 

AATPRK) as well as the 13 benchmark approaches. For clearer visual comparison between the 375 

results, the results of a 200 by 200 sub-area are shown. All pan-sharpening results are visually 376 

clearer than the 8 m coarse image. The PCA, GS, PRACS, ATWT-M2 and ATWT-M3 approaches 377 

produced sharpened images with ambiguous ―white‖ pixels in the areas covered by the houses. 378 

Although GSA, HPF, SFIM, Indusion, ATWT, AWLP, MTF-GLP, MTF-GLP-HPM and ATPRK 379 

can satisfactorily restore the ―white‖ pixels, the ―dark‖ pixels in the areas covered by water (in 380 

ponds) look different from the reference image. Compared to these approaches, AATPRK is 381 

advantageous in reproducing the house and water pixels in the entire study area. 382 

Table 2 lists the quantitative assessment results for the 15 pan-sharpening approaches. The ideal 383 

value for each index is also provided for convenience of inter-comparison. Checking the results, 384 

the two geostatistical approaches (i.e., ATPRK and AATPRK) outperform the 13 state-of-the-art 385 

algorithms. The RMSE, CC, ERGAS, UIQI and SAM of ATPRK and AATPRK are closer to the 386 
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ideal values. Moreover, the coherence values of ATPRK and AATPRK reach the ideal value 1, 387 

suggesting that they have the characteristic of perfect coherence with the original coarse data. 388 

Furthermore, using the local regression model, AATPRK produced smaller RMSE, ERGAS and 389 

SAM values and greater CC and UIQI values than the ATPRK approach. The visual and 390 

quantitative assessment in this experiment reveals that the advanced ATPRK approach can be 391 

further enhanced with the local scheme in AATPRK. 392 

2) Shenzhen WorldView-2 dataset. The pan-sharpening results for a 200 by 200 sub-area of the 393 

Shenzhen WorldView-2 dataset are shown in Fig. 7. The results of the PCA, GS, PRACS, AWLP, 394 

ATWT-M2 and ATWT-M3 approaches produced noticeable spectral distortion. Some other 395 

approaches, such as ATWT and Indusion, produced less obvious spectral distortion, but cannot 396 

satisfactorily delineate the boundaries of LCLU objects. ATPRK and AATPRK have satisfactory 397 

performances in preserving the spectral properties and delineating the boundaries for the 398 

homogeneous landscape (e.g., large-size buildings) and the texture of heterogeneous pixels (e.g., 399 

small-size cars in the scene). 400 

The quantitative assessment is shown in Table 3. Again, both ATPRK and AATPRK are more 401 

accurate than the 13 benchmark algorithms in terms of all six indices. In this experiment, however, 402 

it should be noted that ATPRK was not enhanced by AATPRK but they produced comparable 403 

accuracies. This is because the studied scene is a highly developed urban area that is almost 404 

completely covered by impervious surfaces (e.g., buildings and roads). Compared to the previous 405 

studied area in Hong Kong where multiple LCLU materials (such as houses, vegetation and water) 406 

exist, this area is more conducive to being characterized satisfactorily by a stationary model. In this 407 

case, the single regression model in ATPRK may be sufficient and, thus, the local scheme would 408 

not impart extra benefits. 409 

 410 

 411 



 

 

21 

(a)                                         (b) 412 

 413 
(c)                                         (d)                                         (e)                                         (f) 414 

 415 
(g)                                         (h)                                         (i)                                         (j) 416 

 417 
(k)                                         (l)                                         (m)                                         (n) 418 

 419 
(o)                                         (p)                                         (q)                                         (r) 420 

 421 
Fig. 7. Pan-sharpening results for the Shenzhen WorldView-2 dataset (bands 4, 3 and 2 as RGB). (a) 8 m coarse image. 422 

(b) 2 m PAN image. (c) 2 m reference image. (d) PCA. (e) GS. (f) GSA. (g) PRACS. (h) HPF. (i) SFIM. (j) Indusion. (k) 423 

ATWT. (l) AWLP. (m) ATWT-M2. (n) ATWT-M3. (o) MTF-GLP. (p) MTF-GLP-HPM. (q) ATPRK. (r) AATPRK. 424 

 425 
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Table 3 Quantitative assessment of the pan-sharpening methods for the Shenzhen WorldView-2 dataset 426 

 RMSE CC ERGAS UIQI SAM(°) Coherence 

Ideal 0 1 0 1 0 1 

PCA 23.3618 0.9513 1.9373 0.9235 0.0487 0.9702 

GS 21.7870 0.9613 1.8135 0.9326 0.0471 0.9818 

GSA 19.3931 0.9670 1.5653 0.9575 0.0453 0.9931 

PRACS 18.2151 0.9616 1.6895 0.9539 0.0498 0.9969 

HPF 18.0603 0.9627 1.5157 0.9596 0.0433 0.9967 

SFIM 18.0210 0.9629 1.5172 0.9597 0.0433 0.9966 

Indusion 19.9049 0.9527 1.6394 0.9489 0.0442 0.9772 

ATWT 17.4306 0.9645 1.4642 0.9637 0.0426 0.9945 

AWLP 18.3943 0.9605 1.5620 0.9575 0.0450 0.9934 

ATWT-M2 25.5093 0.9371 2.0970 0.9074 0.0527 0.9789 

ATWT-M3 24.2243 0.9466 2.0431 0.9221 0.0561 0.9819 

MTF-GLP 16.8026 0.9669 1.4172 0.9662 0.0422 0.9947 

MTF-GLP-HPM 16.8838 0.9669 1.4274 0.9660 0.0422 0.9944 

ATPRK 14.9425 0.9733 1.2814 0.9722 0.0412 1 

AATPRK 15.2378 0.9720 1.3209 0.9717 0.0425 1 

 427 

3) Analysis of local window size for regression modelling in AATPRK. The local window size 428 

should be set to an appropriate value. Five window sizes, W=3, 5, 7, 9 and 11, were tested for 429 

AATPRK. The Hong Kong WorldView-2 dataset was used for analysis and the quantitative 430 

assessment is provided in Table 4. It is seen that when a 5 by 5 local window is used, a satisfactory 431 

accuracy can be produced and the increase in the local window size does not necessarily lead to an 432 

increase in pan-sharpening accuracy. 433 

 434 

Table 4 Influence of the local window size for regression modelling in AATPRK (Hong Kong WorldView-2 dataset) 435 

 RMSE CC ERGAS UIQI SAM 

ATPRK 14.0129 0.9776 1.1768 0.9773 0.0414 

AATPRK (3×3) 13.7926 0.9785 1.1597 0.9784 0.0396 

AATPRK (5×5) 13.4886 0.9794 1.1322 0.9793 0.0387 

AATPRK (7×7) 13.6094 0.9790 1.1422 0.9788 0.0390 

AATPRK (9×9) 13.7349 0.9786 1.1525 0.9784 0.0394 

AATPRK (11×11) 13.8696 0.9782 1.1636 0.9780 0.0399 

 436 

 437 

 438 

 439 

 440 

 441 
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(a)                                         (b) 442 

 443 
(c)                                         (d)                                         (e)                                         (f) 444 

 445 
(g)                                         (h)                                         (i)                                         (j) 446 

 447 
(k)                                         (l)                                         (m)                                         (n) 448 

 449 
(o)                                         (p)                                         (q)                                         (r) 450 

 451 
Fig. 8. Pan-sharpening results for the Landsat ETM+ dataset (bands 4, 3 and 2 as RGB). (a) 60 m coarse image. (b) 30 452 

m PAN image. (c) 30 m reference image. (d) PCA. (e) GS. (f) GSA. (g) PRACS. (h) HPF. (i) SFIM. (j) Indusion. (k) 453 

ATWT. (l) AWLP. (m) ATWT-M2. (n) ATWT-M3. (o) MTF-GLP. (p) MTF-GLP-HPM. (q) ATPRK. (r) AATPRK. 454 

 455 
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3.4.Experiment on the Landsat ETM+ dataset 456 

In this experiment, the performances of ATPRK and AATPRK are illustrated by the Landsat 457 

ETM+ dataset. Fig. 8 exhibits the results for a 200 by 200 sub-area of the studied area. As shown in 458 

the figure, PRACS, ATWT-M2 and ATWT-M3 produced over-smooth results and failed to restore 459 

the heterogeneous variation, while PCA, GS, ATWT and AWLP have poor performances in 460 

preserving the spectral properties. Table 5 shows the corresponding quantitative assessment results. 461 

Similarly to the previous tests, ATPRK is superior to the 13 benchmark methods in terms of all six 462 

indices. For example, the RMSE value of ATPRK is 1.3582, whereas the benchmark methods 463 

generally produced RMSEs greater than 1.5; the ERGAS of ATPRK is less than 2, while the 464 

benchmark methods produced values greater than 2. Moreover, compared to ATPRK, AATPRK is 465 

more accurate in this experiment. The reason is that the studied scene contains much local variation, 466 

as can be observed from Fig. 3(c). Thus, ATPRK can be enhanced with the local scheme in 467 

AATPRK. 468 

 469 

Table 5 Quantitative assessment of the pan-sharpening methods for the Landsat ETM+ dataset 470 

 RMSE CC ERGAS UIQI SAM(°) Coherence 

Ideal 0 1 0 1 0 1 

PCA 1.4847 0.9746 2.0193 0.9718 0.0238 0.9960 

GS 1.5903 0.9708 2.1642 0.9675 0.0238 0.9923 

GSA 1.9047 0.9730 2.5784 0.9643 0.0257 0.9945 

PRACS 1.4497 0.9764 1.9615 0.9752 0.0259 0.9981 

HPF 1.5463 0.9724 2.1024 0.9723 0.0239 0.9956 

SFIM 1.5448 0.9725 2.1005 0.9723 0.0237 0.9956 

Indusion 2.2080 0.9446 2.9939 0.9440 0.0296 0.9738 

ATWT 1.8304 0.9682 2.4833 0.9647 0.0253 0.9876 

AWLP 1.9089 0.9682 2.5850 0.9642 0.0269 0.9875 

ATWT-M2 1.4892 0.9736 2.0309 0.9715 0.0282 0.9917 

ATWT-M3 1.5871 0.9718 2.1534 0.9693 0.0309 0.9906 

MTF-GLP 1.6020 0.9719 2.1777 0.9710 0.0241 0.9927 

MTF-GLP-HPM 1.6091 0.9718 2.1875 0.9708 0.0237 0.9926 

ATPRK 1.3582 0.9776 1.8504 0.9776 0.0230 1 

AATPRK 1.3333 0.9785 1.8190 0.9785 0.0236 1 

 471 

 472 
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4. DISCUSSION 473 

4.1.ATPRK and AATPRK 474 

As an extension of ATPRK, AATPRK inherits the advantages of ATPRK. It accounts explicitly 475 

for the size of support, spatial correlation, and the PSF of the sensor. Moreover, it can also precisely 476 

preserve the spectral properties of the original coarse data, as shown in Tables 2, 3 and 5. The 477 

theoretical proof of coherence characteristic of AATPRK runs parallel to the proof presented in 478 

Wang et al. (2015). The experimental results show that both ATPRK and AATPRK outperform the 479 

13 compared benchmark methods summarized in Vivone et al. (2015). The two geostatistical 480 

approaches produced RMSE, ERGAS, SAM, CC and UIQI values closer to the ideal ones. The 481 

experiments demonstrated the great utility of ATPRK and AATPRK in pan-sharpening. 482 

As illustrated in the experiments, AATPRK tends to be more advantageous when the scene is 483 

spatially locally varying, such as that in the Hong Kong WorldView-2 image and the Landsat 484 

ETM+ image. Essentially, in ATPRK, the geostatistical process is implemented in the second step, 485 

this is, ATPK-based residual downscaling. The residual image is required to be as stationary as 486 

possible to meet the stationary assumption in the kriging interpolation. When the studied scene is 487 

locally varying, the global regression model in ATPRK may not be able to sufficiently characterize 488 

the relationship between the coarse and PAN bands and, as a result, the generated residuals may 489 

vary greatly from area to area (i.e., require a non-stationary model). With the regression model 490 

fitted on a coarse pixel basis in AATPRK, where pixels in the local window rather than in the entire 491 

image are considered, the generated residual images show less local variation, as shown in Fig. 5. 492 

The local non-stationary scheme, therefore, can lead to residuals that are more suited to 493 

manipulation with a stationary model. 494 

AATPRK fits the regression model for each coarse pixel. It is necessary to compare the 495 

computational complexity of the two approaches. Table 6 lists the computing time in the 496 

experiments on the two types of datasets. All experiments were carried out on an Intel Core i7 497 
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Processor at 3.40 GHz with the MATLAB 7.1 version. The computing time of the pan-sharpening 498 

algorithms is closely related to the spatial size of the image, number of bands and the spatial 499 

resolution ratio between the coarse and PAN bands (i.e., zoom factor). It is clear that AATPRK 500 

takes more time than ATPRK. 501 

Table 6 Computational cost of ATPRK and AATPRK for the used datasets 502 

 Size of coarse 

images 

Zoom factor Number of 

bands 

ATPRK AATPRK 

WorldView-2 125×125 4 8 137s 327s 

Landsat 256×256 2 3 21s 455s 

 503 

4.2.Local ATPK 504 

In AATPRK, residual downscaling is performed by global ATPK. This is distinguished from 505 

Pardo-Iguzquiza et al. (2011), in which a local scheme was developed for kriging interpolation. In 506 

local ATPK interpolation, semivariogram deconvolution for parameterizing the RF model and the 507 

kriging weights calculation are carried out for each coarse pixel. This is computationally intensive, 508 

especially for large areas with a large number of pixels. In view of this, we applied global ATPK 509 

instead. Nevertheless, local ATPK has potential for possible enhancement of the AATPRK 510 

approach proposed in this paper. Thus, any strategy able to decrease the computational cost of local 511 

ATPK should be encouraged. For example, kriging interpolation can be performed in units of 512 

non-overlapping blocks that covers S by S pixels and, correspondingly, computational cost can be 513 

decreased by S
2
 times. This amounts to dividing the entire study area into sub-areas. In this case, 514 

the determination of S, which could also be spatially adaptive, would be a critical issue. 515 

4.3.Multiple covariates 516 

With respect to the pan-sharpening issue, the PAN band is used as the single covariate in 517 

ATPRK and AATPRK. In fact, both approaches can incorporate readily other supplementary data 518 

for possible enhancement. The relationship between the multiple covariates and observed coarse 519 

data can be built via multiple regression, which can be achieved by extending (3) and (14). In view 520 

of the ease of incorporating multiple covariates, more relevant information (e.g., topographic maps, 521 
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thematic maps, field measurements) on the studied areas is encouraged to be sought in future 522 

research. 523 

5. CONCLUSION 524 

It is a natural objective to merge the information in different wavebands with different spatial 525 

resolutions from the same satellite. This paper presents two geostatistical solutions for 526 

pan-sharpening; ATPRK and AATPRK. Both approaches first perform regression of each coarse 527 

band on the PAN band and then use ATPK to downscale the band residuals from the regression 528 

models. Different from ATPRK that uses a global regression model, AATPRK fits the regression 529 

model with a local scheme. The relationship between the coarse and PAN bands in AATPRK is 530 

modelled on a coarse pixel basis and the regression coefficients change across the image. 531 

Experiments were carried out on three experimental cases, two WorldView-2 datasets and one 532 

Landsat ETM+ dataset, in which the two geostatistical solutions were compared to 13 benchmark 533 

algorithms. The findings are summarized as follows. 534 

1) Both ATPRK and AATPRK outperformed the 13 benchmark algorithms, demonstrating 535 

their great utility for pan-sharpening. 536 

2) Unlike the benchmarks, both ATPRK and AATPRK have the characteristic of perfect 537 

coherence with the original coarse data. 538 

3) Where the residuals produced by a single, global regression model in ATPRK are locally 539 

varying, the advanced ATPRK approach can be further enhanced by its non-stationary 540 

extension, AATPRK. 541 
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