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Abstract—In real-world environments, noisy utterances with
variable noise levels are recorded and then converted to i-vectors
for cosine distance or PLDA scoring. This paper investigates
the effect of noise-level variability on i-vectors. It demonstrates
that noise-level variability causes the i-vectors to shift, causing
the noise contaminated i-vectors to form clusters in the i-
vector space. It also demonstrates that optimal subspaces for
discriminating speakers are noise-level dependent. Based on
these observations, this paper proposes using signal-to-noise
ratio (SNR) of utterances as guidance for training mixture of
PLDA models. To maximize the coordination among the PLDA
models, mixtures of PLDA models are trained simultaneously
via an EM algorithm using the utterances contaminated with
noise at various levels. For scoring, given a test i-vector, the
marginal likelihoods from individual PLDA models are linearly
combined by the posterior probabilities of the test utterance’s
SNR. Verification scores are the ratio of the marginal like-
lihoods. Results based on NIST 2012 SRE suggest that the
SNR-dependent mixture of PLDA is not only suitable for the
situations where the test utterances exhibit a wide range of SNR,
but also beneficial for the test utterances with unknown SNR
distribution. Supplementary materials containing full derivations
of the EM algorithms and scoring functions can be found in
http://bioinfo.eie.polyu.edu.hk/mPLDA/SuppMaterials.pdf.

Index Terms—Speaker verification; i-vectors; probabilistic
LDA; mixture of PLDA; noise robustness.

I. INTRODUCTION

WHEN a speaker verification system is applied in real-
world scenarios, a major challenge is to make the

system robust against acoustic environments with variable
noise levels. Much effort has been dedicated to compensate
for the effect of these variations. Some of them reduces the
variability in the front-end processing stage and others focus
on the backend classification stage. The former aims to (1)
extract features that are less sensitive to noise [1, 2, 3], (2)
develop feature transformation methods [4] that make the
features more robust, and (3) suppress the noise in the original
waveform through speech enhancement techniques [5]. While
the effectiveness of these feature-based approaches has been
demonstrated, recent studies have found that techniques that
operate on the backend classification stage are more promis-
ing. Among them, the joint factor analysis (JFA) [6] and i-
vector/PLDA framework [7, 8] have been by far the most
successful.

In the i-vector approach, a single space called the total
variability space is defined to model both the speaker and
channel variability. The acoustic characteristics of an entire
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utterance are represented by a single low-dimension vector
called the i-vector. Since the total variability space accounts
for both speaker and channel (including background noise)
variability, a lot of algorithms for the compensation of channel
variability have been proposed. Classical statistical techniques
such as linear discriminant analysis (LDA) [9] and within-class
covariance normalization (WCCN) [10] have been applied
[7, 11, 12]. Alternatively, by assuming that the i-vectors are
produced by a generative model and that the priors on the
model’s latent variables follow a Gaussian distribution or
Student’s t distribution, the marginal likelihood ratio can be
computed, leading to the Gaussian PLDA [13] and heavy-
tailed PLDA [8], respectively.

A common approach to addressing noise robustness in the
i-vector/PLDA framework is to use multi-condition training
where clean and noisy utterances are pooled together [14, 15,
16, 17]. Alternatively, multiple PLDA models are trained, one
for each condition [18]. Another idea is to model the effect of
noise on i-vectors by an SNR subspace [19].

Recently, several new methods that are based on the i-
vector/PLDA framework have been proposed. For example,
in [20], mixture of probabilistic PCA was performed on the
feature space so that the posterior means of the mixture-
dependent acoustic factors can replace the MFCC acoustic
vectors when computing the first-order sufficient statistics.
These statistics are then plugged into an i-vector extractor.
It was shown that the posterior means of acoustic factors are
enhanced and normalized versions of the acoustic features, and
thus improving the robustness of the i-vector extractor. In [21],
the authors further enhanced the idea by replacing the UBM by
a mixture of acoustic factor analyzers for i-vector extraction.
In [22, 23], the mixture of factor analysers [24] is extended to
mixture of PLDA in which the stacked i-vectors from multiple
sessions of a speaker are assumed to be generated from a
mixture of factor analysers. In [25, 26], mixture of PLDA
with shared speaker space was used for verifying speakers
from multiple channels.

In [27, 28], vector Taylor series (VTS) was used to adapt
a clean UBM to fit noisy utterances. The resulting UBM was
then used for i-vector extraction. The notion is to clean up
the i-vectors so that they become independent of additive
and convolutive noise. As an alternative approach to VTS,
[29] used an unscented transform (UT) to approximate the
nonlinearities between clean and noisy speech models in the
cepstral domain. The unscented transform is expected to be
more accurate than VTS when the distortions are far from
locally linear.

In [30], the zero-order statistics of an i-vector extractor were
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replaced by the posterior probabilities of senones estimated
by a convolutional neural network (CNN). The idea is based
on the observation that the convolution and max-pooling
operations in convolution neural networks (CNN) can reduce
the distortion caused by noise. It was demonstrated that the
performance of this CNN/i-vector framework is comparable to
that of UBM/i-vector framework and that fusion of these two
frameworks is very promising.

In a recent study [31], the uncertainty of noisy acoustic fea-
tures was propagated into the i-vector extraction process in an
attempt to marginalize out the effect of noise. This is achieved
by expressing the posterior density of an i-vector in terms
of the joint density of the clean and noisy acoustic features
where the uncertainties of the noisy features are represented
through the variances of the joint density. To account for all
possible clean features, the joint density is marginalized over
all possible clean acoustic features. The marginalized density
is then plugged back into the posterior density of i-vectors,
where the noise-robust i-vector is its posterior mean. This
modified i-vector extraction method has shown potential for
improving the robustness of speaker recognition especially in
low SNR conditions

Noting that the actual distortion of i-vectors may not be
Gaussian, Sadjadi et al. [32] and Li and Mak [19] replaced
LDA by non-parametric discriminant analysis (NDA) that uses
nearest-neighbor rule to estimate the between- and within-
speaker scatter matrices. They found that NDA is more ef-
fective than the conventional LDA under noisy and channel
degraded conditions.

Focus was shifted to noise robust speaker verification in
NIST 2012 SRE [33]. Many i-vector/PLDA systems, such as
[34], perform very well in the evaluation. However, many
of them use a single PLDA model to handle all of the test
utterances regardless of their noise level. In [35], we argued
that the PLDA models should focus on a small range of SNR
to be effective and that they should cooperate with each other
during verification. To these ends, SNR-dependent mixture of
PLDA was proposed in [35]. Unlike the conventional mixture
of factor analyzers [36] where the posteriors of the indicator
variables depend on the data samples, in [35], the posteriors of
the indicator variables depend on the SNR of the utterances.
This enables the contributions of individual mixtures depend
explicitly on the SNR and implicitly on the locations of the
i-vectors in the i-vector space.

While the proposed method in [35] resembles multi-
condition training described earlier, there are some impor-
tant differences. The major difference is that its condition-
dependent factor analyzers were trained simultaneously. Also,
in [18], the verification scores from individual PLDA models
are weighted by the posterior probability of the test condition
(Eq. 4 of [18]), whereas the model in [35] computes the
verification scores by incorporating the posterior of SNR of
both the target-speaker’s and test utterances into the marginal
likelihood computation (Eq. 4 in [35]). This paper extends the
SNR-dependent mixture of PLDA in [35] by the following
four aspects:

1) Adding another form of mixture of PLDA in which the
clusters structure is solely dependent on i-vectors.

2) Investigating the effect of noise-level variability on i-
vectors to support the motivation of SNR-dependent
mixture of PLDA.

3) Presenting graphical models, EM algorithms and scoring
functions for SNR-independent [24] and SNR-dependent
mixture of PLDA and comparing them in terms of
performance on NIST 2012 SRE.

4) Testing the mixture of PLDA models using utterances
with SNR different from that of the training utterances.

5) Full derivations of the EM algorithms and scoring func-
tions for these models are provided in the supplementary
materials of this paper (downloadable from the authors’
website).

The paper is organized as follows. Section II justifies the
motivation for SNR-dependent mixture of PLDA. Section III
outlines the i-vector/PLDA framework for speaker verification.
Sections IV and V describe the EM algorithms and scoring
functions for SNR-independent and SNR-dependent mixture
of PLDA, respectively. In Sections VI and VII, we report
evaluations based on NIST 2012 SRE [33]. Sections VIII
concludes the findings.

II. MOTIVATION

In [24], clustering and dimensionality reduction were com-
bined so that different regions of the input space were modeled
by different local factor models. In [35], we applied mixture
of PLDA to find multiple speaker subspaces from the i-vector
space. The mixture model, however, is different from that of
[24] in that the resulting clusters and speaker subspaces depend
not only on the input i-vectors but also on the signal-to-noise
ratio (SNR) of utterances. In essence, the SNR is used as
additional information to guide the clustering and dimension
reduction process so that more prominent clusters in the i-
vector space can be formed. The idea of our mixture of PLDA
models is based on two hypotheses on the effect of noise on
i-vectors:

1) Different levels of background noise will cause the i-
vectors to fall on different regions of the i-vector space
(although the regions may be highly overlapped).

2) SNR variability negatively affects PLDA speaker recog-
nition accuracy, but its effect can be mitigated by ex-
plicitly modelling the SNR-dependent speaker subspace
through mixture of PLDA.

To verify these two hypotheses, we corrupted 7,156 clean
telephone utterances from 763 male speakers with babble noise
at 6dB and 15dB using the FaNT tool [37], which result in 3
sets of i-vectors: clean, 15dB, and 6dB. We refer to these sets
as X1, X2, and X3, respectively. Then, we used Xk to find the
mean vector τ k and covariance matrix Γk of the i-vectors
in the three sets separately. A 3-mixture GMM was then
constructed using these three sets of parameters. Because the
number of vectors in each set is equal, the mixture coefficients
are equal to 1/3.

We used partition coefficients (PC) and partition entropy
coefficients (PE) [38] to quantify the cluster separability of
the three groups of i-vectors. These coefficients are commonly
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TABLE I
PARTITION COEFFICIENT (PC) AND PARTITION ENTROPY COEFFICIENT

(PE) OF I-VECTOR CLUSTERS. NUMBER OF CLUSTERS K IS 3.

I-vector Clusters Ranges

Partition Coefficient (PC) 0.997 [1/K, 1] ≈ [0.333, 1]

Partition Entropy (PE) 0.005 [0, logK] ≈ [0, 1.099]

used in assessing the quality of clustering results [38]. Specif-
ically, PC and PE are defined as follows:

PC =
1

N

N∑
i=1

K∑
k=1

ζ2ik (1)

PE = − 1

N

N∑
i=1

K∑
k=1

ζik log ζik, (2)

where N is the total number of i-vectors, K is the number
of clusters and ζik denotes the degree of membership of the
vector xi in cluster k. The degree of membership ζik for i-
vector xi is the posterior probability:

ζik =
N (xi|τ k,Γk)∑K
r=1N (xi|τ r,Γr)

.

The ranges of PC and PE are [1/K, 1] and [0, logK], respec-
tively. A value close to 1 for PC or a value close to 0 for PE
indicates perfect clustering; on the other hand, PC closes to
1/K or PE closes to logK indicates the absence of clustering
tendency [38].

Table I shows the partition coefficient (PC) and partition
entropy coefficient (PE) of the i-vector clusters for K = 3.
Being close to the upper bound 1.0 for the PC and close to
the lower bound for the PE suggest that i-vectors with variable
noise levels have clustering tendency, which means different
noise levels shift the i-vectors to different positions in the i-
vector space.

To verify the second hypothesis, we performed speaker
identification (SID) experiments based on the three datasets
X1, X2, and X3. Specifically, for each dataset, we used 5,717
utterances from 592 speakers to train a PLDA model, which
results in three SNR-dependent PLDA models. Then, we used
the remaining 1,439 utterances from 171 speakers in each
group to test against the three models. This results in nine
combinations of PLDA models and SNR groups, of which
three are matched in training and test conditions and six are
mismatched. The speakers for training the PLDA models and
for SID tests are mutually exclusive. During SID tests, each
of the test utterances was scored against all the other test
utterances, which result in 1,438 PLDA scores. The scores
corresponding to the same speakers were averaged and the
speaker ID of the test utterance was identified by picking the
ID corresponding to the maximum average score. Note that
throughout the paper, we used a simplified variant of PLDA,
commonly called Gaussian PLDA [13] or simplified PLDA
[25]. See [39] for a comparison between various forms of
PLDA.

TABLE II
SPEAKER IDENTIFICATION ACCURACY UNDER MATCHED (DIAGONAL)

AND MISMATCHED (OFF DIAGONAL) TRAINING AND TEST CONDITIONS.
FOR EACH DATASET, 80% OF THE DATA WERE USED FOR TRAINING AND

THE REMAINING 20% WERE USED FOR TESTING.

Test Data From

X1 (clean) X2 (15dB) X3 (6dB)

PLDA X1 (clean) 95.6% 83.7% 55.2%

Training X2 (15dB) 93.9% 93.9% 83.7%

Data From X3 (6dB) 90.1% 93.3% 88.5%

The SID performances of these nine combinations are
shown in Table II. Evidently, for each test group (column), the
diagonal element is the largest, which is reasonable because
the SNR condition of the training data matches that of the test
data. The results in the first and third columns suggest that
the SID accuracy gradually decreases when the SNR of the
training data progressively deviates from that of the test data.
More interestingly, the PLDA model trained with 6dB noisy
utterances is fairly robust to the clean and 15dB test utterances,
which suggests that as long as the model observes some noisy
training data, it will perform reasonably well in both clean
and noisy conditions. However, this is not the case when it is
trained on clean data only. All of these evidences suggest that a
mixture model in which each mixture component is optimized
for a specific SNR condition should be able to handle more
diversified test conditions.

III. THE I-VECTOR/PLDA FRAMEWORK

A. I-Vector Extraction

Unlike JFA which defines the speaker and channel spaces
distinctively, the i-vector approach defines a low-dimensional
total variability space that encompasses both speaker and chan-
nel variabilities. In the total variability space, each utterance is
represented by an i-vector. Specifically, given the MFCCs of
the t-th utterance, the speaker- and channel-dependent GMM-
supervector µt is written as [7]:

µt = µ+ Txt (3)

where µ is a speaker- and channel-independent GMM-
supervector formed by stacking the mean vectors of the
universal background model (UBM) [40], T is a low-rank
total variability matrix, and the posterior mean of xt is the
corresponding low-dimensional i-vector. The i-vector extrac-
tor is trained by approximate maximum-likelihood using all
utterances in a training set without using speaker labels.

B. Generative Model of PLDA

Given a set of D-dimensional length-normalized [13] i-
vectors X = {xij ; i = 1, . . . , N ; j = 1, . . . ,Hi} obtained
from N training speakers each with Hi sessions, we estimate
the latent speaker factors Z = {zi; i = 1, . . . , N} and
parameters ω = {m,V,Σ} of a factor analyzer [9]:

xij = m + Vzi + εij , (4)
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Fig. 1. Probabilistic graphical model representing PLDA with parameters
ω = {m,V,Σ}.

where V ∈ <D×M is a factor loading matrix (M < D),
m ∈ <D is the global mean of X , zi ∈ <M is the speaker
factor with distribution N (0, I), M is the number of factors,
and εij’s are residual noise assumed to follow a Gaussian
distribution N (0,Σ) [13]. Fig. 1 shows the graphical model
of PLDA with parameters ω = {m,V,Σ}.

Because the i-vectors of the same speaker should share the
same speaker factor in Eq. 4, we may collect the i-vectors of
speaker i and rewrite Eq. 4 as

x̃i = m̃+ Ṽzi + ε̃i, (5)

where x̃i = [xT
i1 · · · xT

iHi
]T ∈ <DHi , m̃ = [mT · · · mT]T ∈

<DHi , Ṽ = [VT · · · VT]T ∈ <DHi×M , and ε̃i =
[εT

i1 · · · εT
iHi

]T ∈ <DHi . Eq. 5 is a factor analyzer whose
parameters can be estimated via an EM algorithm [41, 42].

Given target-speaker’s i-vector xs and test i-vector xt, the
likelihood ratio score is1

SPLDA(xs,xt) =
p(xs,xt|same-speaker)
p(xs|Spk s)p(xt|Spk t)

=
N
([

xT
s xT

t

]T ∣∣ [mT mT
]T
, V̂V̂T + Σ̂

)
N
(
xs

∣∣m,VVT + Σ
)
N
(
xt

∣∣m,VVT + Σ
) (6)

where V̂ = [VT VT]T and Σ̂ = diag{Σ,Σ}.

IV. SNR-INDEPENDENT MIXTURE OF PLDA

This section details a PLDA mixture model in which the
posteriors of mixtures are independent of the SNR of utter-
ances. Essentially, the model incorporates supervised learning
to the mixture of factor analysers [24].

A. Generative Model

The PLDA model in Eq. 4 assumes that the length-
normalized i-vectors follow a Gaussian distribution. However,
to deal with cross channel tasks or tasks with varying noise
and reverberation levels, the assumption of single Gaussian
is rather limited. In such situations, the i-vectors will be
better modeled by a mixture of K factor analyzers [24] with
parameters ω = {ϕk,mk,Σk,Vk}Kk=1, where ϕk’s are the

1We may also treat this as a kind of hypothesis test problem with the null
hypothesis H0 defined for the same speaker and the alternative hypothesis
H1 defined for different speakers.
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Fig. 2. Probabilistic graphical model representing SNR-independent mixture
of PLDA with parameters ω = {ϕk,mk,Σk,Vk}Kk=1. In the diagram,
m = {mk}Kk=1, V = {Vk}Kk=1, Σ = {Σk}Kk=1, and ϕ = {ϕk}Kk=1 .

mixture weights. More precisely, i-vectors are considered to be
generated by a linear weighted sum of K Gaussian densities,
each with its own mean vector, covariance matrix, and speaker
subspace. Fig. 2 shows the graphical model of the SNR-
independent mixture of PLDA (SI-mPLDA) with parameters
ω. Hereafter, we use the underline symbol to represent the set
of hyper-parameters of a mixture model.

B. Likelihood Ratio Scores

Given the target-speaker’s i-vector xs and a test i-vector xt,
the same-speaker marginal likelihood is

p(xs,xt|same-speaker)

=

K∑
ks=1

K∑
kt=1

∫
p(xs,xt, yks

= 1, ykt
= 1, z|ω)dz

=

K∑
ks=1

K∑
kt=1

P (yks
= 1, ykt

= 1|ω)

×
∫
p(xs,xt|yks = 1, ykt = 1, z,ω)p(z)dz

=

K∑
ks=1

K∑
kt=1

ϕksϕkt

∫
p(xs,xt|yks = 1, ykt = 1, z,ω)p(z)dz

=
K∑

ks=1

K∑
kt=1

ϕks
ϕkt

×N
([

xT
s xT

t

]T
∣∣∣∣ [mT

ks
mT

kt

]T
, V̂kskt

V̂T
kskt

+ Σ̂kskt

)
(7)

where Σ̂kskt = diag{Σks ,Σkt} , V̂kskt = [VT
ks

VT
kt
]T, and

yks
and ykt

are indicator variables indicating which of the
K mixtures generates xs and xt, respectively. Similarly, the
different-speaker marginal likelihood is

p(xs,xt|different-speaker) = p(xs|Spk s)p(xt|Spk t),

where

p(xs|Spk s) =
K∑

ks=1

P (yks
= 1|ω)

∫
p(xs|yks

= 1, z,ω)dz

=

K∑
ks=1

ϕks
N
(
xs|mks

,Vks
VT

ks
+ Σks

)
,
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SSI-mPLDA(xs,xt) =

∑K
ks=1

∑K
kt=1 ϕks

ϕkt
N
([

xT
s xT

t

]T ∣∣ [mT
ks

mT
kt

]T
, V̂kskt

V̂T
kskt

+ Σ̂kskt

)
[∑K

ks=1 ϕks
N
(
xs|mks

,Vks
VT

ks
+ Σks

)] [∑K
kt=1 ϕkt

N
(
xt|mkt

,Vkt
VT

kt
+ Σkt

)] (8)

and similarly for p(xt|Spk t). Therefore, the likelihood ratio
SSI-mPLDA is given by Eq. 8.

C. EM Formulation
Denote Y = {yijk}Kk=1 as the set of latent indicator

variables specifying which of the K factor analyzers ω =
{ϕk,mk,Σk,Vk}Kk=1 produces xij . Specifically, yijk = 1 if
the k-th factor analyzer produces xij , and yijk = 0 otherwise.
Then, the auxiliary function for EM is
Q(ω′|ω) = EY,Z{ln p(X ,Y,Z|ω′)|X ,ω}

= EY,Z

{∑
ijk

yijk ln
[
p(yijk|ω′)p(xij |zi,ω′

k)p(zi|ω
′)
] ∣∣∣∣X ,ω}

=
∑
ijk

EY,Z

{
yijk ln

[
ϕ′
kN (xij |m′

k + V′
kzi,Σ

′
k)N (zi|0, I)

] ∣∣∣∣X ,ω} .
(9)

Note that the true posterior of z and y are not independent,
making computation slow or intractable. A practical solution
is to use the variational Bayesian (VB) inference procedure
where a factorized variational distribution over latent variables
zi and yijk can be assumed, i.e., q(zi, yijk) = q(zi)q(yijk).
VB estimates the factorized variational distribution which is
closest to the true joint posterior distribution of two dependent
latent variables p(zi, yijk|X ). In the VB-E step, we estimate
the optimal variational distribution or variational parameters
with the highest lower bound of likelihood function (also
known as the variational lower bound). Given the updated vari-
ational distribution, in the VB-M step, the model parameters
{ϕk,mk,Vk,Σk}Kk=1 are estimated by further optimizing the
variational lower bound. Instead of using the more complicated
VB approach, however, we made a gentle assumption that
the latent variable zi is posteriorly independent of yijk,
i.e., p(zi, yijk|Xi) = p(zi|Xi)p(yijk|xij). This assumption is
similar to that of traditional CDHMM [43] in which the HMM
states and Gaussian mixtures are also assumed posteriorly
independent.

With some mathematical manipulations, the following EM
formulation can be derived:2

E-Step:
〈yijk|xij〉 ≡ EY {yijk|xij ,ω}

=
ϕkN (xij |mk,VkVT

k + Σk)∑K
k′=1 ϕk′N (xij |mk′ ,Vk′VT

k′ + Σk′)

Li = I +

K∑
k=1

HikVT
kΣ−1k Vk

〈yijkzi|Xi〉 ≡ EY,Z {yijkzi|Xi,ω} = 〈yijk|Xi〉〈zi|Xi〉

〈zi|Xi〉 = L−1i

K∑
k=1

VT
kΣ−1k

∑
j∈Hik

(xij −mk)

〈yijkziz
T
i |Xi〉 = 〈yijk|xij〉〈zizT

i |Xi〉
〈zizT

i |Xi〉 = L−1i + 〈zi|Xi〉〈zi|Xi〉T

(10)

2See the Supplementary Materials for full derivations.

M-Step:

m′k =

∑N
i=1

∑Hi

j=1〈yijk|xij〉xij∑N
i=1

∑Hi

j=1〈yijk|xij〉
ϕ′k =

∑
ij〈yijk|xij〉∑
ijl〈yijl|xij〉

V′k =

∑
ij

(xij −m′k)〈yijkzi|Xi〉T
∑

ij

〈
yijkziz

T
i |Xi

〉−1

Σ′k =

∑
ij

[
〈yij |xij〉f ′ijkf ′ijk

T −V′k〈yijkzi|Xi〉f ′ijk
T
]

∑
ij〈yijk|xij〉

f ′ijk = xij −m′k,
(11)

where Hik comprises the indexes of speaker i’s i-vectors that
aligned to mixture k and Hik is the number of elements in
Hik.

The posterior expectations 〈zi|Xi〉 in Eq. 10 implies that
given Hi i-vectors from speaker i, only Hik of them are
generated by the k-th mixture component. This property
will be particularly important when the training i-vectors are
derived from utterances with a wide range of SNR, because
these i-vectors tend to fall on different regions of the i-vector
space (see Hypothesis 1 in Section II). For example, in our
experiments, training i-vectors were derived from utterances
of three noise levels: clean, 15dB, and 6dB. As a result, when
K = 3, Mixtures 1, 2, and 3 will be responsible for generating
i-vectors of clean, 15dB, and 6dB, respectively. This property
also makes our mixture of PLDA models different from that
of [23]. Specifically, in [23], given a set of i-vectors from a
speaker, a mixture component is first chosen; then the selected
mixture is responsible for generating all of the i-vectors from
that speaker. Obviously, this structure is limited to the case
where the i-vectors from a speaker are derived from similar
acoustic environments with comparable noise level.

V. SNR-DEPENDENT MIXTURE OF PLDA

This section explains a new PLDA model which constitutes
the main contribution of this work. A key difference between
this model and the one described in Section IV is that the
posteriors of mixtures depend on the SNR of utterances
instead of the i-vectors. The SNR information enables the EM
algorithm to find more distinct clusters in the i-vector space.

A. Generative Model

Based on the observation in Section II that different noise
levels shift the i-vectors to different regions of the i-vector
space, the i-vectors are better modeled by a mixture of SNR-
dependent mixture of PLDA (SD-mPLDA) with parameters
θ = {λ,ω} = {λk,ωk}Kk=1 = {πk, µk, σk,mk,Vk,Σk}Kk=1,
where λk = {πk, µk, σk} contains the prior probability, mean
and standard deviation of the SNR in the k-th group. In this
model, clustering of i-vectors is guided by the SNR of the
corresponding utterances and i-vectors are considered to be
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ℓ ij

xij zi

yijk

NHi

K
π

µ  ,  σ

V

m Σ

Fig. 3. Probabilistic graphical model representing SNR-dependent mix-
ture of PLDA with parameters θ = {λ,ω} = {λk,ωk}Kk=1 =
{πk, µk, σk,mk,Vk,Σk}Kk=1. Refer to the caption of Fig. 2 for the
definition of the symbol .

generated by a linear combination of Gaussian densities in
which the combination weights are the posteriors of utter-
ances’ SNR.

Denote ` as the SNR of the utterance whose i-vector is
x. Denote yk’s as the indicator variables specifying which of
the factor analyzers is responsible for generating x. Then, the
posterior probability of yk is

γ`(yk) ≡ P (yk = 1|`,λ) = πkN (`|µk, σ
2
k)∑K

k′=1 πk′N (`|µk′ , σ2
k′))

. (12)

Therefore, unlike the SI-mPLDA described in Section IV, the
alignment of i-vectors in SD-mPLDA is based on the posterior
probabilities of SNR rather than the posterior probabilities of
i-vectors.

Fig. 3 shows the graphical model of the SNR-dependent
mixture of PLDA, where the subscripts i, j and k denote
speaker, session, and mixture, respectively. The indicator vari-
able yijk connects the i-vector xij and the corresponding SNR
`ij . It indicates which of the factor analyzers ωk generates xij .
Note that unlike SI-mPLDA, yijk determines not only xij but
also the SNR `ij which is modeled by a Gaussian mixture
model with parameters λ = {λk}Kk=1 = {πk, µk, σk}Kk=1.

B. Likelihood Ratio Scores

Given target-speaker’s i-vector xs and test i-vector xt and
the SNR `s and `t (in dB) of the corresponding utterances,
the same-speaker marginal likelihood is

p(xs,xt, `s, `t|same-speaker)
= p(`s)p(`t)p(xs,xt|`s, `t, same-speaker)

= pst

K∑
ks=1

K∑
kt=1

∫
p(xs,xt, yks

= 1, ykt
= 1, z|θ, `s, `t)dz

= pst
∑K

ks=1

∑K

kt=1
γ`s,`t(yks

, ykt
)

×
∫
p(xs,xt|yks

= 1, ykt
= 1, z,ω)p(z)dz

= pst
∑K

ks=1

∑K

kt=1
γ`s,`t(yks

, ykt
)

×N
([

xT
s xT

t

]T ∣∣ [mT
ks

mT
kt

]T
, V̂kskt

V̂T
kskt

+ Σ̂k

)

where pst = p(`s)p(`t), V̂kskt
= [VT

ks
VT

kt
]T, Σ̂k =

diag{Σks ,Σkt} and

γ`s,`t(yks
, ykt

) ≡ P (yks
= 1, ykt

= 1|`s, `t,λ)

=
πks

πkt
N ([`s `t]

T|[µks
µkt

]T, diag{σ2
ks
, σ2

kt
})

K∑
k′
s=1

K∑
k′
t=1

πk′
s
πk′

t
N ([`s `t]T|[µk′

s
µk′

t
]T, diag{σ2

k′
s
, σ2

k′
t
})
.

Similarly, the different-speaker marginal likelihood is

p(xs,xt, `s, `t|different-speaker)
= p(xs, `s|Spk s)p(xt, `t|Spk t),

where

p(xs, `s|Spk s) = p(`s)
∑K

ks=1

∫
p(xs, yks

= 1, z|θ, `s)dz

= p(`s)
∑K

ks=1
γ`s(yks

)N
(
xs|mks

,Vks
VT

ks
+ Σks

)
,

and similarly for p(xt, `t|Spk t). Therefore, the likelihood
ratio SSD-mPLDA is given by Eq. 13 at the top of next page.
Some issues of implementing Eq. 13 as Eq. 17 are addressed
in Appendix A.

C. EM Formulation
Denote Y = {yijk}Kk=1 as the set of latent indicator

variables specifying which of the K factor analyzers should
be selected based on the SNR of training utterances. Also,
denote L = {`ij ; i = 1, . . . , N ; j = 1, . . . ,Hi} as the SNR
of the training utterances. Specifically, yijk = 1 if the k-th
factor analyzer produces xij , and yijk = 0 otherwise. Then,
the auxiliary function for EM is

Q(θ′|θ) = EY,Z{log p(X ,L,Y,Z|θ′)|X ,L,θ}

= EY,Z
{∑

ijk
yijk log[p(`ij |yijk = 1)p(yijk)

× p(xij |zi, yijk = 1,ω′k)p(zi)]

∣∣∣∣X ,L,θ}
=

N∑
i=1

Hi∑
j=1

K∑
k=1

EY,Z {yijk log[N (`ij |µ′k, σ′k)π′k

× N (xij |m′k + V′kzi,Σ
′
k)N (zi|0, I)]

∣∣X ,L,θ} .
(14)

where π′k ≡ P (yijk = 1) is the prior probability of the k-th
factor analyzer. Maximizing Eq. 14 leads to the following EM
formulations:3

E-Step:

〈yijk|L〉 ≡ EY {yijk|L,λ} =
πkN (`ij |µk, σ

2
k)∑K

r=1 πrN (`ij |µr, σ2
r)

Li = I +

K∑
k=1

HikVT
kΣ−1k Vk

〈yijkzi|X ,L〉 = 〈yijk|L〉〈zi|X 〉

〈zi|X 〉 = L−1i

K∑
k=1

∑
j∈Hik

VT
kΣ−1k (xij −mk)

〈yijkziz
T
i |X ,L〉 = 〈yijk|L〉〈zizT

i |X 〉
〈zizT

i |X 〉 = L−1i + 〈zi|X 〉〈zi|X 〉T

(15)

3See Appendix B and Supplementary Materials for full derivations.
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SSD-mPLDA(xs,xt) =

∑K
ks=1

∑K
kt=1 γ`s,`t(yks , ykt)N

([
xT
s xT

t

]T ∣∣ [mT
ks

mT
kt

]T
, V̂ksktV̂

T
kskt

+ Σ̂kskt

)
[∑K

ks=1 γ`s(yks
)N
(
xs|mks

,Vks
VT

ks
+ Σks

)] [∑K
kt=1 γ`t(ykt

)N
(
xt|mkt

,Vkt
VT

kt
+ Σkt

)] (13)

M-Step:

m′k =

∑N
i=1

∑Hi

j=1〈yijk|L〉xij∑N
i=1

∑Hi

j=1〈yijk|L〉
;π′k =

∑
ij〈yijk|L〉∑
ijl〈yijl|L〉

µ′k =

∑
ij〈yijk|L〉`ij∑
ij〈yijk|L〉

; σ2
k
′
=

∑
ij〈yijk|L〉(`ij − µ′k)2∑

ij〈yijk|L〉

V′k =
[∑

ij
f ′ijk〈yijkzi|X ,L〉T

] [∑
ij

〈
yijkziz

T
i |X ,L

〉]−1
Σ′k =

∑
ij

[
〈yijk|L〉f ′ijkf ′ijk

T −V′k〈yijkzi|X ,L〉f ′ijk
T
]

∑
ij〈yijk|L〉

f ′ijk = xij −m′k.
(16)

Note that to be more precise, the posterior mean 〈yijk|L〉
should be 〈yijk|xij , `ij〉. However, to ensure that the clustering
processing is driven by the SNR of utterances rather than the
i-vectors, we make a gentle assumption that yijk is posteriorly
independent of xij . Also, to avoid using the complicated VB
approach to approximating the true posterior of yijk and zi,
we have assumed that yijk and zi are posteriorly independent
(see Section IV-C for discussion).

Readers are suggested to compare the differences between
PLDA (Fig 1), SNR-independent mPLDA (Fig 2) and SNR-
dependent mPLDA (Fig 3) through their scoring functions
(Eq. 6, Eq. 8, and Eq. 13.)

VI. EXPERIMENTAL SETUP

A. Speech Corpora and Acoustic Features

The phonecall speech in the core set of NIST 2012 Speaker
Recognition Evaluation (SRE) [33] was used for performance
evaluation. In the evaluation dataset, noise was added to the
test segments of common condition 4 and the test segments
in common condition 5 were collected in noisy environments.
Therefore, this paper focuses on these two common conditions.
The training segments comprise conversations with variable
length. We removed the 10-second utterances and the summed-
channel utterances from the training segments but ensured
that all target speakers have at least one clean utterance
for enrollment. The speech files in NIST 2005–2010 SREs
were used as development data for training gender-dependent
UBMs, total variability matrices, LDA-WCCN, and PLDA
models.

Speech regions in the speech files were extracted by using
a two-channel VAD [44]. 19 MFCCs together with energy
plus their 1st and 2nd derivatives were extracted from the
speech regions, followed by cepstral mean normalization and
feature warping [4] with a window size of 3 seconds. A 60-dim
acoustic vector was extracted every 10ms, using a Hamming
window of 25ms. For each clean training file, we randomly
select one out of the 30 noise files from the PRISM dataset
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Fig. 4. SNR distribution of male training data for PLDA, SI-mPLDA, and
SD-mPLDA models. Top: Set I. Bottom: Set II.

15dB (tel) files 

6dB (tel) files  

Original (mic+tel) files 

Union 
Set I 

Fig. 5. Flow chart for obtaining Set I training data.

[45] and added to the speech file at a target SNR using the
FaNT tool [37]. The target SNR was selected in turn from
an SNR set comprising {6dB, 7dB, . . . , 15dB}. As a result,
for each original file, ten noise corrupted files with different
SNRs were generated.

B. Preparation of Training Data

The i-vector systems are based on gender-dependent UBMs
with 1024 mixtures and total variability matrices with 500
total factors. Microphone and telephone utterances from NIST
2005–2008 SREs were used for training the UBMs and total
variability matrices. Following [12], within-class covariance
normalization (WCCN) [10] and i-vector length normalization
[13] were applied to the 500-dimensional i-vectors. Then, lin-
ear discriminant analysis (LDA) [9] and WCCN were applied
to reduce the dimension to 200 before training the PLDA and
mixture of PLDA models with 150 latent variables.

Two sets of training data were used for training the PLDA
models. Fig. 5 and Fig. 6 show the flow charts for obtaining
the training data. As shown in Fig. 5, Set I comprises 6dB
(tel), 15dB (tel), and original (tel+mic) speech files in 2006–
2010 SRE—excluding speakers with less than two utterances.
The SNR distribution for Set I is shown in the upper panel of
Fig. 4. It can be observed that the SNRs in the figure are not
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Fig. 7. SNR distribution of test utterances in CC4 for female speakers. Top:
Original utterances. Middle: After adding noise at 15dB SNR. Bottom: After
adding noise at 6dB SNR.

exactly 6dB or 15dB, instead they are only close to 6dB or
15dB because the figure shows the “actual” SNRs measured
by using the VAD decisions and the voltmeter function of
FaNT. Readers may refer to [19] for the details of SNR
measurements.

The procedure for obtaining Set II is shown in Fig 6.
All noise corrupted files were put together first and then
1800 utterances were randomly selected from each of the
SNR intervals. The selected noisy utterances and the original
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Fig. 8. SNR distribution of test utterances in CC5 for female speakers. Top:
Original utterances. Middle: After adding noise at 15dB SNR. Bottom: After
adding noise at 6dB SNR.

(tel+mic) utterances were combined to obtain Set II. The lower
panel in Fig. 4 shows the SNR distribution of Set II. The
reason of using Set II as training data is that this set of
data is more general and is more suitable for the practical
situations where no prior information about the test utterances
is available.

C. Enrollment and Scoring

I-vectors derived from the original tel, 6dB tel and 15dB
tel utterances were used for enrollment for all models. As a
result, the number of enrollment utterances is three times the
number of original telephone utterances, and each speaker will
have multiple enrollment utterances. In our experiments, each
enrollment utterance is represented by one target-speaker’s i-
vector. During scoring, a test i-vector was scored against each
of the target-speaker’s i-vectors and the scores were averaged.
In other words, we used the score averaging approach.

VII. RESULTS AND DISCUSSIONS

A. SNR-Independent vs. SNR-Dependent Mixture of PLDA

Gender-dependent PLDA, SI-mPLDA, and SD-mPLDA
models with 150 factors were trained using Set I and Set II.
The EM algorithms described in Sections IV and V were used
to train SI-mPLDA andSD-mPLDA models with K = 2, 3 and
4.

The performance of PLDA, SNR-independent mixture of
PLDA and SNR-dependent mixture of PLDA are shown in
Table III, Table IV and Fig. 9. “Set I” and “Set II” in Table III
refer to the two sets of training data described in Section VI-B.

Table III shows that SI-mPLDA performs better than PLDA
in terms of minDCF for male speakers but its performance is
poorer than that of the baseline for female speakers. In SI-
mPLDA, the prior probability ϕk in Eq. 8 was determined
by the posterior probability of the indicator variable given
the training data (see Eq. 11). These prior probabilities are
used as the prior for the K mixtures. This means that the
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mixture weights for combining the PLDA scores in Eq. 8 are
independent of the test utterances. In other words, the same
combination weights will be used regardless of the character-
istics of the test utterances. This leads to a very inflexible
mixture of PLDA. On the other hand, in SNR-dependent
mixture of PLDA (SD-mPLDA), the posterior probabilities of
the indicator variables yijk’s given the SNR of test utterances
are used to determine the combination weights in Eq. 13.

Figures 10(a) and 10(b) show the alignment of test i-vectors
to SNR-independent and SNR-dependent mixture of PLDA
models, respectively. In the figures, each point represents one
i-vector in CC4 with the aligned Cluster ID and SNR shown
on the two axes. The figures clearly show that for SD-mPLDA,
i-vectors that are aligned to the same mixture component have
similar SNR, whereas for SI-mPLDA, the i-vectors with a
wide range of SNR could align to the same mixture. This
suggests that it is beneficial to use the extra information
available in the SNR to perform the alignment. The good
alignment in SD-mPLDA increases the match between the
mixture components and the test i-vectors, resulting in better
verification performance.

From Table III, it can be observed that SD-mPLDA per-
forms better than SI-mPLDA in most cases when Set I was
used for training the mPLDA models. However, the situation
is reverse when Set II was used for training. This is because
the three SNR mixtures in Set I are more distinguishable than
those in Set II (see Fig. 4), which helps SD-mPLDA to perform
correct alignments of i-vectors to the PLDA mixtures.

Table III and Fig. 11 also show that PLDA and mixture
of PLDA trained by Set II performs worse than those trained
trained by Set I, which is caused by the mismatch between
the training and the test data. However, it is more practical
to use Set II to train PLDA models because in practice prior
knowledge about the SNR distribution of test utterances is
usually not available.

B. SNR as Features

SNRs can also be considered as a feature and appended to
the i-vectors for PLDA modelling and scoring. To ensure that
the SNRs have the same range as the other elements in the i-
vectors, we applied Z-norm to the SNRs before appending
them to the i-vectors. The results are shown in the rows
labelled “PLDA (iVec+SNR)” in Table III. Evidently, when
Set I was used for training the PLDA models, this approach
can help improve performance. However, the SNR feature
does not bring much advantage to the PLDA models when
Set II was used for training. This is possibly because the
mismatch between the SNR of training and test utterances is
more severe in Set II than in Set I. In fact, this approach should
be used with caution because SNR is speaker independent
and i-vectors are speaker-dependent. It is difficult to avoid the
PLDA models from performing SNR verification rather than
speaker verification.

C. Robustness to SNR Mismatch

In NIST 2012 SRE, the amount of noise to be added to
the test segments is given. Typically, researchers make use of
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Fig. 9. DET performance of PLDA, SNR-independent mPLDA (SI-mPLDA),
and SNR-dependent mPLDA (SD-mPLDA) in CC4 of NIST 2012 SRE (core
set, male speakers) using Set I as training data. The number of mixtures for
both mPLDA is 3.

this information to design multi-condition training strategies
to maximize the match between training data and test data.
However, in practical situations, we may not have the prior
knowledge of the noise (i.e. the SNR) of the test utterances.
To investigate whether the proposed mixture of PLDA can deal
with such situation, we deliberately added crowd noise to the
test segments in CC4 and CC5 of NIST 2012 SRE to make
the SNR distribution of test segments different from that of
the training segments. Specifically, noise waveforms from the
PRISM dataset was added to the waveform files of the test
utterances in CC4 and CC5 at 15dB and 6dB using the FaNT
tool.

The middle and bottom panels of Fig. 7 and Fig. 8 show
the measured-SNR distributions of the noise contaminated
test segments in CC4 and CC5, respectively. A comparison
between these histograms with those in Fig. 4 reveals that there
is substantial difference between the SNR of training and test
segments. Note that the FaNT tool has the property that if the
measured SNR is lower than the target SNR, no noise will be
added. While the test utterances in CC5 were recorded in a
noisy environment, the top panel of Fig. 8 suggests that the
SNR is still fairly high. As a result, noise will be added to the
test utterances in CC5 even if the target SNR is 15dB. On the
other hand, as shown in the top panel of Fig. 7, some of the
utterances in CC4 have SNR lower than 15dB or even 5dB.
As a result, the SNR distribution is compressed and shifted to
the left after adding noise, as shown in the middle and lower
panel of Fig. 7.

Table IV shows the EER and minimum DCF for different
sets of test data. From the table, we can observe that even
though the SNR distributions of training and test utterances are
very different, mixture of PLDA still works better than single
PLDA. From Table III, Table IV and Fig. 11, we can conclude
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TABLE III
PERFORMANCE OF PLDA, SNR-INDEPENDENT MIXTURE OF PLDA, AND SNR-DEPENDENT MIXTURE OF PLDA WITH 2, 3 AND 4 MIXTURES TRAINED
BY SET I AND SET II TRAINING DATA IN CC4 AND CC5 OF NIST 2012 SRE (CORE SET). “PLDA (IVEC+SNR)” MEANS THAT NORMALIZED SNR WAS

APPENDED TO I-VECTORS FOR PLDA MODELLING AND SCORING.

Training data Method
Male Female

CC4 CC5 CC4 CC5
EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

Set I

PLDA 3.49 0.308 2.86 0.286 3.13 0.353 2.47 0.343
PLDA (iVec+SNR) 3.19 0.306 2.93 0.294 3.10 0.341 2.38 0.331
SNR-

independent
mPLDA

2 mixtures 3.41 0.303 2.99 0.317 3.08 0.350 2.34 0.347
3 mixtures 3.24 0.310 2.94 0.306 2.98 0.351 2.55 0.356
4 mixtures 3.19 0.291 2.91 0.296 3.16 0.357 2.36 0.343

SNR-
dependent
mPLDA

2 mixtures 3.28 0.307 2.97 0.307 3.10 0.359 2.59 0.355
3 mixtures 2.94 0.315 2.86 0.295 2.60 0.332 2.59 0.332
4 mixtures 3.11 0.313 2.90 0.307 2.84 0.333 2.74 0.349

Set II

PLDA 3.32 0.318 3.09 0.315 2.94 0.352 2.64 0.355
PLDA (iVec+SNR) 3.24 0.315 3.23 0.314 2.98 0.353 2.72 0.331
SNR-

independent
mPLDA

2 mixtures 3.32 0.318 3.09 0.336 3.06 0.357 2.67 0.352
3 mixtures 3.13 0.315 3.21 0.311 2.82 0.352 2.59 0.341
4 mixtures 3.37 0.303 3.13 0.304 2.86 0.345 2.52 0.344

SNR-
dependent
mPLDA

2 mixtures 3.33 0.312 3.00 0.315 2.90 0.349 2.64 0.348
3 mixtures 3.38 0.313 3.00 0.315 2.90 0.352 2.67 0.352
4 mixtures 3.35 0.313 3.08 0.310 3.09 0.358 2.86 0.369
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Fig. 10. Alignment of test i-vectors in CC4 of NIST 2012 SRE to (a) SNR-
independent mixture of PLDA and (b) SNR-dependent mixture of PLDA. For
both cases, K = 3. Note that in (a), none of the i-vectors aligned to Mixture
2.

that the SNR-dependent mixture of PLDA is beneficial even
though the SNR distribution of the test utterances is unknown.
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Fig. 11. DET performance of PLDA and SNR-dependent mixture of PLDA
(SD-mPLDA) in CC4 of NIST 2012 SRE (core set, female speakers) using
Dataset I and Dataset II for training. The number of mixtures K in SD-
mPLDA is 3.

VIII. CONCLUSIONS

To enhance the noise robustness of speaker verification
systems, this paper applies an SNR-dependent mixture of
PLDA. Two sets of data were used for training PLDA models
and evaluation was performed on the latest NIST SRE. Unlike
SNR-independent mixture of PLDA, the SNR of utterances
is incorporated into both training and verification phases in
SNR-dependent mixture of PLDA. The use of SNR in the
verification phase leads to more meaningful combination of the
mixtures, which makes the SNR-dependent mixture of PLDA
more flexible, as evident by the promising performance in most
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TABLE IV
PERFORMANCE OF PLDA , SNR-INDEPENDENT AND SNR-DEPENDENT MIXTURE OF PLDA (3 MIXTURES) WITH DIFFERENT TRAINING SETS IN CC4
AND CC5 FOR FEMALE SPEAKERS. THE SNR DISTRIBUTIONS FOR CC4(15DB), CC4(6DB), CC5(15DB) AND CC5(6DB) ARE SHOWN IN FIG. 7 AND

FIG. 8.

Training data Method
CC4 (15dB) CC4 (6dB) CC5 (15dB) CC5 (6dB)

EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

Set I
PLDA 2.79 0.360 3.12 0.378 3.38 0.410 5.73 0.569

SNR-independent mPLDA 2.70 0.362 2.98 0.380 3.28 0.394 5.63 0.566
SNR-dependent mPLDA 2.55 0.347 3.02 0.406 3.37 0.405 6.11 0.587

Set II
PLDA 2.81 0.364 3.18 0.396 3.50 0.411 6.08 0.580

SNR-independent mPLDA 2.69 0.361 3.08 0.391 3.49 0.406 5.94 0.579
SNR-dependent mPLDA 2.91 0.382 3.06 0.400 3.44 0.421 5.98 0.583

situations. It was also found that mixture of PLDA performs
better than the conventional PLDA even if there is a severe
mismatch between the SNR of training and test utterances.

APPENDIX A: IMPLEMENTATION ISSUES

Eq. 8 and Eq. 13 are likely to cause numerical problems
if they are evaluated directly because the determinant of
V̂ks

V̂T
ks

+ Σ̂ks
could exceed the double-precision represen-

tation. This problem, however, can be avoided by computing
the logarithm of determinant and noting the identity: |αA| =
αD|A|, where α is a scalar and A is a D×D matrix. Thus, we
can rewrite Eq. 13 as Eq. 17, where Λ̂kskt = V̂ksV̂

T
kt
+Σ̂kskt ,

Λks
= Vks

VT
ks

+ Σks
, Σ̂kskt

= diag{Σks
,Σkt

}, and
D(x‖y) is the Mahalanobis distance between x and y, i.e.,
D(x‖y) = (x−y)TS−1(x−y), where S = cov(x,x). In this
work, α = 5. Note that α is to avoid taking exponential of
very large negative numbers in Eq. 17, causing zero-divided-
by-zero error. Because log |αA| = D logα + log |A|, when
log |A| � 0, the term D logα can make the overall sum less
negative. The same numerical technique can also be applied
to Eq. 8.

Eq. 17 changes the computation of |A| in the Gaussian
densities to log |αA|. The latter can be easily computed
using the Cholesky decomposition. More specifically, we
have log |αA| = 2

∑D
i=1 log bii, where bii’s are the diagonal

elements of B and B is the Cholesky decomposition of αA.
As pointed out by a reviewer of this paper, the numerical

problems in computing the determinant in Eq. 13 can also be
solved by using the matrix determinant lemma, and the inver-
sion of the covariance matrices can be done using Cholesky
factorization and the Woodbury formula [46].

APPENDIX B: EM DERIVATIONS

This appendix derives the EM formulations of SD-mPLDA.
The EM formulations of SI-mPLDA can be similarly derived.
For full derivations, readers may refer to Supplementary
Materials available from the authors’ website.

Denote yi·· as the indicator variables for all possible sessions
and mixture components for speaker i. For the E-step, we start

with the joint posterior density:

p(zi, yi..|Xi,Li) ∝ p(Xi,Li|zi, yi.. = 1)p(zi, yi..)

= p(Xi|zi, yi.. = 1)p(Li|yi.. = 1)p(yi..)p(zi)

=

Hi∏
j=1

K∏
k=1

[πkp(xij |yijk = 1, zi)p(`ij |yijk = 1)]
yijk p(zi)

=


Hi∏
j=1

K∏
k=1

[
πkN (`ij |µk, σ

2
k)
]yijk


· p(zi)


Hi∏
j=1

K∏
k=1

[N (xij |mk + Vkzi,Σk)]
yijk

︸ ︷︷ ︸
∝ p(zi|Xi)

(18)

where we have used the fact that yijk is determined by `ij .
The 2nd line of Eq. 18 makes use of the assumption that zi
and yijk are independent and the 3rd line makes use of Eq.
9.38 of [9].

To find the posterior of zi, we extract the terms dependent
on zi from Eq. 18 as follows:

p(zi|Xi) ∝ exp

−1

2

Hi∑
j=1

K∑
k=1

yijk(xij −mk −Vkzi)
TΣ−1k

× (xij −mk −Vkzi)−
1

2
ziz

T
i

}

= exp

zT
i V

T
k

K∑
k=1

∑
j∈Hik

Σ−1k (xij −mk)−

1

2
zT
i

I +

K∑
k=1

∑
j∈Hik

VT
kΣ−1k Vk

 zi

 (19)

where Hik comprises the indexes of speaker i’s i-vectors that
aligned to mixture k. Comparing Eq. 19 with the standard
Gaussian, N (z|µz,Cz) ∝ exp

{
zTC−1z µz − 1

2zTC−1z z
}
,

we obtain the posterior mean 〈zi|Xi〉, posterior moment
〈zizT

i |Xi〉, and posterior precision Li in Eq. 15. The posterior
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=

∑K
ks=1

∑K
kt=1 γ`s,`t(yks , ykt) exp

{
− 1

2 log |αΛ̂kskt | − 1
2D
([

xT
s xT

t

]T ∥∥ [mT
ks

mT
kt

]T)}[∑K
ks=1 γ`s(yks

) exp
{
− 1

2 log |αΛks
| − 1

2D (xs‖mks
)
}] [∑K

kt=1 γ`t(ykt
) exp

{
− 1

2 log |αΛkt
| − 1

2D (xt‖mkt
)
}]

(17)

of yijk can be computed using the Bayes rule:

〈yijk|L〉 = 〈yijk|`ij〉 = P (yijk = 1|`ij ,λ)

=
P (yijk = 1)p(`ij |yijk = 1,λ)∑K
r=1 P (yijr = 1)p(`ij |yijr = 1,λ)

=
πkN (`ij |µk, σ

2
k)∑K

r=1 πrN (`ij |µr, σ2
r)
.

For the M-step, we write Eq. 14 as follows:

Q(θ) =
∑
ijk

〈yijk|L〉
[
− log σk −

1

2
σ−2k (`ij − µk)

2 + log πk

]
+
∑
ijk

〈yijk|L〉
[
−1

2
log |Σk| −

1

2
(xij −mk)

TΣ−1k (xij −mk)

]
+
∑
ijk

(xij −mk)
TΣ−1k Vk 〈yijkzi|X ,L〉

− 1

2

∑
ijk

tr
{(

VT
kΣ−1k Vk + I

)〈
yijkziz

T
i |X ,L

〉} .
Then, we differentiate Q(θ) with respect to πk (subject to∑

k πk = 1), µk, σk, mk, Vk, and Σ−1k , and set the derivatives
to zero to obtain the M-step formulations in Eq. 16.
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condition training on i-vector PLDA configurations for speaker
recognition,” in Proc. of Interspeech, 2013, pp. 3694–3697.

[18] D. Garcia-Romero, X. Zhou, and C. Espy-Wilson, “Multicon-
dition training of Gaussian PLDA models in i-vector space for
noise and reverberation robust speaker recognition,” in Proc. of
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2012, pp. 4257–4260.

[19] N. Li and M. W. Mak, “SNR-invariant PLDA modeling in non-
parametric subspace for robust speaker verification,” IEEE/ACM
Trans. on Audio Speech and Language Processing, vol. 23,
no. 10, pp. 1648–1659, 2015.

[20] T. Hasan and J. Hansen, “Acoustic factor analysis for robust
speaker verification,” IEEE Transactions on Audio, Speech and
Language Processing,, vol. 21, no. 4, pp. 842–853, 2013.

[21] ——, “Maximum likelihood acoustic factor analysis models
for robust speaker verification in noise,” IEEE Transactions on
Audio, Speech And Language Processing, vol. 22, no. 2, pp.
381–391, 2014.

[22] K. Simonchik, T. Pekhovsk, A. Shulipa, and A. Afanasyev,
“Supervised mixture of PLDA models for cross-channel speaker
verification,” in Proc. of Interspeech, 2012, pp. 1684–1687.

[23] T. Pekhovsky and A. Sizov, “Comparison between supervised
and unsupervised learning of probabilistic linear discrimi-
nant analysis mixture models for speaker verification,” Pattern
Recognition Letters, vol. 34, no. 11, pp. 1307–1313, 2013.

[24] Z. Ghahramani and G. E. Hinton, “The EM algorithm for
mixtures of factor analyzers,” Department of Computer Science,
University of Toronto, Technical Report CRG-TR-96-1, 1996.

[25] J. Villalba and E. Lleida, “Handling I-vectors from diferent
recording condistions using multi-channel simplified PLDA in



13

speaker recognition,” in Proc. of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2013,
pp. 6763–6767.

[26] J. Villalba, E. Lleida, A. Ortega, and A. Miguel, “The I3A
speaker recognition system for NIST SRE12: Post-evaluation
analysis,” in Proc. Interspeech, 2013, pp. 3689–3693.

[27] Y. Lei, L. Burget, and N. Scheffer, “A noise robust i-vector
extractor using vector Taylor series for speaker recognition.” in
Proc. of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2013, pp. 6788–6791.

[28] Y. Lei, M. Mclaren, L. Ferrer, and N. Scheffer, “Simplified
VTS-based i-vector extraction in noise-robust speaker recogni-
tion.” in Proc. of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2014, pp. 4065–4069.

[29] D. Martinez, L. Burget, T. Stafylakis, Y. Lei, P. Kenny,
and E. Lleida, “Unscented transform for i-vector-based noisy
speaker recognition,” in Proc. of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2014,
pp. 4070–4074.

[30] M. McLaren, Y. Lei, N. Scheffer, and L. Ferrer, “Application of
convolutional neural networks to speaker recognition in noisy
conditions,” in Proc. of Interspeech, 2014, pp. 686–690.

[31] C. Yu, G. Liu, S. Hahm, and J. Hansen, “Uncertainty prop-
agation in front end factor analysis for noise robust speaker
recognition,” in Proc. of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2014, pp.
4045–4049.

[32] S. Sadjadi, J. Pelecanos, and W. Zhu, “Nearest neighbor dis-
criminant analysis for robust speaker recognition,” in Proc. of
Interspeech, 2014, pp. 1860–1864.

[33] NIST, “The NIST year 2012 speaker recognition evaluation
plan,” http://www.nist.gov/itl/iad/mig/sre12.cfm, 2012.

[34] R. Saeidi, K. Lee, T. Kinnunen, T. Hasan, B. Fauve, P. Bousquet,
E. Khoury, P. S. Martinez, J. Kua, C. You et al., “I4U submis-
sion to NIST SRE 2012: A large-scale collaborative effort for
noise-robust speaker verification,” in Proc. of Interspeech, 2013,
pp. 1986–1990.

[35] M. W. Mak, “SNR-dependent mixture of PLDA for noise robust
speaker verification,” in Proc. of Interspeech, Singapore, Sept.
2014, pp. 1855–1859.

[36] G. McLachlan and D. Peel, Finite Mixture Models. John Wiley
and Sons, 2000, ch. Mixtures of factor analyzers, pp. 238–256.

[37] “http://dnt.kr.hsnr.de/download.html.”
[38] Y. B. M. Halkidi and M. Vazirgiannis, “On clustering validation

techniques,” J. Intell. Inf. Syst., vol. 17, no. 2/3, pp. 107–145,
2001.

[39] A. Sizov, K. A. Lee, and T. Kinnunen, “Unifying probabilistic
linear discriminant analysis variants in biometric authentica-
tion,” in Structural, Syntactic, and Statistical Pattern Recog-
nition. Springer, 2014, pp. 464–475.

[40] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker
verification using adapted Gaussian mixture models,” Digital
Signal Processing, vol. 10, no. 1–3, pp. 19–41, Jan. 2000.

[41] S. Prince and J. Elder, “Probabilistic linear discriminant analysis
for inferences about identity,” in Proc. of IEEE International
Conference on Computer Vision (ICCV), 2007, pp. 1–8.

[42] D. Rubin and D. Thayer, “EM algorithms for ML factor
analysis,” Psychometrika, vol. 47, no. 1, pp. 69–76, 1982.

[43] L. Rabiner and B. H. Juang, Fundamentals of Speech Recogni-
tion. Prentice-Hall International, Inc., 1993.

[44] M. W. Mak and H. B. Yu, “A study of voice activity detection
techniques for NIST speaker recognition evaluations,” Com-
puter, Speech and Language, vol. 28, no. 1, pp. 295–313, Jan
2013.

[45] L. Ferrer, et al., “Promoting robustness for speaker modeling
in the community: The PRISM evaluation set,” in Proc. NIST
Speaker Recognition Analysis Workshop (SRE11), 2011, pp. 1–
7.

[46] W. H. Press, Numerical recipes: The art of scientific computing,

3rd ed. Cambridge university press, 2007.

Man-Wai Mak (M’93–SM’15) received a PhD
in Electronic Engineering from the University of
Northumbria in 1993. He joined the Department of
Electronic and Information Engineering at The Hong
Kong Polytechnic University in 1993 and is currently
an Associate Professor in the same department. He
has authored more than 160 technical articles in
speaker recognition, machine learning, and bioin-
formatics. Dr. Mak also coauthored a postgradu-
ate textbook Biometric Authentication: A Machine
Learning Approach, Prentice Hall, 2005 and a re-

search monograph Machine Learning for Protein Subcellular Localization
Prediction, De Gruyter, 2015. He served as a member of the IEEE Machine
Learning for Signal Processing Technical Committee in 2005-2007. He has
served as an associate editor of IEEE Trans. on Audio, Speech and Language
Processing. He is currently an editorial board member of Journal of Signal
Processing Systems and Advances in Artificial Neural Systems. He also served
as Technical Committee Members of a number of international conferences,
including ICASSP and Interspeech. Dr. Mak’s research interests include
speaker recognition, machine learning, and bioinformatics.

Xiao-Min Pang received a BEng(Hons) degree with
first class honours in Electronic Engineering and
an MSc degree with distinction in Electronic and
Information Engineering from The Hong Kong Poly-
technic University in 2013 and 2014, respectively.
Her research interests include speaker recognition
and machine learning.

Jen-Tzung Chien (S’97-A’98-M’99-SM’04) re-
ceived his Ph.D. degree in electrical engineering
from National Tsing Hua University, Hsinchu, Tai-
wan in 1997. During 1997-2012, he was with the Na-
tional Cheng Kung University, Tainan, Taiwan. Since
2012, he has been with the Department of Electrical
and Computer Engineering and the Department of
Computer Science, National Chiao Tung University,
Hsinchu, where he is currently an University Chair
Professor. He held the Visiting Researcher position
with the IBM T. J. Watson Research Center, York-

town Heights, NY, in 2010. His research interests include machine learning,
speaker recognition, speech recognition, face recognition, and blind source
separation.

Dr. Chien served as the associate editor of the IEEE Signal Processing
Letters in 2008-2011, the guest editor of the IEEE Transactions on Audio,
Speech, and Language Processing in 2012, and the tutorial speaker of the
Interspeech 2013 and the ICASSP 2012 and 2015. He received the Best
Paper Award of the IEEE Automatic Speech Recognition and Understanding
Workshop in 2011 and the Distinguished Research Award from the Ministry
of Science and Technology, Taiwan in 2006, 2010 and 2014. He has published
extensively, including the book ”Bayesian Speech and Language Processing”,
Cambridge University Press, 2015. He currently serves as an elected member
of the IEEE Machine Learning for Signal Processing Technical Committee.




