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A New Geostatistical Solution to Remote Sensing 

Image Downscaling 
Qunming Wang, Wenzhong Shi, Peter M. Atkinson and Eulogio Pardo-Iguzquiza 

Abstract—The availability of the panchromatic (PAN) band in 

remote sensing images gives birth to so called image fusion 

techniques for increasing the spatial resolution of images to that of 

the PAN band. The spatial resolution of such spatially sharpened 

images, such as for the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Landsat sensors, however, may 

not be sufficient to provide the required detailed 

land-cover/land-use information. This paper proposes an 

area-to-point regression kriging (ATPRK)-based geostatistical 

solution to increase the spatial resolution of remote sensing images 

beyond that of any input images including the PAN band. The new 

approach is a two-stage approach including covariate downscaling 

and ATPRK-based image fusion. The new approach treats the 

PAN band as the covariate and takes advantages of its textural 

information. It explicitly accounts for the size of support, spatial 

correlation, and the point spread function of the sensor, and has the 

characteristic of perfect coherence with the original coarse data. 

Moreover, the new downscaling approach can be extended readily 

by incorporating other ancillary information. The proposed 

approach was examined using both Landsat and MODIS images. 

The results show that it can produce more accurate sharpened 

images than four benchmark approaches. 

 

Index Terms—Downscaling, image fusion, geostatistics, 

area-to-point regression kriging (ATPRK), Moderate Resolution 

Imaging Spectroradiometer (MODIS), Landsat Enhanced 

Thematic Mapper. 

I. INTRODUCTION

The Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Landsat sensors can revisit the Earth regularly. 

Their products (i.e., MODIS and Landsat images) are freely 

available and the swath is much wider than the commercial high 

resolution images such as QuickBird, WorldView and IKONOS. 
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These advantages lead to the popular use of MODIS and Landsat 

images in global land-cover/land-use (LCLU) monitoring, such 

as the use of 500 m MODIS data (i.e., bands 1-7) in detecting 

deforestation processes [1] and 30 m Landsat data in detecting 

urbanization processes [2]. However, they provide coarse spatial 

resolutions relative to the requirements of some applications 

within these domains. For example, deforestation generally 

occurs at a spatial resolution finer than the 500 m pixel size of 

MODIS, and changes in small residential buildings are usually at 

a resolution finer than the 30 m pixel size of Landsat. 

There is a great need for downscaling techniques which can 

increase the spatial resolution of such data. MODIS bands 1 and 

2 have a 250 m spatial resolution, while Landsat Enhanced 

Thematic Mapper Plus (ETM+) images contain a 15 m 

panchromatic (PAN) band. The fine spatial, but coarse spectral 

resolution bands can be combined with coarse spatial, but fine 

spectral resolution bands to generate a fine spatial and spectral 

resolution image, using image fusion techniques like 

PAN-sharpening. A variety of image fusion algorithms have 

been developed over the past decades, including the 

intensity-hue-saturation [3], Brovey [4], principal component 

analysis [5], wavelet transformation [6], [7], high-pass filter 

(HPF) [3], [7], and spare representation [8] methods, and the 

automated statistics-based fusion method implemented in PCI 

Geomatica [9]. It is beyond the scope of this paper to explicitly 

review existing image fusion methods, but several reviews on 

such approaches exist [10]-[14]. 

Recently, the application of geostatistical solutions for image 

fusion-based downscaling has increased, based on their 

significant advantage in preserving the spectral properties of the 

observed coarse images. Pardo-Iguzquiza et al. [15] sharpened 

Landsat images using a one-stage downscaling cokriging 

(DSCK) method, in which each observed coarse band was 

considered as the primary variable and the fine PAN band was 

considered as the secondary variable. In their later work, DSCK 

was extended with a spatially adaptive filtering scheme [16]. In 

view of the complex cross-semivariogram modeling, Sales et al. 

[17] proposed a kriging with external drift (KED) approach to

downscale MODIS images, which requires only

auto-semivariogram modeling and is easier to implement than

DSCK. KED, however, suffers from expensive computational

cost, as it needs to compute kriging weights locally for each fine

pixel [17]. Wang et al [18] first introduced the area-to-point

regression kriging (ATPRK) concept in a remote sensing context

and proposed it for MODIS image downscaling. ATPRK is fast,

user-friendly and can readily incorporate fine spatial resolution

information provided by other supplementary data.

The aforementioned image fusion approaches, including the 

geostatistical solutions, were generally designed to downscale 

coarse images to the spatial resolution of the PAN or PAN-like 

(i.e., band 1 or 2 in MODIS data, hereafter also PAN for 
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simplicity) bands. However, in many cases, the 250 m fused 

MODIS and 15 m Landsat product may not be sufficient to 

provide detailed LCLU information, as the size of the objects of 

interest in MODIS or Landsat images may be smaller than 250 m 

or 15 m. In this case, it is necessary to develop downscaling 

approaches that can predict pixel values at a spatial resolution 

finer than that of all available images including the PAN band, to 

provide more LCLU information. 

Atkinson et al. [19] extended the DSCK approach to cases 

where the pixel size to be predicted is smaller than that of all 

input variables. The applicability of the extended DSCK 

approach was demonstrated using a Landsat ETM+ dataset. As 

mentioned earlier, however, DSCK requires complex 

semivariogram modeling, which makes it difficult to automate 

[17]. 

In PAN-sharpening, it is of great interest to downscale the 

images to spatial resolutions finer than that of PAN, which is 

especially significant for MODIS and Landsat data 

interpretation. For clarity, hereafter the observed bands to be 

fused, the PAN, and the target bands to be predicted are called 

the coarse, intermediate and fine bands, respectively, according 

to their relative spatial resolutions. In this paper, as an alternative 

to DSCK, ATPRK is extended to the case where the 

intermediate PAN band is available as the covariate. It is an 

extension of the original ATPRK approach developed in [18], 

where the target variables are of the same spatial resolution as 

the PAN band. Alternatively, the ATPRK-based downscaling 

approach in this paper involves two stages. The covariates (e.g., 

the PAN image) are first downscaled to the target fine spatial 

resolution, and then the derived fine PAN image is used for 

ATPRK-based sharpening. 

ATPRK is a new image fusion approach which consists of 

regression modelling and area-to-point kriging (ATPK)-based 

residual downscaling [18]. It treats the PAN band as the 

covariate and models the overall trend in the target variables (i.e., 

fine pixels to be predicted) by regression. ATPRK is not only a 

newly developed regression kriging approach [20], [21] with 

ATPK for kriging interpolation, but also an enhanced ATPK 

approach [22], [23] that incorporates fine spatial resolution 

ancillary data (e.g., the PAN band in PAN-sharpening) through 

regression modeling. The ATPRK-based downscaling approach 

proposed in this paper has the following properties and 

advantages. 

1) The use of intermediate spatial resolution covariates (e.g., 

the PAN image) can enhance the quality of fused images; 

2) ATPRK accounts for the size of support, spatial 

correlation, and the point spread function (PSF) of the 

sensor; 

3) ATPRK can perfectly preserve the spectral properties, 

that is, when upscaling the fused image to the original 

coarse spatial resolution, it is identical to the original one 

across all bands; 

4) Different from DSCK in [19], ATPRK does not involve 

cross-semivariogram modeling and the sizes of matrices 

in the kriging system are much smaller and, thus, more 

user-friendly; 

5) Other supplementary data at any spatial resolution finer 

than the primary variables (i.e., the coarse image to be 

downscaled) can be incorporated readily for possible 

enhancement. 

The remainder of this paper is organized as follows. Section II 

introduces the principles of the proposed ATPRK in detail. In 

Section III, experimental results for the MODIS and Landsat 

datasets are provided to demonstrate the applicability of the new 

approach. Section IV further discusses the proposed approach, 

followed by a conclusion in Section V. 

II. METHODS 

A. The downscaling problem 

Let ( )l

V iZ x  be the random variable of pixel V centered at 
ix  

(i=1,…,M, where M is the number of pixels) in coarse band l, 

and ( )u jZ x  be the random variable of pixel u centered at jx  

(j=1,…, 2MF , where F is the spatial resolution (zoom) ratio 

between the coarse and PAN bands) in the PAN band. The 

notations u and V denote the intermediate and coarse pixels, 

respectively. The objective of downscaling in this paper is to 

predict target variable ˆ ( )l

vZ x  (
v u VS S S  , where 

vS , 
uS  and 

VS  are the sizes of pixels v, u and V) for all fine pixels in all 

coarse bands. Fig. 1 sketches the downscaling problem. 
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Fig. 1 The downscaling problem. 

B. Downscaling covariates in ATPRK 

In ATPRK, the covariates are used for overall trend prediction 

of ˆ ( )l

vZ x  and play an important role in the downscaling process, 

as they provide valuable finer spatial resolution texture 

information than the observed coarse data. The covariates need 

to be at the same spatial resolution as the target variables. In this 

paper, the covariates are proposed to be downscaled to the target 

fine spatial resolution using general ATPK. For the MODIS and 

Landsat images, this means using ATPK to downscale the 

intermediate PAN band uZ  to fine PAN band ˆ
vZ . In the 

MODIS images, there are two intermediate bands (bands 1 and 

2). For each coarse band, we select one band as PAN by 

measuring the spectral similarity (in terms of correlation 

coefficient (CC)) between it and the two intermediate bands, and 

the intermediate band with greater CC is selected as PAN. 

ATPK refers to prediction on a support that is smaller than 

that of the original data [24]. It is distinguished from 

conventional centroid-based kriging which ignores the spatial 

support and treats it always as equivalent to the observation 

support. ATPK accounts explicitly for the size of support, spatial 

correlation, and the PSF of the sensor. It predicts variables from 

areal supports to points (i.e., pixels at the target fine spatial 

resolution in this paper) using semivariogram deconvolution to 

parameterize the Random Function model and kriging for 

prediction. Moreover, another appealing advantage associated 
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with ATPK is its coherence property [22], [23], that is, the 

original coarse data can be perfectly preserved in predictions. 

The advantages encourage its development in downscaling. 

Based on ATPK, the prediction for fine pixel v centered at a 

specific location 
0x  in the PAN band (i.e., 

0
ˆ ( )vZ x ) is a linear 

combination of N intermediate observations in 
uZ  

1 1

0

1 1

ˆ ( ) ( ), s.t. 1
N N

v i u i i

i i

Z Z 
 

    x x                   (1) 

in which 
i  is the weight for the ith intermediate pixel centered 

at 
ix . The N1 pixels surround the pixel centered at 

0x , such as 

the N1=5×5 window of pixels. Thus, the spatial correlation 

between coarse pixels is accounted for in ATPK. 

The task becomes the estimation of weights 
11{ ,..., }N   in (1). 

They are calculated by minimizing the prediction error variance 

and the corresponding kriging system is 

1

1

1 1 1

1

( , ) ... ( , )

. . . .

. . . .
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uu uu N
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In (2), ( , )uu i j x x  is the intermediate-to-intermediate 

semivariogram between intermediate pixels centered at 
ix  and 

jx , ( , )vu j x x  is the fine-to-intermediate semivariogram 

between fine and intermediate pixels centered at 
0x  and jx , and 

  is the Lagrange multiplier. 

Let s be the Euclidean distance between the centroids of any 

two pixels, ( )vv s  be the fine-to-fine semivariogram between 

two fine pixels, and ( )uh s  be the PSF. The fine-to-intermediate 

semivariogram ( )vu s  and intermediate-to-intermediate 

semivariogram ( )uu s  in (2) are calculated by convoluting 

( )vv s  with the PSF 

( ) ( )* ( )vu vv uh s s s                              (3) 

( ) ( )* ( )* ( )uu vv u uh h  s s s s                        (4) 

in which * is the convolution operator. 

Based on the assumption that the pixel value is the average of 

the fine pixel values within it, the PSF is 

1
, if ( )

( )

0, otherwise
u u

u
h S


  

 
 

x x
x                           (5) 

where ( )u x  is the spatial support of pixel u centered at x. Based 

on the PSF in (5), the calculation in (3) and (4) can be further 

simplified as 

0

1

1
( , ) ( )vu j vv m

m



 
 

 x x s                          (6) 

2
1 1

1
( , ) ( )uu i j vv mm

m m

 

 




 

 x x s .                    (7) 

In (6) and (7), /u vS S   is the pixel size (zoom) ratio between 

the intermediate and fine pixels, ms  is the distance between the 

centroid 0x  of fine pixel v and the centroid of any fine pixel 

within the intermediate pixel u centered at jx , and mms  is the 

distance between the centroid of any fine pixel within the 

intermediate pixel centered at 
ix and the centroid of any fine 

pixel within the intermediate pixel centered at jx . 

The fine-to-fine semivariogram ( )vv s  in (6) and (7) is 

derived by deconvolution (also termed deregularization in 

geostatistics) of the intermediate (areal) semivariogram, denoted 

as ( )u s , which is calculated directly from the known 

intermediate PAN band. Note that ( )u s  is different from 

( )uu s : the latter is derived by convoluting ( )vv s  (see (4)). The 

regularized semivariogram, ( )R

u s , is calculated as 

( ) ( ) (0)R

u uu uu   s s .                           (8) 

The objective of deconvolution is to estimate the optimal ( )vv s , 

the regularized semivariogram of which approximates ( )u s . 

In this paper, an empirical deconvolution approach is 

developed. In semivariogram modelling, the fitted function is 

often characterized by three parameters: nugget, sill and range. 

To ease the computational burden, the assumption made in [15], 

[16] and [19] is adopted: there is zero nugget effect in the 

fine-to-fine semivariogram. The sill and range are determined by 

referring to the known ( )u s . First, a candidate pool of 

fine-to-fine semivariograms is generated. For each parameter of 

( )vv s , two multipliers are defined empirically to generate an 

interval for selecting the optimal one. The interval for sill 

selection is set to between 1 and 3 times that of the sill of ( )u s , 

while the interval for range selection is set to between 0.5 and 

2.5 times that of the range of ( )u s . The step is 0.1. Second, 

each semivariogram characterized by the two parameters is 

convolved to the regularized semivariogram according to (8). 

Finally, the optimal fine-to-fine semivariogram is determined as 

the one with the parameter combination leading to the smallest 

difference between ( )R

u s  and the known ( )u s . 

Note that the deconvolution approach presented above is 

different from that in [25]. The former selects an optimal 

parameter combination from the empirically pre-defined 

candidate pool by testing and comparison, and the solution space 

is constrained. The deconvolution approach in [25], however, is 

iterative and fully automated, which seeks the optimal parameter 

combination from the unconstrained solution space by setting 

the initialization and stopping rules. 

As seen from the deconvolution and convolution processes 

and (3), (4) and (8), the size of support and the PSF are taken into 

account explicitly in ATPK. This is different from conventional 

kriging-based interpolation that treats each observed areal unit 

(i.e., intermediate pixel in this section) as a centroid. Following 

the procedures introduced in this section, ATPK can be used 

easily for downscaling multiple covariates (such as elevation 

data and field measurement at a spatial resolution finer than the 

coarse image) in a more general case. For example, in the case 

involving T groups of covariates with different spatial 

resolutions, each type of covariate can be downscaled to the 

target fine spatial resolution according to (1). 

C. ATPRK-based image fusion 

After the covariates (e.g., PAN) are downscaled to the fine 

spatial resolution, they are used to model the overall trend of the 
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target variables ˆ ( )l

vZ x  via regression, followed by the 

post-residual downscaling step with ATPK in ATPRK. Suppose 

1
ˆ ( )l

vZ x  and 
2

ˆ ( )l

vZ x  are the predictions of the regression and 

ATPK-derived residuals for coarse band l. The ATPRK 

prediction is 

1 2
ˆ ˆ ˆ( ) ( ) ( )l l l

v v vZ Z Z x x x .                          (9) 

The two steps, regression modelling and residual downscaling, 

are introduced in the following. 

1) Regression modelling. This phase takes full advantage of 

the texture information in the fine PAN band. First, the fine PAN 

band ˆ
vZ is upscaled to 

VZ  to match the spatial resolution of 

each coarse band. Second, the relationship between 
VZ  and the 

observed coarse band, say band l, is built by linear regression 

( ) ( ) ( )l

V l V lZ a Z b R  x x x                       (10) 

where ( )R x  is a residual term, and the two coefficients 
la  and 

lb  can be estimated by ordinary least squares [26]. Based on the 

assumption of scale-invariance, the regression model in (10) is 

then used for regression prediction at a specific location 
0x  at 

fine spatial resolution (i.e., coefficients 
la  and 

lb  do not change 

with the spatial resolution), by taking fine PAN band ˆ
vZ  as 

input variables 

1
ˆ ˆ( ) ( )l

v l v lZ a Z b x x .                           (11) 

The auxiliary information from other data (but after the 

downscaling process in Section II-B) can also be favorably 

incorporated into regression modeling, which involves 

multivariate regression. 

2) Residual downscaling. Generally, the regression model in 

(10) is bias and there are residuals from the regression phase. 

The residuals at coarse spatial resolution, denoted as 2 ( )l

VZ x , 

are calculated as 

2 ( ) ( ) ( ) [ ( ) ]l l

V V l V lZ R Z a Z b   x x x x              (12) 

The regression-only approach in (11) fails to fully make use of 

the spectral information of the observed coarse data and the 

prediction will lead to obvious spectral distortion. As a 

complement to the regression step, ATPK-based residual 

downscaling is performed as a post-processing step to preserve 

the spectral properties of the coarse data. ATPK downscales the 

coarse residuals 2 ( )l

VZ x  to fine residuals 
2

ˆ ( )l

vZ x . 

According to the theoretical basis of ATPK presented in 

Section II-B, the fine residual 
2 0

ˆ ( )l

vZ x  is calculated as 

2 2

2 0 2

1 1

ˆ ( ) ( ), s.t. 1
N N

l l

v i V i i

i i

Z Z 
 

    x x               (13) 

where i  is the weight for the ith coarse pixel surrounding the 

fine pixel centered at 0x  and N2 is the number of coarse 

observations. The weights 
21{ ,..., }N   are obtained in the same 

way as that illustrated in (2)-(8), which starts from fine-to-fine 

residual semivariogram estimation by deconvolution. 

After the residual downscaling process is completed, the 

prediction is added back to the regression prediction to achieve 

the final ATPRK prediction, as shown in (9). ATPRK is 

conducted for each coarse band in turn to produce a fused 

multispectral image. The implementation of the proposed 

ATPRK approach that downscales coarse images to a spatial 

resolution finer than any of the input images is summarized as 

follows. 

Stage 1. Downscaling intermediate covariates with ATPK. 

1) Deconvolution for estimation of the fine-to-fine 

semivariogram ( )vv s . 

2) Calculation of ( )vu s  and ( )uu s  by (3) and (4). 

3) Calculation of the kriging weights 
11{ ,..., }N   by (2). 

4) Calculation of 
0

ˆ ( )vZ x  by (1). 

Stage 2. ATPRK using downscaled fine covariates. 

1) Regression modelling by (11). 

2) ATPK-based residual downscaling by (13). 

3) Combination of regression predictions and 

downscaled fine residuals by (9). 

4) Steps 1)-3) are implemented for each coarse band. 

In the proposed geostatistical solution to the downscaling 

problem in Fig. 1, ATPK has two-fold functions. It is not only 

used for downscaling the intermediate covariates, but also used 

for downscaling the residuals from regression. Actually, 

ATPRK falls within the theoretical framework of ATPK and the 

former is a special case of the latter: fine spatial resolution 

covariates are incorporated into ATPK through regression 

modeling in ATPRK (see (11)). More precisely, when both 

coefficients 
la  and 

lb  in the regression model are 0, the coarse 

residuals 2 ( )l

VZ x  in (12) become the coarse variables ( )VZ x  in 

fact, and correspondingly, ATPRK in this case becomes ATPK. 

III. EXPERIMENTS 

A. Datasets and experimental setup 

Two datasets, including a Landsat ETM+ dataset and a 

MODIS dataset, were used to examine the proposed 

downscaling approach. The Landsat dataset was supplied by the 

Government of Canada through Natural Resources Canada, 

Earth Sciences Sector, Canada Centre for Remote Sensing. The 

study area is a 15 km by 15 km area in Alberta in Canada. We 

used 30 m green, red, and near-infrared bands (i.e., bands 2, 3, 

and 4) and 15 m PAN band 8 in the experiments. The 30 m bands 

and PAN band contain 500 by 500 and 1000 by 1000 pixels, 

respectively. The false color composite of the Landsat image is 

shown in Fig. 2(a). 

The MODIS dataset is a set of MODIS products, including 

MOD09GQ and MOD09GA. The MOD09GQ product of bands 

1-2 is provided at 250 m spatial resolution, while the 

MOD09GA product of bands 3-7 is provided at 500 m spatial 

resolution. The study area is a 500 km by 500 km area of tropical 

forest in the Brazilian Amazon. Correspondingly, bands 1-2 and 

bands 3-7 have a spatial size of 2000 by 2000 pixels and 1000 by 

1000 pixels, respectively. Fig. 2(b) shows the false color 

composite of the MODIS image. In the experiments, band 5 of 

the MODIS product MOD09GA was not considered due to the 

striping artifacts in this band. 

Based on the proposed ATPRK approach, the multispectral 

bands 2-4 in the Landsat image and bands 3, 4, 6 and 7 in the 

MODIS image can be downscaled to a spatial resolution finer 

than 15 m and 250 m, for example, 7.5 m and 125 m, 

respectively. In this case, however, no reference at target fine 

spatial resolution can be used to examine the downscaling 
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results objectively. For quantitative assessment, we upscaled the 

30 m Landsat and 500 m MODIS multispectral bands by a factor 

to synthesize coarse images. Taking the Landsat dataset as an 

example for illustration, the 30 m bands 2-4 and 15 m PAN band 

were simultaneously upscaled with a factor of four to create 120 

m multispectral bands and a 60 m PAN band. The objective of 

downscaling in the experiments is then to restore the 30 m fine 

Landsat image, taking the 120 m multispectral bands as 

observed coarse data and the 60 m intermediate PAN as the 

covariate. This is the same case for the MODIS dataset, which 

was also upscaled to synthesize 2000 m coarse and 1000 m 

intermediate images with a factor of four and the 500 m fine 

MODIS image needs to be predicted. The advantage of using 

synthetic images is that the reference data (i.e., 30 m Landsat and 

500 m MODIS images) are known perfectly and can be used 

objectively to assess the quality of the downscaled products. 
 

 
(a)                                                          (b) 

Fig. 2. Datasets used in the experiments. (a) The 30 m Landsat dataset (500 by 

500 pixels, bands 4, 3 and 2 as RGB). (b) The 500 m MODIS dataset (1000 by 

1000 pixels, bands 7, 6 and 4 as RGB). 
 

Four downscaling approaches, including wavelets [7], HPF 

[3], KED [17] and DSCK [19], were used as benchmark 

algorithms to provide a systematic comparison and illustration 

of the benefits of the new approach. All methods aim to 

downscale the observed coarse data to the target fine resolution 

(i.e., 30 m Landsat and 500 m MODIS images). For fair 

comparison, the four two-stage pan-sharpening approaches, 

wavelets, HPF, KED and ATPRK, used the same 

ATPK-downscaled, fine PAN band (as illustrated in Section 

II-B) as input for the second stage. DSCK is a one-stage 

approach and it used directly the intermediate PAN as input [19]. 

The downscaling results were compared both visually and 

quantitatively. We used six indices for quantitative evaluation, 

including the root mean square error (RMSE), correlation 

coefficient (CC), universal image quality index (UIQI) [27], 

relative global-dimensional synthesis error (ERGAS) [28], 

spectral angle mapper (SAM) and spectral information 

divergence (SID) [29]. The results of the Landsat and MODIS 

datasets are illustrated in the following two separate sections 

(Sections III-B and C). 

B. Experiment on the Landsat dataset 

1) Implementation. In the first stage, the 60 m intermediate 

PAN band was downscaled to the 30 m fine PAN band with 

ATPK. It started from estimation of the 30 m semivariogram for 

the PAN band, based on the deconvolution approach presented 

in Section II-A. Fig. 3 shows the deconvolution result for the 

PAN band (with exponential models for the fitting process). As 

can be observed from the figure, the regularized and areal 

semivariograms (both at 60 m) coincide with each other, 

suggesting the effectiveness of the deconvolution approach. 

In the second stage, ATPRK was performed, using the 30 m 

PAN band produced from the first stage as a fine covariate. Fig. 

4 shows the regression models built for the Landsat 

multispectral bands. Due to the difference in wavelengths, the 

regression models for the three 120 m bands are noticeably 

different. Nevertheless, the coefficients of determination (R
2
) of 

all three bands are over 0.93, indicating a high similarity 

between the coarse bands and the upscaled PAN band. The large 

association reveals the rationality of the regression process in 

ATPRK. The regression models in Fig. 4 were used to obtain the 

30 m regression predictions, as illustrated in (11). According to 

(12), three 120 m coarse residual bands were obtained and then 

downscaled to 30 m residuals (see (13)). The corresponding 

deconvolution results are displayed in Fig. 5, in which the 

regularized coarse semivariogram coincides with the target 

coarse semivariogram. Finally, the 30 m regression predictions 

and residuals were combined to achieve the ATPRK results. 
 

 
Fig. 3. Deconvolution result for the Landsat PAN band. 
 

 
Fig. 4. The relationship between the Landsat PAN band and multispectral bands 

built by linear regression. 

 

 
Fig. 5. Deconvolution result for the coarse residuals of the Landsat multispectral 

bands. 

 

2) Comparison with other downscaling methods. Fig. 6 

exhibits the downscaling results of the five methods. For clearer 

visual comparison between the results, the results of two 200 by 

200 sub-areas are zoomed in Fig, 7. As shown in the figures, 

downscaled images are visually clearer than the 120 m coarse 

image. Wavelets and HPF produced over-smooth results and 

failed to restore the texture of heterogeneous pixels. The three 

geostatistical approaches (KED, DSCK and ATPRK) obviously 

outperform wavelets and HPF. KED, DSCK and ATPRK can 
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satisfactorily delineate the boundaries for the homogeneous 

landscape and reproduce the heterogeneous variation. Note that 

mosaic pixels exist in several places in the KED result, such as 

the ―white‖ pixels in Fig. 7(f2). The advantages of the three 

geostatistical approaches can also be demonstrated by the scatter 

plots in Fig. 8. 

The quantitative assessment for the five methods is listed in 

Table 1. For RMSE, CC and UIQI, the values of all three bands 

and their means are listed. Checking the values, the wavelets 

method has the weakest performance amongst the five methods. 

Although HPF is superior to wavelets, the performance is 

weaker than KED, DSCK and ATPRK. Moreover, compared to 

KED and DSCK, ATPRK produced greater CC and UIQI (for all 

bands) and smaller RMSE (for all bands), ERGAS, SAM and 

SID. The quantitative assessment reveals that ATPRK produced 

the fused image with greater quality than the other four methods. 
 

    
(a)                                                     (b)                                                      (c)                                                      (d) 

    
(e)                                                     (f)                                                      (g)                                                      (h) 

Fig. 6. Downscaling results for the Landsat image. (a) 120 m coarse image. (b) 60 m PAN band. (c) 30 m reference image. (d) Wavelets. (e) HPF. (f) KED. (g) DSCK. 

(h) ATPRK. 
 

 
(a1)                         (b1)                         (c1)                         (d1) 

 
(e1)                         (f1)                         (g1)                         (h1) 

 
(a2)                         (b2)                         (c2)                         (d2) 

 
(e2)                         (f2)                         (g2)                         (h2) 

Fig. 7. Downscaling results of two sub-areas in Fig. 6. (a) 120 m coarse image. (b) 
60 m PAN band. (c) 30 m reference image. (d) Wavelets. (e) HPF. (f) KED. (g) 

DSCK. (h) ATPRK. 

 

 
Fig. 8 Scatter plots of predicted against actual pixel values (30 m). 

 

Table 1 Quantitative assessment of the five downscaling methods for the entire 
Landsat image (B2, B3, B4 and M means band 2, band 3, band 4 and mean) 

  Ideal Wavelets HPF KED DSCK ATPRK 

 

RMSE 

B2 0 1.7445 1.4578 1.3900 1.4874 1.3228 

B3 0 2.8814 2.5456 2.2168 2.2216 2.0826 

B4 0 3.9393 3.5216 2.5303 2.6223 2.4592 

M 0 2.8551 2.5084 2.0457 2.1104 1.9549 

 

CC 

B2 1 0.9047 0.9348 0.9405 0.9396 0.9463 

B3 1 0.9082 0.9296 0.9462 0.9486 0.9526 

B4 1 0.9118 0.9306 0.9640 0.9627 0.9660 

M 1 0.9082 0.9317 0.9502 0.9503 0.9549 

 
UIQI 

B2 1 0.8974 0.9300 0.9395 0.9384 0.9455 

B3 1 0.8980 0.9218 0.9455 0.9473 0.9518 
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B4 1 0.9012 0.9223 0.9634 0.9618 0.9655 

M 1 0.8988 0.9247 0.9495 0.9492 0.9543 

ERGAS 0 1.9410 1.7105 1.3924 1.4317 1.3285 

SAM(°) 0 0.0376 0.0369 0.0340 0.0324 0.0305 

SID 0 0.7031 0.5497 0.3527 0.3736 0.3238 

3) Comparison between 60 m and 30 m ATPRK-derived 

images. In the proposed ATPRK-based approach, the spatial 

resolution of the observed coarse Landsat image (i.e., 120 m) 

was increased to 30 m, which is finer than that of the available 

PAN band. To illustrate the benefit of the proposed approach, we 

ran the original ATPRK [18] that used the 60 m PAN band as the 

covariate directly and produced a 60 m fused image. The 30 m 

and 60 m ATPRK-derived images are shown in Fig. 9 for visual 

comparison. It is clear that the 30 m results are smoother, with 

more elongated features and small patches being better restored. 

The 30 m fused image is obviously closer to the reference image 

(see Fig. 7(c1) and Fig. 7(c2)). The quantitative comparison 

from Table 2 also reveals that the quality of the 30 m fused 

image is greater than that of the 60 m image. For example, in the 

image produced with the proposed downscaling scheme, the CC 

and UIQI (both mean) are increased by 0.0153 and 0.0161, and 

ERGAS and SID are decreased by 0.2256 and 0.1202. 
 

  
(a)                                                     (b) 

  
(c)                                                     (d) 

Fig. 9. Downscaling results of ATPRK for the Landsat image at 60 m and 30 m 
spatial resolution. (a) and (c) 60 m results. (b) and (d) 30 m results. 

 

Table 2 Quantitative assessment of the 60 m and 30 m ATPRK results for the 
entire Landsat image (B2, B3, B4 and M means band 2, band 3, band 4 and 

mean) 

  Ideal 60 m 30 m 

 
RMSE 

B2 0 1.4761 1.3228 

B3 0 2.3869 2.0826 

B4 0 2.9999 2.4592 

M 0 2.2877 1.9549 

 

CC 

B2 1 0.9326 0.9463 

B3 1 0.9372 0.9526 

B4 1 0.9489 0.9660 

M 1 0.9396 0.9549 

 

UIQI 

B2 1 0.9311 0.9455 

B3 1 0.9356 0.9518 

B4 1 0.9478 0.9655 

M 1 0.9382 0.9543 

ERGAS 0 1.5541 1.3285 

SAM(°) 0 0.0324 0.0305 

SID 0 0.4440 0.3238 

4) Coherence characteristic. The coherence characteristic is 

an important criterion for evaluation of the quality of 

downscaled images. This means the ability to conserve spectral 

properties of the original coarse data. Fig. 10 shows the scatter 

plots between the upscaled and actual coarse data. Table 3 lists 

the corresponding CCs in Fig. 10. Both visual and quantitative 

statistics indicate that the wavelets approach has the smallest CC 

overall and DSCK is superior to HPF and KED (in terms of the 

coherence characteristic). Furthermore, ATPRK can perfectly 

preserve the spectral properties of observed coarse data. 
 

 
Fig. 10 Scatter plots of predicted against actual coarse pixel values (120 m). 
 

Table 3 Evaluation (in terms of CC) of the ability to preserve the spectral 

properties of the original coarse Landsat image (B2, B3, B4 and M means band 2, 

band 3, band 4 and mean) 

 Ideal Wavelets HPF KED DSCK ATPRK 

B2 1 0.9951 0.9981 0.9936 0.9965 1 

B3 1 0.9946 0.9975 0.9936 0.9985 1 

B4 1 0.9943 0.9969 0.9979 0.9991 1 

M 1 0.9947 0.9975 0.9950 0.9980 1 

C. Experiment on the MODIS dataset 

This section illustrates the performances of downscaling for 

the MODIS dataset. To provide a clear visual assessment, the 

results of three 200 by 200 sub-areas are shown in Fig. 11. 

Focusing on the fused images, the wavelets and HPF results are 

ambiguous (especially in the second sub-area) and boundaries 

cannot be observed clearly (e.g., in the first and third sub-areas). 

KED, DSCK and ATPRK reproduced more heterogeneous 

variation and delineated clearer boundaries, and their results are 

closer to the 500 m reference image. Table 4 provides a 

quantitative assessment of the five downscaling methods. 

Similarly to the Landsat results, the three geostatistical 

approaches are obviously superior to wavelets and HPF. DSCK 

and ATPRK have very similar performances (for all four bands), 

both of which are more accurate than KED in this experiment. 
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Fig. 11. Downscaling results of three sub-areas for the MODIS image. Line 1: 

2000 m coarse image. Line 2: 500 m reference image. Line 3: Wavelets. Line 4: 

HPF. Line 5: KED. Line 6: DSCK. Line 7: ATPRK. 
 

Table 4 Quantitative assessment of the five downscaling methods for the entire 

MODIS image (B3, B4, B6, B7 and M means band 3, band 4, band 6, band 7 and 
mean) 

  Ideal Wavelets HPF KED DSCK ATPRK 

 

RMSE 

B3 0 0.0081 0.0060 0.0048 0.0048 0.0049 

B4 0 0.0095 0.0071 0.0063 0.0061 0.0062 

B6 0 0.0398 0.0366 0.0291 0.0280 0.0276 

B7 0 0.0371 0.0340 0.0269 0.0261 0.0258 

M 0 0.0236 0.0209 0.0168 0.0162 0.0161 

 

CC 

B3 1 0.9132 0.9535 0.9691 0.9702 0.9685 

B4 1 0.9218 0.9576 0.9664 0.9684 0.9679 

B6 1 0.9070 0.9222 0.9505 0.9543 0.9557 

B7 1 0.9035 0.9199 0.9493 0.9524 0.9537 

M 1 0.9114 0.9383 0.9588 0.9614 0.9615 

 

UIQI 

B3 1 0.9131 0.9535 0.9690 0.9701 0.9685 

B4 1 0.9199 0.9568 0.9661 0.9680 0.9678 

B6 1 0.8950 0.9126 0.9497 0.9529 0.9546 

B7 1 0.8900 0.9092 0.9485 0.9509 0.9525 

M 1 0.9045 0.9330 0.9583 0.9605 0.9609 

ERGAS 0 3.6976 3.1334 2.5283 2.4540 2.4529 

SAM(°) 0 0.0560 0.0530 0.0438 0.0410 0.0409 

SID 0 0.0152 0.0121 0.0076 0.0072 0.0070 

D. Computational cost 

The computational costs of the five downscaling methods are 

summarized in Table 5. All tests were carried out on an Intel 

Core i7 Processor at 3.40GHz with the MATLAB 7.1 version. 

Due to the difference in spatial size and number of coarse bands 

of the Landsat and MODIS datasets, the computing times for the 

two datasets are different for each method. The wavelets, HPF 

and KED methods required downscaled PAN image. Thus, the 

time spent in ATPK-based PAN downscaling was included in 

these methods. The wavelets and HPF methods generally have 

the same computational efficiency, which is greater than the 

three geostatistical methods. KED takes much more time than 

DSCK and ATPRK, and this is more obvious for the MODIS 

image. This is because KED calculates the kriging weights 

locally for each fine pixel and its computational cost increases 

linearly with the number of fine pixels to be predicted. Both 

DSCK and ATPRK calculate the kriging weights only once for 

the entire image and, thus, release the computational burden in 

KED. Furthermore, ATPRK takes less time than DSCK, as 

DSCK considers the extra cross-semivariogram modelling (e.g., 

deconvolution and convolution) for each coarse band. 
 

Table 5 Computational costs of the downscaling methods 

 Wavelets HPF KED DSCK ATPRK 

Landsat 8.7s 9.0s 136.6s 68.2s 51.3s 

MODIS 27.5s 26.8s 597.9s 157.1s 148.8s 

IV. DISCUSSION 

A. Contributions 

This paper presents a theoretical framework for remote 

sensing downscaling, which aims to produce fused images with 

a spatial resolution finer than any of the input variables (even 

finer than that of the PAN band). The contributions of this paper 

lie in the theoretical innovation, technological advancement and 

application value. 

Theoretically, a new geostatistical solution based on ATPRK 

is proposed for the downscaling problem defined in Fig. 1, 

which treats the observed coarse data as primary variables and 

intermediate PAN band as a type of covariate. ATPRK is a new 

image fusion approach based on a new conceptualization that is 

originally defined in geostatistics. It serves as a new bridge 

between geostatistics and remote sensing [30]. It will motivate 

other further exploration of this new geostatistical solution to 

image fusion in future research. 

Technologically, in the first stage, the intermediate covariates 

(i.e., PAN band in this paper) are proposed to be downscaled to 

the target fine spatial resolution with general ATPK. ATPK is 

performed with an empirical but effective deconvolution 

approach (see, for example, Fig. 3) as an initial point. In the 

second stage, the fine covariates are used in ATPRK, which first 

constructs the relationship between the primary variables and 
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available covariates by regression modelling and then 

downscales the coarse residuals from the regression process with 

ATPK. The downscaled residuals are finally added back to the 

regression predictions to achieve image fusion. The new 

downscaling approach accounts for size of support, spatial 

correlation, and the PSF of the sensor, and maintains a perfect 

coherence characteristic, as demonstrated by the experimental 

results in Section III-B 4) (the theoretical proof runs parallel to 

the proof presented in [18]). Moreover, the new downscaling 

approach is user-friendly and can be extended readily by the use 

of ancillary information provided by other data. Access to 

additional covariates would lead to further enhancement of the 

current version of ATPRK. 

The proposed downscaling approach has great potential for 

finer spatial resolution LCLU monitoring at the global scale than 

the currently available remote sensing images. The MODIS and 

Landsat images are common sources for global LCLU 

monitoring (e.g., MODIS data for monitoring deforestation over 

the Amazon rainforest and Landsat data for monitoring 

urbanization over highly developed cities) due to their free 

availability, wide swath and regular revisit capability [31], [32]. 

The new ATPRK-based geostatistical solution was examined for 

both MODIS and Landsat images in the experimental studies. It 

was demonstrated that the proposed approach can produce fused 

images at a spatial resolution finer than the PAN band with 

satisfactory performances. Moreover, ATPRK is more accurate 

than the other benchmark methods and it can precisely conserve 

the spectral properties of the observed coarse data. The 

encouraging results for the MODIS and Landsat images 

produced here will promote the adoption of the new 

downscaling approach in practical and operational applications. 

For example, with the new approach, MODIS and Landsat 

images can be downscaled to a spatial resolution such as 125 m 

and 7.5 m, respectively. Based on the fused products, more 

detailed LCLU information can be obtained for global 

monitoring. 

B. Inter-comparison between KED-, DSCK- and ATPRK-based 

geostatistical solutions to downscaling 

DSCK is a one-stage downscaling approach that considers the 

primary variable (observed coarse band) and secondary variable 

(ancillary PAN band) simultaneously, by including both 

auto-semivariograms and cross-semivariogram(s) in the kriging 

matrices [19]. However, both the auto-semivariogram and 

cross-semivariogram need to be computed for each coarse band, 

which involves complex deconvolution and convolution 

calculation processes. For example, for the three-band Landsat 

and four-band MODIS datasets in the experiments, six and eight 

deconvolved semivariograms were computed, respectively. This 

would sometimes require manual intervention, especially for the 

cross-semivariogram modelling. Essentially, in DSCK the 

cross-semivariogram accounts for the cross-correlation between 

the observed coarse band and intermediate PAN band. ATPRK 

simplifies the process noticeably by using the simple regression 

models in (10) and (11) instead. ATPRK requires only 

auto-semivariogram modeling and all calculations occur in each 

coarse band separately. Thus, the size of the kriging matrices in 

ATPRK is much smaller than that in DSCK, which is more 

obvious when the number of covariates is large. In addition, the 

increased size of DSCK kriging matrices might lead to an 

unstable matrix and further decreased accuracy in downscaling, 

as illustrated in the Landsat results in Table 1. Although ATPRK 

is not a one-stage process as covariates need to be downscaled to 

the fine spatial resolution in advance, it is much easier to 

automate and more user-friendly. 

Similarly to ATPRK, KED in this paper requires downscaled 

covariates and is not a one-stage approach. As an alternative to 

DSCK, KED does not require the cross-semivariogram [17]. 

However, KED also extends the kriging matrices by including 

the covariates and would result in unstable matrix [33], as 

occurred in DSCK. Moreover, KED calculates the kriging 

weights locally for each fine pixel, which greatly increases the 

computational cost, especially for large areas. ATPRK, however, 

separates trend estimation (i.e., regression modelling) from 

residual downscaling. As a result, the ATPRK kriging weights 

are calculated only once and, thus, ATPRK is a fast image 

downscaling approach free of the risk of instability in the kriging 

weights calculation. Table 6 summarizes the differences 

between the three geostatistical approaches. 

 
Table 6 Comparison between three geostatistical solutions 

 One- 
stage 

Cross-semivariogram 
modelling 

Size of kriging 
matrices 

Computational 
cost 

DSCK Yes Yes DSCK> 

KED> 

ATPRK 

KED> 

DSCK> 

ATPRK 
KED No No 

ATPRK No No 

C. Future research 

In the experiments, the proposed approach was demonstrated 

to be effective in downscaling the Landsat and MODIS datasets. 

The encouraging results for the two types of images with 

different spatial resolutions will motivate its application to more 

types of remote sensing images, including very high resolution 

(VHR) remote sensing products (such as IKONOS, QuickBird 

and WorldView) [34], [35] and hyperspectral images [12], [36], 

[37]. This has been a lively topic in the remote sensing 

community in recent years. 

In ATPRK, ATPK-based residual downscaling satisfactorily 

compensates for the residuals from regression to the fine pixels. 

In the regression part, based on the hypothesis of 

scale-invariance, the regression model fitted at coarse spatial 

resolution in (10) is used for regression prediction at fine spatial 

resolution, as shown in (11). This hypothesis may work better 

for homogeneous pixels. For heterogeneous pixels, where the 

spatial pattern changes sharply, the regression model in (10) 

might be insufficient for characterizing the relationship at fine 

spatial resolution. As observed from Fig. 4, the linear regression 

may sometimes not be sufficient to model the relationship 

between the covariate and the observed coarse data. It would be 

worthwhile to develop new regression models (e.g., spatially 

adaptive regression model that can separate homogeneous and 

heterogeneous pixels) with more powerful modeling ability for 

further possible enhancement of ATPRK. 

The proposed approach allows the use of multiple covariates 

with different intermediate spatial resolutions. Specifically, the 

multiple covariates can be downscaled separately to the target 

fine spatial resolution according to (1). The relationship between 

the multiple, fine covariates and observed coarse data can be 

built via multivariate regression, a process similar to that in (10) 

and (11). Theoretically, the proposed approach can downscale 

the coarse multispectral bands to a spatial resolution (denoted as 
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A m) finer than that of the covariates with the finest spatial 

resolution (denoted as B m). However, the zoom ratio B/A 

should not be too large and generally a zoom factor between two 

and four is suggested. This is because downscaling is essentially 

an ill-posed problem and as the zoom ratio increases, the number 

of sub-pixels to be predicted within each coarse pixel increases 

quadratically, which increases the uncertainty in downscaling. 

The ease of incorporating multiple covariates provides an 

interesting avenue for future research, where more relevant 

information on the studied areas is encouraged to be sought. 

V. CONCLUSION 

In this paper, an ATPRK-based geostatistical solution is 

proposed to downscale remote sensing images to a spatial 

resolution finer than that of any of the input images. The PAN 

band is considered as an intermediate covariate, and its spatial 

resolution is increased to the target fine spatial resolution with 

general ATPK. The ATPK-derived, fine PAN band is used by 

ATPRK to sharpen the coarse bands, which consists of 

regression modelling between the fine PAN and observed coarse 

bands and ATPK-based residual downscaling. The proposed 

approach was tested using a Landsat dataset and a MODIS 

dataset. The conclusions from the experiments are summarized 

as follows. 

1) Compared to the original ATPRK approach that produces 

sharpened images with the same spatial resolution as the 

PAN band [18], the new ATPRK-based geostatistical 

solution can produce sharpened images at a finer spatial 

resolution with greater quality in terms of the six indices 

(i.e., RMSE, CC, UIQI, ERGAS, SAM and SID). 

2) Compared to wavelets, HPF, KED and DSCK, ATPRK is 

able to produce more accurate fused images in terms of 

the six indices. 

3) ATPRK can precisely conserve the spectral content of the 

original coarse images. 
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