Effect of lattice-misfit strain on the process-induced imprint behavior in epitaxial Pb(Zr$_{0.52}$Ti$_{0.48}$)O$_3$ thin films

Wenbin Wu, G. K. H. Pang, K. H. Wong, and C. L. Choy

(Received 30 March 2004; accepted 1 July 2004)

The effect of lattice-misfit strain on the process-induced imprint behavior in Pb(Zr$_{0.52}$Ti$_{0.48}$)O$_3$ (PZT) capacitors with Pt (top), and SrRuO$_3$, La$_{0.7}$Sr$_{0.3}$MnO$_3$ or LaNiO$_3$ (bottom) electrodes has been studied. With the different oxide electrodes and by changing the deposition oxygen pressure, various lattice-misfit strains in the epitaxial PZT films have been produced. It was found that after in situ annealing at reduced oxygen pressures, the capacitors showed an increased voltage offset in the polarization-electric field hysteresis loops with increasing the misfit strain, irrelevant to the oxide electrodes employed, while lattice disorder at the bottom interface can effectively eliminate the voltage shift. Our results suggest that the imprint behavior is caused by oxygen loss via dislocations generated by the misfit strain relaxation at the growth temperature. © 2004 American Institute of Physics.

Ferroelectric thin films possess a unique set of physical properties and have great potential for use in various electronic devices. For successful implementation of ferroelectric devices, symmetric switching between two opposite polarization states must be ensured. However, it is often observed that ferroelectric films exhibit significant imprint, or asymmetry of switching parameters, such as the coercive field (E_c) and the remnant polarization (P_r). The cause of the imprint is generally attributed to the presence of an internal electric field in the capacitor which supports the given polarization state while opposing the antiparallel one. However, there is a lack of understanding on the formation of the internal field. Different models, such as the aligned dipolar defect complexes and asymmetric distribution of charged defects through a bulk thin film and a built-in electric field or a nonswitching layer at the ferroelectric-electrode interface, have been proposed to explain the asymmetric behavior of ferroelectric capacitors.

Pb(Zr$_x$Ti$_{1-x}$)O$_3$ (PZT) and their derivatives are the most extensively studied ferroelectric materials due to their large P_r, low E_c, and processing temperature. Since the PZT capacitors with noble metal electrodes like Pt exhibit a significant polarization loss when subject to bipolar switching pulses, in the past decade, for the growth of fatigue-free PZT capacitors and especially in the epitaxial form, various oxide electrodes such as La$_{0.5}$Sr$_{0.5}$CoO$_3$ (LSCO), SrRuO$_3$ (SRO), La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO), and LaNiO$_3$ (LNO) have been employed. For epitaxial LSCO/PZT/LSCO capacitors, however, when exposed to reducing atmosphere for device fabrication, a large voltage offset was observed. This process-induced imprint behavior was greatly complicated by the instability of the LSCO layer at reduced oxygen pressures, and rarely examined for the other oxide electrodes. Comparatively, SRO, LSMO, and LNO are very stable and have different lattice constants. Abe et al. demonstrated that the lattice-misfit strain is important for the voltage shift in epitaxial BaTiO$_3$ (BTO) film. In this letter, the process-induced imprint behavior in epitaxial Pb(Zr$_{0.52}$Ti$_{0.48}$)O$_3$ films on the SRO, LSMO, and LNO electrodes was studied, and by controlling the lattice constant of the bottom electrodes, the lattice-misfit strain effect was addressed.

The PZT/SRO(LSMO,LNO) heterostructures were grown on (LaAlO$_3$)$_{0.5}$(SrAl$_{0.5}$Ta$_{0.5}$O$_3$)$_{0.5}$ (LSAT) substrates by the pulsed laser deposition method, as described previously. All the films were grown at 640°C with deposition oxygen pressure fixed at 10 mTorr for SRO and LNO, and 200 mTorr for PZT. The LSMO electrodes were deposited at 100, 75, 60, or 30 mTorr, so that for the same LSMO different lattice constants can be achieved. After deposition, the films were cooled to 550°C in 10 Torr of O$_2$, and then in situ annealed at 10 or 10$^{-5}$ Torr for 30 min before being cooled to room temperature (RT) in the same annealing ambient. To simplify the role of the different bottom electrodes, on each heterostructure Pt top electrode was deposited at RT using a shadow mask with holes of 0.2 mm in diameter. The thicknesses of Pt, PZT, and the bottom electrode were about 40, 400, and 200 nm, respectively. The polarization-electric field ($P-E$) hysteresis loops of the capacitors were measured at RT using a RT66A tester.

Figure 1 shows x-ray diffraction (XRD, CuKα radiation) profiles from all the PZT capacitors in situ annealed in 10 Torr of O$_2$. The specular linear scans around the (002) reflections are shown in Fig. 1(a), and correspondingly the out-of-plane hysteresis loops on the PZT(002) reflections are shown in Fig. 1(b). In Fig. 1(a), curves a, b, and c are from those with SRO, LSMO, and LNO bottom electrode, respectively, where the electrodes were deposited at 100 mTorr. It is seen that the PZT(002) reflections are almost the same, and the reflections from the bottom electrodes locate at different Bragg angles, indicating an out-of-plane lattice constant of 3.936, 3.882, and 3.846 Å for the SRO, LSMO, and

Footnote:
Electronic mail: wwb@ustc.edu.cn
K. matured after the reciprocal space mapping using Cu recorded from capacitors shown in Figs. 2(a), 16,17 different for the various electrodes,6,7 the imprint behavior in cive voltage offset, and to make clear whether it is contrib-
bottom electrode decreases. In order to understand the coer-
3.882 to 3.961 Å. In Fig. 1, 30 mTorr, the out-of-plane lattice constant was tuned from
deposition oxygen pressure is decreased from 100 to
This is true for the LSMO electrodes shown in Fig. 1. As the
deposition oxygen pressure is decreased from 100 to
60, or 75 mTorr. As has been pointed out, the oxygen content,
and therefore the lattice constant of epitaxial
La1−xNd0.7Sr0.3MnO3 (LNSMO) films is quite sensitive to
the deposition oxygen pressure at 10−5 Torr, as shown in Figs. 3—
annealing in 10−6 – 760 Torr of O2.15 This is true for the LSMO electrodes shown in Fig. 1. As the
deposition oxygen pressure is decreased from 100 to
30 mTorr, the out-of-plane lattice constant was tuned from
3.882 to 3.961 Å. In Fig. 1(b), RCs on the PZT(002) reflections
yielded a FWHM of 0.3° – 0.6°. Further XRD off-
especular scans on these capacitors were also performed and a
parallel epitaxial relationship between the different oxide
layers was confirmed. From these XRD data, an in-plane
lattice constant of 3.886, 3.892, and 3.931 Å was calculated
for the LSMO deposited in 75, 60, and 30 mTorr of O2. For
PZT, an in-plane lattice constant of 4.02 Å was also esti-
3(f), however, a large coercive voltage shift at the same state
appeared. Also, the internal field increases as the LSMO lattice constant decreases. So the imprint seems to not result
from the built-in electric field between PZT and the oxide electrodes. Instead, the lattice misfit strain in the PZT films,
as a common feature, may cause the voltage shift observed.
Abe et al. have ascribed the voltage offset in epitaxial
BTO films to the lattice-misfit strain at the BTO/SRO bottom
interface. They assumed that at the interface a nonswitching
layer exists, and it has a spontaneous polarization that cannot be
switched by the applied voltage. In this layer the crystal
structure may be asymmetrically deformed by relaxation of
the lattice misfit strain.8 Figure 4 shows transmission elec-
tron microscope (TEM) images of the PZT/LSMO interfaces
with the LSMO layer deposited at 100 or 30 mTorr, as indi-
cated. In Fig. 4(a), due to the large compressive misfit strain,
a misfit dislocation network embodied by the periodically
distributed bright spots was observed. As the lattice constant
of LSMO increases, the misfit strain decreases,16,17 and as a
result, in Fig. 4(b) the spots disappeared. Figure 4(c) shows a
high resolution image of the PZT/LSMO interface where the
misfit dislocations and the lattice deformation of PZT were
clearly observed. To further confirm that the lattice-misfit
strain is critical for the imprint in epitaxial PZT films, we
introduced lattice disorder at the PZT bottom interface by

![FIG. 1. (a) XRD specular linear scans around the (002) reflections of the various capacitors in situ annealed in 10 Torr of O2. The curves a, b, c, d, e, f, and g are from the capacitor with SRO, LSMO, LNO, LSMO (30 mTorr), LSMO (60 mTorr), LSMO (75 mTorr), and LNSMO (300°C) electrode, respectively. (b) XRD RCs on the PZT(002) reflections shown in (a). For clarity all the curves were shifted vertically.](Image 90x571 to 258x739)

![FIG. 2. P–E loops from the capacitors with different electrodes, as indicated. The loops in left (right) panels are from those annealed in situ in 10(10−5) Torr of O2.](Image 353x599 to 521x739)

![FIG. 3. P–E loops from the Pt/PZT/LSMO capacitors with the LSMO electrodes deposited at different conditions. The loops in the left (right) panels are from those annealed in situ in 10(10−5) Torr of O2.](Image 353x599 to 521x739)
depositing a LNSMO (x=0.5) layer at a low temperature of 300°C and in 100 mTorr of O₂ to reduce the misfit strain, although the Nd doping will decrease the lattice constant of LNSMO further. To keep lower resistance of the bottom electrode, an epitaxial SRO film was first deposited at 640°C. According to curve g in Fig. 1, the PZT(002) peak has broadened and correspondingly the RC showed a FWHM of 1.044°. The annealing effect on the P–E loops [Figs. 3(g) and 3(h)] showed that with the lattice disorder at the interface, the voltage shift has been effectively eliminated, as expected. After in situ annealing at 10⁻⁵ Torr, XRD results indicated that both PZT and the selected oxide electrodes are stable, with the same lattice constants recorded as for their counterpart treated in 10 Torr of O₂. Hence the oxygen loss may take place only at sites near the threading dislocations in the PZT layer which are normal to the film plane.16,17 With the increase of lattice-misfit strain and thus the density of dislocations, a larger oxygen vacancy or stress related gradient near the bottom interface will be formed and along the out-of-plane direction, causing the larger internal field in the epitaxial PZT films.4,10

In summary, the lattice-misfit strain effect on the process-induced imprint behavior in epitaxial PZT films grown on SRO, LSMO, and LNO electrodes has been studied. It was found that after the reducing annealing, the PZT films showed an increased voltage shift with increasing the misfit strain. Our results suggest that an oxygen loss via misfit dislocations generated by the lattice-misfit strain relaxation may be responsible for the large voltage offsets.

This work was supported by the Chinese Natural Science Foundation, the Ministry of Science and Technology of China, and the The Hong Kong Polytechnic University.