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The immunization strategies through contact tracing on the susceptible-infected-recovered

framework in social networks are modelled to evaluate the cost-effectiveness of information-based

vaccination programs with particular focus on the scenario where individuals belonging to a specific

set can get vaccinated due to the vaccine shortages and other economic or humanity constraints. By

using the block heterogeneous mean-field approach, a series of discrete-time dynamical models is

formulated and the condition for epidemic outbreaks can be established which is shown to be not

only dependent on the network structure but also closely related to the immunization control

parameters. Results show that increasing the immunization strength can effectively raise the epidemic

threshold, which is different from the predictions obtained through the susceptible-infected-susceptible

network framework, where epidemic threshold is independent of the vaccination strength.

Furthermore, a significant decrease of vaccine use to control the infectious disease is observed for

the local vaccination strategy, which shows the promising applications of the local immunization

programs to disease control while calls for accurate local information during the process of disease

outbreak. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941670]

Researchers have performed many studies about the

dynamic immunization schemes on networks, which pro-

vide new insights into optimal strategies to effectively

control the diseases. However, previous work mainly

focused on the immunization over the whole population

under the assumption that the vaccines supply is suffi-

cient to cover the most of individuals at risk. In some spe-

cial scenarios, especially for emerging diseases, the

vaccine supply is small compared with the large amount

of population size at risk. Therefore, it is pivotal to inves-

tigate a local immunization program that is confined to a

specified subpopulation. In the current manuscript, the

immunization strategies through contact tracing on the

susceptible-infected-recovered framework in social net-

works are proposed. Using dynamic analysis and numeri-

cal simulations, the epidemic thresholds are found which

are shown to be closely associated with the adjustable pa-

rameters for the vaccination programs. This result is dif-

ferent from the case for susceptible-infected-susceptible

model framework where epidemic threshold is independ-

ent of the vaccination strength. Furthermore, a signifi-

cant decrease of vaccine use to control the infectious

disease, through comparison of static and dynamic im-

munization schemes, is observed for the local vaccination

strategy. These results provide novel designs for disease

control using immunization programs.

I. INTRODUCTION

The immunization can be regarded as a response to the

seriousness of epidemic spreading through voluntary vacci-

nation1 or interventions.2 Novel insights into immunization

programs can be gained from the study of complex net-

works3,4 from two main perspectives5 among others:

(i) The static immunization which is implemented before

the epidemic spreading.6 Generally speaking, there

are two basic schemes following this idea, the random

immunization and the targeted immunization,3 and

other multiple variant strategies, such as the acquaint-

ance immunization7 and inverse targeting immuniza-

tion,6 with applications to time-varying networks8

and multiplex networks.9

(ii) The dynamic immunization where the program is

implemented during the epidemic outbreak. Since an

individual’s vaccination decision is made mainly

based on the epidemic seriousness while sometimes,

the novel effective and safe vaccine can only be

developed and mass-produced after the emergence of

infectious diseases triggered by new pathogens, the

dynamic immunization is always implemented in re-

alistic situations in most cases.1,10

Similar to individual’s behavioral responses to infec-

tious diseases,11,12 the dynamic immunization can be well-

adjusted based on transmission information during the epi-

demic spreading. As soon as an infectious disease begins to

spread in the population, an effective immunization program

should be initiated which may be adjusted according to the

disease prevalence and the program terminates when the dis-

ease dies out. Therefore, the epidemic information-based im-

munization allows us to take the advantage of the interplay

between the immunization response and the epidemic

spreading. Motivated by this idea, researchers have eval-

uated the efficacy of various dynamic immunization schemes
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by using network models with direct immunization13–15 or

other modelling approaches. For example, Shaban et al.16

formulated real-time susceptible-infected-recovered (SIR)

vaccination models for contact tracing in a network with a

specific degree distribution by a branching process approxi-

mation. Nian and Wang17 proposed a strategy to immunize the

neighbors of an infected node. Ruan et al.10 studied an

information-driven vaccination program and found that

strengthening the information diffusion can reduce the final

vaccination fraction. Wang et al.18 investigated the interplay

between information spreading and disease dynamics in an

information-driven vaccination program. Jo and Baek19 and Fu

et al.20 evaluated efficiencies of immunization schemes in the

susceptible-infected-recovered-susceptible (SIRS) and suscepti-

ble-infected-susceptible (SIS) networks, respectively. Zhang

et al.21 investigated the impact of subsidy policies on vaccina-

tion decisions under the voluntary vaccination. More recently,

Takaguchi et al.22 proposed an immunization strategy based on

observer placement, which is shown to be very efficient for dis-

ease control in the clustering networks.

Although providing novel insights into the cost-

effectiveness of various immunization approaches, previous

studies mainly focused on the immunization over the whole

population (denoted by W in this manuscript). However, in

reality, the vaccine supply is limited compared with the large

population size at risk, especially for those diseases triggered

by novel pathogens. Furthermore, vaccines may deliver to

only a partial population due to other economic or humanity

constraints. Therefore, it becomes much more realistic to

consider a local immunization program that only covers a

specified subpopulation (denoted by X in what follows).23 It

becomes of interest to evaluate the cost-effectiveness of

static as well as dynamic immunization schemes for this real-

istic situation. A recent paper23 investigated the SIS epi-

demic model with local immunization program and showed

that the condition of epidemic outbreak is not related to the

immunization strength. The SIS modelling framework is

well-accepted for describing infections, such as rotavirus and

gonorrhea, which do not confer long-lasting immunity.

However, a SIR framework is more suitable for infections

such as measles, mumps, and chickenpox where individuals

recover and confer lifelong immunity, which is the funda-

mental framework we will extend in the current paper with

network structures. Furthermore, we are also interested in

the comparison of predictions obtained from the immuniza-

tion programs for these two network model frameworks.

In the current manuscript, we are going to propose two

kinds of hypothetical immunization models, for local and

global immunization programs, applicable to the SIR epi-

demic networks. Rigorous and numerical analysis will illus-

trate the disease transmission conditions, and the results will

further be compared with previous studies on vaccination

programs on the SIS framework (see the Appendix and Ref.

23). The rest of this paper is organized as follows: In Section

II, we first formulate a susceptible-vaccinated-infected-

recovered (SVIR) model with a global immunization pro-

gram; then in Section III, we further investigate a local im-

munization program by theoretical analysis and simulations;

finally, discussions are presented in Section IV.

II. THE GLOBAL IMMUNIZATION PROGRAM

In this section, we extend the SIR epidemic model to

SVIR models with the consideration of a global immuniza-

tion scheme. Herein, the V state represents the immunized

population through vaccination. Intuitively, one possible effi-

cient immunization strategy is to directly immunize all the

susceptible nodes connected to infected nodes, refereed to as

the high-risk nodes17 which are likely to be infected by their

infectious neighbors in the following infection wave. These

high-risk nodes can be found through contact tracing theoret-

ically.16,24,25 However, in practice, it is not easy to locate all

these high-risk nodes and there exists a discount rate. Hence,

we introduce an adjustable parameter d, denoted as the trac-

ing rate or immunization rate, to account the efficiency of

tracing and immunizing these high-risk nodes. Suppose a

susceptible node will get infected by one infectious neighbor

with rate b. Then a susceptible node with s infected neigh-

bors changes its state with the following probabilities:19

PðS! SÞ ¼ ð1� dÞsð1� bÞs;
PðS! VÞ ¼ 1� ð1� dÞs :¼ w1ðsÞ;
PðS! IÞ ¼ ð1� dÞs½1� ð1� bÞs� :¼ w2ðsÞ:

(1)

Following Ref. 26, we assume the network is randomly

generated according to the degree distribution PðkÞ � k�a

with a 2 (2, 3] as many real networks to incorporate the het-

erogeneity of individuals. This assumption implies that the

connectivity of nodes is uncorrelated. We denote

SkðtÞ; VkðtÞ; IkðtÞ; RkðtÞ as the relative densities of suscepti-

ble, vaccinated, infected, and recovered nodes in the popula-

tion with degree k at time step t, respectively, with k¼ k0,

k0 þ 1; � � � ; kc, where k0 and kc are the minimal and maximal

degrees. Assuming Ik(0) ’ 0 and Rk(0)¼ 0 for each k, then

the probability H(t) of a randomly selected node connecting

to an infected individual can be formulated as27,28

H tð Þ ’
P

k k � 1ð ÞP kð ÞIk tð ÞP
k kP kð Þ

¼
P

k k � 1ð ÞP kð ÞIk tð Þ
hki :

Then the probability that a node of degree k has exactly s
infected neighbors is given by the binomial distribution29

Binðk; sÞ ¼ k
s

� �
Hsð1�HÞk�s:

Taking the expectation of the stochastic variable w1(s)

with respect to the above defined binomial distribution gives

the probability with which a susceptible node of degree k is

vaccinated

E½w1ðsÞ� ¼ 1�
X

s

Binðk; sÞð1� dÞs ¼ 1� ð1� dHÞk:

Similarly, a susceptible node of degree k gets infected with

probability

E½w2ðsÞ� ¼
X

s

Binðk; sÞð1� dÞs½1� ð1� bÞs�

¼ ð1� dHÞk � ½1� ðdþ b� dbÞH�k:
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In the present paper, we employ the widely used

discrete-time approach,29–31 capable of accounting the perio-

dicity feature in daily life or day-night changes,8 in the above

process of state changes during disease transmission. If we

assume that an infected node recovers and simultaneously

achieves the perpetual immunization to the pathogen with

rate c, then the discrete-time epidemic process can be

described in a mean-field form

Skðtþ 1Þ ¼ SkðtÞ � SkðtÞfE½w1ðsÞ� þE½w2ðsÞ�g;
Vkðtþ 1Þ ¼ VkðtÞ þ SkðtÞE½w1ðsÞ�;
Ikðtþ 1Þ ¼ ð1� cÞIkðtÞ þ SkðtÞE½w2ðsÞ�;

Rkðtþ 1Þ ¼ RkðtÞ þ cIkðtÞ:

(2)

Clearly, variables SkðtÞ; VkðtÞ; IkðtÞ; RkðtÞ are nonnega-

tive and satisfy SkðtÞ þ VkðtÞ þ IkðtÞ þ RkðtÞ ¼ 1 for each k
and t, which can be shown from the system (2), or by their

definitions.

Under the initial conditions Ik(0) ’ 0 and Rk(0)¼ 0 for

each k, the occurrence of an epidemic outbreak depends on

the stability of the disease free equilibrium of the network

model.32 Hence, we consider the system near the zero solu-

tion (Ik(t)¼ 0 for each k). Then, E½w2ðsÞ� ’ bð1� dÞkH and

the evolution of the infected class33 can be given by the line-

arized model of (2)

Ikðtþ 1Þ ¼ ð1� cÞIkðtÞ þ bð1� dÞkH: (3)

By analyzing the Jacobian matrix of Eqs. (3), one can

find that the system has a unique eigenvalue of maximum

modulus, i.e., bð1� dÞhki�1P
k kðk � 1ÞPðkÞ þ 1� c, from

which the epidemic threshold can be derived

sc ¼
1

1� d
hki

hk2i � hki ; (4)

with hk2i ¼
P

k k2PðkÞ. Here, we use the rescaled infection

rate s¼b/c. Then the epidemic threshold sc determines the

epidemic outbreak: if s< sc, the total infection density

IðtÞ ¼
P

k IkðtÞPðkÞ decreases to zero (no epidemic), other-

wise, I(t) first increases to a maximum and then decreases to

zero (an epidemic).32 When d> 0, the epidemic threshold is

inversely proportional to 1� d value.

It is interesting to observe that the threshold index sc

derived here equals to the epidemic threshold for the SIR

model with local information-based behavioral responses.34 It

is also worthy to remark that the same disease outbreak thresh-

old (4) can also be obtained by the branching process theory.35

For example, the authors in Ref. 16 studied the vaccination

through the contact tracing with a general contact time and

obtained the similar result, while s¼b/(bþ c) when the con-

tact time follows an exponential distribution in that paper.

III. THE LOCAL IMMUNIZATION PROGRAM

The development of optimal vaccine allocation strategies

to control the epidemic spreading remains a central problem

in public health and network security.36 Furthermore, vaccine

shortages, resulting from higher-than-expected demand,

interruptions in production/supply or a lack of budgets, makes

it impossible to immunize almost all the nodes in the whole

network and urges to design an optimal strategy minimizing

the total number of vaccines or the social cost.14 The design

of an optimal strategy in the consideration of this constraint is

not only related to the high-risk nodes but also the nodes with

other particular characteristics during the epidemic spread-

ing.6,37 For that purpose, we introduce a local immunization

program that is confined to a node set X, in which nodes are

predefined according to special characteristics for the epi-

demic control, with the special reference to vaccine shortage

scenario: only susceptible nodes in X can be vaccinated or

removed while other nodes cannot. An illustrative diagram is

shown in Fig. 1, where the infected node at the center is sur-

rounded by 8 susceptible nodes and only one of two traced

susceptible nodes in X gets vaccinated. Clearly, 1 � X � W
with two extreme cases: when X ¼1, the immunization

scheme through vaccination is not implemented and the model

reduces to a standard SIR model;38 while the global immuni-

zation program is implemented to cover all risky nodes for

X¼W. In what follows, we only consider the local immuniza-

tion scenario, that is, the above inclusions are proper.

In the local immunization program, one key question is

to determine which group of individuals should be traced

and get immunized, in other words, to define the set X for

the network. This question can be solved when we have no

knowledge about the spreading resource3 by some classical

static immunization strategies, such as the random immuni-

zation and targeted immunization. In order to present a com-

parative analysis, in this paper, we consider two kinds of X
determined by the random immunization and targeted immu-

nization, respectively.

FIG. 1. Illustrations of the contact tracing by an infected node. The central

node is an infected node with 8 susceptible neighbors, among which two are

in the set X while the others are outside X. Only one, out of two X-nodes, is

traced (and also will get vaccinated) by the central node along the contact

between them (indicated by a blue and thick line).
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When the set X is fixed, a subnetwork G1 formed by the

nodes in X can be defined, and the remaining nodes together

with their edges form a subnetwork G2. Since there exist

links between nodes in G1 and G2, the whole network G can

be regarded as an interdependent network39 where the mean-

field approach is still feasible. Taking the difference between

interdependent networks and a single network, we call the

subnetwork Gi, i¼ 1, 2, as blocks of G and the mean-field

approach based on the blocks is correspondingly referred to

as the block heterogeneous mean-field (HMF) approach (it

differs from the block variable mean-field approach40).

A. The random immunization case

The random immunization means that a fraction f of all

nodes is randomly selected to be immunized,3 from which,

the set X is determined. Based on the nodes in set X, blocks

G1 and G2 can be defined accordingly. Denote

S
ðiÞ
k ðtÞ; V

ðiÞ
k ðtÞ; I

ðiÞ
k ðtÞ, and R

ðiÞ
k ðtÞ as the relative densities of

susceptible, vaccinated, infected, and recovered nodes of Gi

(i¼ 1 or 2) in the population G with degree k at time step t,
respectively. According to the discrete-time HMF approach,

the dynamical model for the random immunization program

is given by

I
ð1Þ
k ðtþ 1Þ ¼ ð1� cÞIð1Þk ðtÞ þ S

ð1Þ
k ðtÞE½w

ð1Þ
2 ðsÞ�;

I
ð2Þ
k ðtþ 1Þ ¼ ð1� cÞIð2Þk ðtÞ þ S

ð2Þ
k ðtÞE½w

ð2Þ
2 ðsÞ�:

Here, the respective infection probabilities in G1 and G2 are

w
ð1Þ
2 ðsÞ ¼ ð1� dÞs½1� ð1� bÞs�;

and

w
ð2Þ
2 ðsÞ ¼ 1� ð1� bÞs:

Please note that the model does not include the dynamics of

other variables for S
ðiÞ
k ðtÞ; R

ðiÞ
k ðtÞ with i¼ 1, 2 and V

ð1Þ
k which

do not appear in the system describing the evolution of infec-

tious nodes at the initial stage of disease spread.

A similar approximation analysis as in Sec. II near the

disease-free equilibrium E0 gives

E½wð1Þ2 ðsÞ� ’ bð1� dÞkH and E½wð2Þ2 ðsÞ� ’ bkH;

with H ¼ hki�1P
kðk � 1ÞPðkÞ½Ið1Þk þ I

ð2Þ
k �.

At the early stage of an epidemic, we have

S
ð1Þ
k ðtÞ ’ f and S

ð2Þ
k ðtÞ ’ 1� f

while

I
ðiÞ
k ðtÞ ’ 0; R

ðiÞ
k ðtÞ ’ 0 for each i and V

ð1Þ
k ðtÞ ’ 0:

Let IðtÞ ¼ ðIð1Þk0
; I
ð1Þ
k0þ1;…; I

ð1Þ
kc
; I
ð2Þ
k0
; I
ð2Þ
k0þ1;…; I

ð2Þ
kc
ÞT , then the

local stability of E0 can be established through the following

linear system for infected nodes:

Iðtþ 1Þ ¼ J1ðE0ÞIðtÞ

with

J1ðE0Þ ¼ ð1� cÞI 2M�2M þ b
f ð1� dÞA f ð1� dÞA
ð1� f ÞA ð1� f ÞA

� �
;

where I 2M�2M is an identity matrix and A is a M�M posi-

tive matrix with entries Akk0 ¼ kðk0 � 1ÞPðk0Þ=hki and

M¼ kc� k0þ 1.

Using the property of block matrix, one can obtain

det
f ð1� dÞA� kIM�M f ð1� dÞA

ð1� f ÞA ð1� f ÞA� kIM�M

 !

¼ det
ð1� fdÞA� kIM�M 0

ð1� f ÞA �kIM�M

 !

¼ kMdet½kIM�M � ð1� fdÞA�:

Using this equality, it is easy to obtain the maximal

eigenvalue of J1(E0) as

kmaxðJ1Þ ¼ 1� cþ bð1� fdÞkmaxðAÞ:

Therefore, the epidemic threshold for the random immuniza-

tion case, sr
c, is given by

sr
c ¼

1

1� fd
hki

hk2i � hki : (5)

It is obvious to see that the epidemic threshold is dependent

of both f and d. In addition, the epidemic threshold becomes

much more sensitive to the immunization rate d for larger f
values.

B. The targeted immunization case

The targeted immunization has been shown very effec-

tive in controlling epidemic outbreak on scale-free net-

works.3 To evaluate the efficacy of this program in this

study, we choose nodes with large degrees to be vaccinated,

that is, the node set X ¼ fv 2 W : degðvÞ � Kg, where

deg(v) denotes the degree of node v and K is a control param-

eter. In this scenario, the whole network can be divided into

two blocks:

G1 with degree k � K and G2 with degree k < K:

The dynamical equations for the targeted immunization case

can be written as

I
ð1Þ
k ðtþ 1Þ ¼ ð1� cÞIð1Þk ðtÞ þ S

ð1Þ
k ðtÞE½w

ð1Þ
2 ðsÞ�; k � K;

I
ð2Þ
k ðtþ 1Þ ¼ ð1� cÞIð2Þk ðtÞ þ S

ð2Þ
k ðtÞE½w

ð2Þ
2 ðsÞ�; k < K:

Here, E½wð1Þ2 ðsÞ� and E½wð2Þ2 ðsÞ� are defined as before. We

can obtain the linearized equations for IðtÞ ¼ ½Ið2Þk0
; I
ð2Þ
k0þ1; :::;

I
ð2Þ
K ; I

ð1Þ
Kþ1; :::; I

ð1Þ
kc
�T for linear stability analysis of the disease

free equilibrium E0

Iðtþ 1Þ ¼ J2ðE0ÞIðtÞ:

The corresponding Jacobian matrix J2(E0) at E0 becomes

J2ðE0Þ ¼ ð1� cÞIM�M þ bB; (6)
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where B is a M�M positive matrix with entries Bkk0 ¼
kðk0 � 1ÞPðk0Þ=hki for k<K and Bkk0 ¼ ð1� dÞkðk0 � 1Þ
Pðk0Þ=hki for k�K.

It is easy to verify from (6) that the dominant eigenvalue

kmaxðJ2Þ ¼ 1� cþ bkmaxðBÞ;

with

kmax Bð Þ ¼
P

k<K k k� 1ð ÞP kð Þ
hki þ 1� dð Þ

P
k�K k k� 1ð ÞP kð Þ

hki :

Therefore, the epidemic threshold for the targeted immuniza-

tion case is

st
c ¼

hkiP
k<K k k � 1ð ÞP kð Þ þ 1� dð ÞP

k�K k k � 1ð ÞP kð Þ

¼ hki
hk2i � hki � d

P
k�K k k � 1ð ÞP kð Þ

: (7)

It indicates that the epidemic threshold is dependent

on d and K. The epidemic threshold increases with d while

decreases with K, and the infectious disease may be con-

trolled when d is large or K is small enough. To compare

the cost-effectiveness of the random and targeted immuni-

zation strategies, we first write Eq. (7) into the form of

Eq. (5) as

st
c ¼

1

1� ~f d

hki
hk2i � hki (8)

with ~f ¼
P

k�K
kðk�1ÞPðkÞP

k
kðk�1ÞPðkÞ . In the targeted immunization pro-

gram, we have f ¼
P

k�K PðkÞ, which represents total vac-

cine coverage in the whole network. Next, we are going to

show that ~f > f , which is equivalent to

FðKÞ :¼
Xkc

k¼K

kðk � 1Þ �
X

k

kðk � 1ÞPðkÞ
� �

PðkÞ > 0:

Since k(k� 1) is an increasing function of k, there exists

a threshold value m such that kðk � 1Þ 	
Pkc

j¼k0
jðj� 1ÞPðjÞ

when k	m and kðk � 1Þ �
Pkc

j¼k0
jðj� 1ÞPðjÞ when k�m,

indicating that the function F increases first and then

decreases across the threshold value. On the other hand,

F(k0)¼ 0 and F(kc)> 0, and therefore, we get F(K)> 0 for

all K> k0, which proves ~f > f. Therefore, st
c > sr

c for the

same f value with f ¼
P

k�K PðkÞ for the targeted immuniza-

tion case, which implies that the epidemic threshold becomes

greater for the target immunization program than that for the

random immunization program with the same vaccine cover-

age used. Therefore, one can conclude that the targeted im-

munization is more efficient than the random immunization.

C. Simulations

To verify the above theoretical analysis, we perform

Monte Carlo simulations over scale-free networks generated

from the standard configuration model41 with degree expo-

nent a¼ 2.7. The network structure is set with size

N¼ 2000, the minimal degree k0¼ 3, and the maximal

degree kc ¼
ffiffiffiffi
N
p
’ 44:72. The recovery rate c is set to be

1.0. All simulations are implemented by a parallel updating

strategy in which the actual disease states of each node and

its neighbors at each time step are considered. We start with

a single initial infectious seed and all simulation results are

obtained by taking averages of 20 random network configu-

rations and 50 independent initial conditions for each net-

work realization.

Fig. 2(a) illustrates the epidemic prevalence R1 (i.e.,

the fraction of recovered nodes at the end of the epidemic

wave) as a function of infection rate b. This figure also

shows the existence of an epidemic threshold for different

immunization rates. In order to examine the validation of the

theoretical results to the Monte Carlo simulation, we also

consider the maximal infection density Imax for different pa-

rameters, which has been shown to be an effective index to

measure the epidemic threshold of the model with infinite

absorbing states.33 An alternative approach is based on the

FIG. 2. Effect of the immunization rate on the epidemic threshold and prevalence for the random immunization case when f¼ 0.5: (a) final recovered size R1
versus the infection rate b for different values of d; (b) contour of Imax in the (d – b) parameter plane, where the white line indicates the theoretically predicted

curve determined in Eq. (5), and the light gray region corresponds to the parameter region with zero prevalence.
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variability measure suggested by Shu et al.42 As illustrated

in Fig. 2(b), the simulation results agree with the theoretical

threshold conditions obtained in Eq. (5). Similar conclusion

can be made for the targeted immunization in Fig. 3.

Furthermore, increasing d value can always raise the epi-

demic threshold sc regardless of the random or targeted im-

munization case. This result is significantly different from

the SVIS network model based on an SIS framework (see

detailed analysis about SVIS model in the Appendix), where

the parameter d does not play a role for sc.

We further investigate the impact of dynamic immuniza-

tion on the final vaccine size V1 by using the immunization

efficiency Q. When there is no infection in the network (i.e.,

at the steady state), we can define XX as

XX ¼ fi 2 Xjstatefig ¼ Xg;

where X is the node state, which may be S, I, R, or V. Notice

that there exist infection-induced immunization nodes in X
and therefore, XR [ XS [ XV¼X. Hence, the immunization

efficiency for the SIR model, a function of variables d, b, f,
and K, can be expressed as

Q d; b; fð Þ ¼
#XS

#X�#XR
;

where the symbol #XX denotes the number of the elements in

set XX.

Fig. 4 clearly shows that the immunization efficiency

index Q is strongly correlated with the infection rate b and

the immunization rate d for different predefined sets X, rep-

resenting the random/targeted immunization strategies used.

For each fixed d value, Q increases as b decreases. However,

the monotonicity of Q, as a function of d is much more com-

plicated, as shown in Fig. 4(a) for the random immunization

case. Generally speaking, Q is an increasing function of d
(Figs. 4(b)–4(d)). However, in Fig. 4(a), when the infection

rate b is relatively small, say b¼ 0.2, the immunization effi-

ciency is negatively correlated to the immunization strength,

as highlighted by three blue lines. It is due to the dual effect

of the increased immunization strength.23 Although increas-

ing d enlarges vaccination coverage, it also halts the spread-

ing of an epidemic with a small infection rate across hub

nodes and hence decreases propensity for vaccination. The

relationship between sc and d is illustrated by dashed lines in

each panel of Fig. 4. Almost all of these curves lie in the red

region, showing that the immunization efficiency should be

very high to control the disease. It is noticed that at the case

d¼ 1, the expression of sc is reduced to be the same as the

corresponding static immunization in Ref. 38. However, the

spreading patterns between dynamic and static immunization

are not the same, as many susceptible nodes are not vacci-

nated in X for the dynamic immunization.

IV. CONCLUSION AND DISCUSSION

The study of the network theory enables us to analyze

the role of each node or node set in the epidemic spreading

and get novel insights into the transmission dynamics. As we

know, the SIR-like epidemic network model can be analyzed

by various approaches, such as the percolation theory,43 the

branching process approximation,16 and the effective degree

approaches.32,44 Recently, the heterogeneous mean-field

approach poses a good tool to analyze complex disease dy-

namics due to its simple and deterministic formulation.18,28

In this manuscript, we formulated real-time immunization

models with the discrete-time HMF approach, where suscep-

tible nodes can get immunized by contact tracing from

infected nodes. Considering the real situations of vaccine

shortages such that the number of vaccines cannot cover the

whole population, we propose a local immunization program

that can only immunize a given node set X in the whole pop-

ulation, which can be defined as a geological region of a city

or a social group of a population or other groups sharing

some characteristics. The epidemic thresholds for different

(local versus global) vaccination scenarios against infectious

diseases are obtained from stability analysis, based on which

the effectiveness of a vaccination program can be evaluated.

The predicted thresholds are validated through numerical

FIG. 3. Effect of the immunization rate on the epidemic threshold and prevalence for the targeted immunization case when K¼ 10: (a) final recovered size R1
versus the infection rate b for different values of d; (b) contour of Imax in the (d – b) parameter plane, where the white line indicates the theoretically predicted

curve determined in Eq. (7), and the light gray region to the parameter region with zero prevalence.
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simulations. Our result suggests that the local immunization

program can greatly improve the efficiency of static immuni-

zation, requiring a smaller amount of vaccines to effectively

control disease spread. However, the efficacy of vaccination

programs not only depends on immunization rate but also on

the choice of individual group to immunize. Therefore, it

remains pivotal to extend the approach in this manuscript to

other local immunization strategies, with different targeted

vaccination groups to get an optimal strategy for disease con-

trol. This may contribute toward the optimal strategy of vac-

cine allocation for emerging infectious diseases such as

influenza A (H1N1).45

In the local immunization program with a SIR frame-

work, we find that the immunization rate d can greatly affect

the epidemic threshold, which distinguishes from the predic-

tion based on the SIS spreading mechanism where d does not

play a role in the threshold. This adds one more difference

between the SIS and SIR network models, as revealed by

Castellano and Pastor-Satorras46 that the threshold of generic

epidemic models is vanishing for an SIS model, while it is fi-

nite for the SIR model on quenched scale-rich networks (i.e.,

a> 3).

In the present work, we only consider the same immuni-

zation rate d for each node in the immunization set X. The

same approach remains valid for a general case with multiple

immunization sets with different d values. Another

interesting exploration may be the study of local immuniza-

tion program in the interdependent networks39 or the com-

munity networks.47 These realistic issues suggest good

topics for further research.
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APPENDIX: THE SVIS MODEL

In this appendix, we extend the SIS epidemic model

with the consideration of dynamic immunization programs.

For comparative purposes, the immunization and disease

transmission parameters are set to be the same as those in the

SVIR model. We denote S
ðiÞ
k ðtÞ; V

ðiÞ
k ðtÞ, and I

ðiÞ
k ðtÞ as the sus-

ceptible, vaccinated, infected densities among nodes inside

(i¼ 1) and outside (i¼ 2) of the tracing group X with degree

k at time step t, respectively. Then the following discrete-

time SVIS model can be formulated for two different groups

by using a similar approach as that in the main part:

FIG. 4. The contour plot of the immunization efficiency, where the horizontal coordinate is the infection rate b and the vertical coordinate is the immunization

strength d. Panels (a) and (b) illustrate the random immunization case for f¼ 0.2 and 0.8, respectively, while panels (c) and (d) show the targeted immunization

case for K¼ 6 and 12, respectively. The dashed lines in each panel indicate the epidemic thresholds by theoretical predictions.

023108-7 Q. Wu and Y. Lou Chaos 26, 023108 (2016)



S
ð1Þ
k ðtþ 1Þ ¼ S

ð1Þ
k ðtÞf1�E½wð1Þ1 ðsÞ� �E½wð1Þ2 ðsÞ�g þ cI

ð1Þ
k ðtÞ;

V
ð1Þ
k ðtþ 1Þ ¼ V

ð1Þ
k ðtÞ þ S

ð1Þ
k ðtÞE½w

ð1Þ
1 ðsÞ�;

I
ð1Þ
k ðtþ 1Þ ¼ ð1� cÞIð1Þk ðtÞ þ S

ð1Þ
k ðtÞE½w

ð1Þ
2 ðsÞ�;

(A1)

and

S
ð2Þ
k ðtþ 1Þ ¼ S

ð2Þ
k ðtÞf1�E½wð2Þ2 ðsÞ�g þ cI

ð2Þ
k ðtÞ;

I
ð2Þ
k ðtþ 1Þ ¼ ð1� cÞIð2Þk ðtÞ þ S

ð2Þ
k ðtÞE½w

ð2Þ
2 ðsÞ�:

(A2)

In this model, w
ð1Þ
1 ðsÞ ¼ 1� ð1� dÞs; w

ð1Þ
2 ðsÞ ¼ ð1� dÞs

½1� ð1� bÞs�, and w
ð2Þ
2 ðsÞ ¼ 1� ð1� bÞs.

In order to obtain an approximate condition for epidemic

outbreak, we set S
ðiÞ
k ðtÞ ¼ S

ðiÞ
k ; I

ðiÞ
k ðtÞ ¼ I

ðiÞ
k for i¼ 1, 2 and

V
ð1Þ
k ðtÞ ¼ V

ð1Þ
k in Eqs. (A1) and (A2) where S

ðiÞ
k ; I

ðiÞ
k , and V

ð1Þ
k

are constant values at the equilibrium state and furthermore,

assume I
ð1Þ
k ¼ 0 such that there is no infection in the set X

due to immunization. Then the infectious proportion I
ð2Þ
k

satisfies

cI
ð2Þ
k ¼ ½N

ð2Þ
k � I

ð2Þ
k �½1� ð1� bHÞk�;

where N
ð2Þ
k ¼ S

ð2Þ
k þ I

ð2Þ
k is a fixed value for each k and

H ¼
P

k
kPðkÞIð2Þ

kP
k

kPðkÞ . The positive solution for I
ð2Þ
k of the above

algebraic equation exists if and only if s :¼ b
c >

P
k

kPðkÞP
k

N
ð2Þ
k

k2PðkÞ
.

This inequality gives the epidemic threshold for the SVIS

model, which is independent of the immunization strength d.

A similar result was claimed in the previous work.23
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