Refractive indices and linear electro-optic properties of \((1-x)\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3 - x\text{PbTiO}_3\) single crystals

Xinming Wan

The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road Jiading, Shanghai 201800, People’s Republic of China and Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

Haosu Luo and Xiangyong Zhao

The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road Jiading, Shanghai 201800, People’s Republic of China

D. Y. Wang, H. L. W. Chan, and C. L. Choy

Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

(Received 28 July 2004; accepted 6 October 2004)

The refractive indices and linear electro-optic (EO) properties of \((1-x)\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3 - x\text{PbTiO}_3\) single crystals were investigated over a broad composition range. The orientation and temperature effect on the EO coefficients were also examined. Large EO coefficients were observed near the morphotropic phase boundary (MPB). More importantly, the single crystals on the tetragonal side of the MPB were nearly invariant in the experimental temperature range of 20–80°C. The calculated half-wave voltage \(V_w\) was much lower than that of widely used EO single crystal \(\text{LiNbO}_3\). These excellent EO properties as well as being able to produce large-size and high-quality single crystals make this kind of single crystal very promising for EO modulation applications. The observed EO properties were also analyzed with the spontaneous polarization and dielectric constants. © 2004 American Institute of Physics.

Optical materials with high electro-optic (EO) response are highly desirable for use in optical communications, optical signal processing, and other commercial applications. As high EO coefficients will allow for smaller size devices and lower operating voltages, a growing number of investigations have been focusing on different materials to achieve high optical responses. Most oxygen-octahedra ferroelectrics, which exhibit excellent electromechanical properties, also have outstanding optical properties. Relaxor ferroelectrics (\(1-x)\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3 - x\text{PbTiO}_3\) (PMN-xPT) have come into prominence due to their extra-high electromechanical coupling factor, piezoelectric, and dielectric coefficients, and field induced strain response. However, in spite of these extensive utilizations, the values of their optical properties are not perfectly known. The lack of high quality single crystal with large size restricts the further investigation and optical applications. Recently, we have grown large-size and high optical quality PMN-xPT single crystals by a modified Bridgman technique, and their performance has been characterized. The results show that the PMN-xPT single crystals have high optical transmittance and can be used as optical material in a wide range of wavelengths (0.45–5.5 μm). In this letter, a systematical study of the refractive indices and linear EO properties of PMN-xPT single crystals were carried out. Composition, temperature, and crystal orientation dependence of EO coefficients are also presented and discussed.

The ferroelectric PMN-xPT single crystals were grown by a modified Bridgman technique. The single crystal samples were oriented and cut as confirmed by x-ray diffractometer. Typical specimen dimensions were \(3 \times 3 \times 1 \text{ mm}^3\) and silver paste was painted on the sample surfaces (\(3 \times 1 \text{ mm}^2\)). Then, the samples were poled along the spontaneous polarization direction under an electric field of 1 kV/mm for 15 min near \(T_m\) in silicone oil, and then slowly cooled to room temperature while maintaining half of the applied electric field. PMN-xPT crystals have a tetragonal-rhombohedral morphotropic phase boundary (MPB). The spontaneous polarization direction is \((111)\) for crystals on the rhombohedral side of the MPB \((x \leq 0.33)\), and \(\langle 001 \rangle\) for crystals on the tetragonal side \((x \geq 0.33)\), respectively. To study the crystal orientation effect, PMN-0.33PT was investigated in both directions. The poled samples were carefully polished to an optical grade, without affecting the crystal polarization.

The refractive index is one of the most important factors determining the use of a new-style material for optical applications; moreover, it is required for calculating EO coefficients. But few studies have been reported on the refractive indices of PMN-xPT single crystals except for PMN-0.38PT. The lack of experimental data are mainly due to the difficulties of applying traditional Brewster’s angle or the minimum deviation method to crystals with poor quality. Hence, the first step is to measure these indices. A prism coupler (Metricon Model 2010) which can measure refractive index and its anisotropy for bulk sample with high accuracy (the worst case index accuracy is ±0.001 and resolution is ±0.0001) was used in our measurement. Only TE-mode (electric field vibrating transverse to the plane of incidence) measurement can be used for PMN-xPT single
crystals because their refractive indices are out of the measurement range of TM-mode (magnetic field transverse to, and electric field parallel to the plane of incidence) but we still can obtain both the values of n_x and n_y by using different incidence plane, respectively, perpendicular to the optic axis for n_x, and parallel to the optic axis for n_y. The values measured at 633 nm are listed in Table I. We can see that as the PT content increases, the refractive indices n_x of PMN-xPT single crystals increases. The results correspond with the suggestion made by Bing et al. and have been observed in (1−x)Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_3$−xPbTiO$_3$ (PZN-xPT) single crystals.11 It may be due to the higher refractive index of pure PT as compared to that of pure PMN. By the way, the values of PMN-0.38PT single crystal obtained here (n_x=2.616 and n_y=2.600) are slightly lower than those of reported by the minimum deviation method (n_x=2.620 and n_y=2.601).9,16 It may be caused by the roughness of the surface and the segregation behavior existed in PMN-xPT single crystals.12

The EO effect describes the change in the refractive index (Δn_{ij}) due to an applied electric field (E_k). For poled ferroelectric crystals, we have13

$$\Delta n_{ij} = -\frac{1}{2}n_{ij}^3 r_{ijk} E_k,$$

where r_{ijk} is the linear EO coefficient. EO measurements were performed with an original and very sensitive method14,15 which is based on the Sénarmont compensating setup. Figure 1 shows the arrangement of the optical and the electronic components in the system. In this work, the polarization direction of the polarizer was set at $\pi/4$ with respect to the birefringence axis of the sample, and the electric field was applied along the optic axis of the sample. The effective

![FIG. 1. Schematic arrangement of the optical and the electronic components in the frequency-doubling electro-optic modulation (FDEOM) method. A photodiode (PD) connected to a high-gain photodiode amplifier (PDAM) and a band-pass filter (BPF) is set at the output of the optical setup.](image)

EO coefficient r_c was obtained, which was a combined coefficient expressed as9,16

$$r_c = r_{ijk} - (n_i/n_j)^3 r_{ijk}. $$

(2)

A summary of the effective EO coefficients measured at room temperature is presented in Table I. The results reveal several interesting features. First, large values of r_c are observed for the PMN-xPT single crystals in both the rhombohedral and tetragonal phases. They are all higher than that of widely used electro-optic single crystal LiNbO$_3$ (19.9 pm/V)16. These excellent EO properties, as well as being able to obtain high quality single crystals with large size, make the PMN-xPT single crystals a promising candidate for EO material. Second, large r_c is obtained for the compositions near the MPB, as shown in Fig. 2. This optical property may be attributed to the phase transition between the tetragonal and rhombohedral phases. The phase transition due to the electric field and stress is associated with large changes in the crystal lattice constants and the refractive index. Third, for the same composition near the MPB (e.g., PMN-0.33PT), the r_c value of the crystal poled in the (001) direction is much higher than that of the crystal poled in the (111) direction, as shown in Table I and Fig. 2. The result is similar with that of the PZN-xPT single crystals,13 and is caused by their spontaneous polarization and dielectric constants as discussed below.

The qualitative aging experiments were also performed on the EO coefficients and it was found that even the poled samples were used for various other measurements at room temperature, the EO coefficients were nearly the same when measurement after several months. Therefore, the optical coefficients reported here are the stable material properties of PMN-xPT single crystals.

The half-wave voltage V_p is an important figure of merit for EO modulator. It is often used for selecting bulk EO materials, and is defined by15

$$V_p = \lambda/(n_e^2 \cdot r_c). $$

(3)

V_p corresponds to the voltage needed to obtain a phase retardation of π from a bulk sample which is independent of its dimensions. In order to obtain a large efficiency for EO modulation applications, V_p should be as small as possible. As shown in Table I, PMN-xPT single crystals also have much lower V_p compared with LiNbO$_3$ single crystal (2800 V).17 Higher EO coefficients and lower V_p enable operation at lower voltages and smaller device dimensions.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Poling direction</th>
<th>n_x</th>
<th>n_y</th>
<th>r_c (pm/V)</th>
<th>V_p (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMN-0.26PT</td>
<td>(111)</td>
<td>2.584</td>
<td>2.595</td>
<td>91</td>
<td>411</td>
</tr>
<tr>
<td>PMN-0.30PT</td>
<td>(111)</td>
<td>2.590</td>
<td>2.598</td>
<td>107</td>
<td>347</td>
</tr>
<tr>
<td>PMN-0.33PT</td>
<td>(111)</td>
<td>2.598</td>
<td>2.602</td>
<td>109</td>
<td>337</td>
</tr>
<tr>
<td>PMN-0.33PT</td>
<td>(001)</td>
<td>2.599</td>
<td>2.562</td>
<td>182</td>
<td>202</td>
</tr>
<tr>
<td>PMN-0.35PT</td>
<td>(001)</td>
<td>2.602</td>
<td>2.588</td>
<td>81</td>
<td>452</td>
</tr>
<tr>
<td>PMN-0.38PT</td>
<td>(001)</td>
<td>2.616</td>
<td>2.600</td>
<td>41</td>
<td>878</td>
</tr>
<tr>
<td>PMN-0.42PT</td>
<td>(001)</td>
<td>2.622</td>
<td>2.603</td>
<td>21</td>
<td>1708</td>
</tr>
</tbody>
</table>

![TABLE I. Values of the refractive indices, EO coefficients, and the half-wave voltage V_p for PMN-xPT single crystals at room temperature.](image)

FIG. 2. Composition dependence of the EO coefficients of PMN-xPT single crystals at room temperature.

EO coefficient r_c is obtained, which was a combined coefficient expressed as9,16
Thus, PMN-xPT single crystals are of interest for the development of EO devices instead of LiNbO$_3$.

We now discuss the temperature dependence of these EO coefficients, which is also important for optical devices. A precise feedback controlled heater was used, and the temperature was monitored with an infrared radiation thermometer (Keyence IT 2–50) with ±0.2°C accuracy and ±0.1°C resolution. As shown in Fig. 3, the EO coefficients exhibit a weak increase for PMN-0.35PT single crystal with temperature increases from 20–80°C, and are nearly invariant for PMN-0.38PT. The negligible temperature dependent property is also very attractive for device applications and may be related with their dielectric constant and spontaneous polarization. For ferroelectric single crystals in tetragonal phase, the measured linear EO coefficients can be related to the polarization-related quadratic EO coefficients g_{11} and g_{12} as follows:\cite{1,2,18}

$$r_{33} = 2K_{33}e_0P_s g_{11} \quad \text{and} \quad r_{13} = 2K_{33}e_0P_s g_{12},$$

where P_s and K_{33} are the spontaneous polarization and dielectric constant, respectively, and $e_0 = 8.85$ pF/m is the vacuum permittivity. From Eqs. (2) and (4), we obtain

$$r_c = 2K_{33}e_0P_s \left[g_{11} - \left(\frac{n_e}{n_g} \right)^3 g_{12} \right].$$

As g coefficients are nearly invariant with temperature and frequency,\cite{1} the change of the linear EO coefficient r_c should be determined by the dielectric constant times the spontaneous polarization ($K_{33}P_s$). Indeed, the reported directly measured values of K_{33} and P_s for PMN-0.35PT and PMN-0.38PT single crystals with temperature confirm this effect.\cite{10,19} Moreover, the large values of r_c appear in the compositions near the MPB and the orientation effect also result from the values of $K_{33}P_s$.

In summary, large EO coefficients r_c were observed for PMN-xPT single crystals near the MPB. In addition, the coefficients are nearly invariant in the experimental temperature range for the tetragonal phase single crystals. The calculated half-wave voltage V_{50} is much lower than that of widely used EO single crystal LiNbO$_3$. These excellent EO properties make PMN-xPT single crystals very promising for EO modulation applications. Detailed analysis indicates that the observed EO properties including their composition and temperature dependence are related with their spontaneous polarization and dielectric constants.

This work is supported by Hong Kong Research Grants Council (PolyU 5193/00P), the Centre for Smart Materials of the Hong Kong Polytechnic University, the National Natural Science Foundation of China (Grant No. 50272075), and the High Technology and Development Project of the People’s Republic of China (Grant No. 2002AA325130).

\begin{thebibliography}{99}
\bibitem{3} R. F. Service, Science 275, 1878 (1997).
\bibitem{7} H. Luo, G. Xu, P. Wang, and Z. Yin, Ferroelectrics 231, 97 (1999).
\bibitem{17} J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Zapla, Appl. Phys. Lett. 64, 1920 (1994).
\end{thebibliography}