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Abstract—In this study, a novel standing wave-type non-
contact linear ultrasonic motor is proposed and analyzed.
This linear ultrasonic motor uses a properly controlled ul-
trasonic standing wave to levitate and drive a slider. A
prototype of the motor was constructed by using a wedge-
shaped aluminum stator, which was placed horizontally and
driven by a multilayer PZT vibrator. The levitation and mo-
tion of the slider were observed. Assuming that the driving
force was generated by the turbulent acoustic streaming in
the boundary air layer next to the bottom surface of the
slider, a theoretical model was developed. The calculated
characteristics of this motor were found to agree quite well
with the experimental results. Based on the experimental
and theoretical results, guidelines for increasing the dis-
placement and speed of the slider were obtained. It was
found that increasing the stator vibration displacement, or
decreasing the gradient of the stator vibration velocity and
the weight per unit area of the slider, led to an increase of
the slider displacement. It was also found that increasing
the amplitude and gradient of the stator vibration veloc-
ity, or decreasing the weight per unit area of the slider and
the driving frequency, gave rise to an increase of the slider
speed. There exists an optimum roughness of the bottom
surface of the slider at which the slider speed has a maxi-
mum.

I. Introduction

To broaden the range of applications of ultrasonic
motors, noncontact ultrasonic motors have been pro-

posed and studied [1]–[16]. Noncontact ultrasonic motors
are a class of ultrasonic motors for which there is no di-
rect contact between the stator and the rotor or slider.
In a noncontact ultrasonic motor, there is a fluid between
the stator and the rotor or slider. An ultrasonic vibra-
tion is excited in the stator, and this ultrasonic vibration
excites a sound field in the fluid between the stator and
the rotor. When the sound field in the fluid is controlled
properly, acoustic streaming and acoustic radiation force
can be induced, which drive a properly designed rotor or
slider into motion. Usually, air, water, a solution, or an
electro-rheologic fluid is used. When fast movement is re-
quired, air is used because it is more difficult to saturate
the sound field in air than that in other fluids [16]. The
rotor of a noncontact ultrasonic motor is supported by a
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bearing structure or levitated by the acoustic radiation
force.

Compared with electromagnetic motors, noncontact ul-
trasonic motors have the advantages that they have sim-
ple structures and the operation is free of electromagnetic
noise. Compared with contact-type ultrasonic motors, they
can have higher revolution speeds and can operate contin-
uously without wear. A noncontact ultrasonic motor with
the rotor levitated by an axial acoustic viscous force has
achieved a revolution speed of 4400 rpm [9], [11]. Also,
a travelling wave-type noncontact linear ultrasonic motor
can levitate and transport a planar object of 8.6 g at a
speed of 0.7 m/s [13]–[15]. Noncontact rotary ultrasonic
motors with high revolution speeds have potential appli-
cations in compact disk driving systems, choppers for sen-
sors, and IC cooling systems. In addition, noncontact lin-
ear ultrasonic motors can be used in transportation sys-
tems for silicon wafers, IC chips, and various kinds of busi-
ness cards.

In previous works, an ultrasonic travelling wave along
the stator has been used to drive the slider of noncontact
linear ultrasonic motors [13]–[15]. In this study, we propose
a noncontact linear ultrasonic motor that uses a standing
wave. A wedge-shaped stator is used for generating a gra-
dient of the stator vibration amplitude along the length
of the stator. A solid object with a planar bottom surface
such as a MEMS device, a glass substrate, an IC chip, or a
metal plate can be levitated and transported by this mo-
tor. A theoretical model has been developed for analyzing
the operation of this motor. For unidirectional transporta-
tion, this motor has a simpler structure and is of lower cost
than the traveling wave-type because only one vibrator is
needed to drive the stator.

II. Construction

The construction of the motor is shown in Fig. 1 and 2.
The rectangular plate-shaped stator, made of aluminum,
consists of two parts: a vibration excitation part and an
operation part. The vibration excitation part has uniform
thickness along the length direction, and the operation
part is wedged along the length direction. A multilayer
PZT vibrator is bolted between the vibration excitation
part and a metal support plate such that a flexural vibra-
tion is induced in the stator. The slider is an object with a
planar bottom surface such as a piece of glass, metal, or sil-
icon. The length of the wedge-shaped part is 283 mm, the
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Fig. 1. Construction of a standing wave-type noncontact linear ul-
trasonic motor.

Fig. 2. Photograph of the standing wave-type noncontact linear ul-
trasonic motor.

Fig. 3. Levitation of a glass slider.

thickness of the vibration excitation part is 3 mm, and the
height and outer diameter of the multilayer PZT vibrator
are 14 and 12.7 mm, respectively. The driving frequency
of the motor is 88.8 kHz. The upper surface of the stator
is accurately adjusted to lie horizontally.

When an AC voltage whose frequency equals the reso-
nance frequency of the stator flexural vibration is applied
to the PZT vibrator, the slider on the horizontal stator
is levitated in the vertical direction and driven to move
in the horizontal direction. The moving direction of the
slider is from the tip of the stator to the vibration excita-
tion part of the stator. To obtain sufficiently high driving
force, it was experimentally found that the length of the
slider should be larger than one wavelength of the stator
vibration. The levitation of a glass slider of weight 1.5 mN
and dimensions 20×20×0.15 mm was observed by a video
camera, and the levitation of the slider at the tip of the
stator is shown in Fig. 3. The whole surface of the glass
plate was covered with a gold film, and a beam of light
shone on the glass. When the glass was levitated, a shadow
was observed, as shown in Fig. 3. Using a laser Doppler
vibrometer, the stator vibration velocity was measured as
a function of distance x from the tip of the stator, and
the result for the range 80 mm < x < 0 mm is shown
in Fig. 4. It is seen that the amplitude of the vibration
velocity decreases with increasing x.

III. Principle of Operation

The principle of this motor can be explained by refer-
ring to Fig. 5(a and b). It is assumed that the length of the
slider is larger than one wavelength of the stator vibration.
When the stator is set into flexural vibration, a sound field
is created between the stator and the slider. If the sound
field is strong enough, the slider on the stator can be lev-
itated vertically by the near field acoustic radiation force.
Meanwhile, a turbulent acoustic streaming of air paral-
lel to the bottom surface of the slider is generated in the
boundary layer next to the bottom surface of the slider by
the gradient of the stator vibration amplitude. This turbu-
lent acoustic streaming generates an unidirectional shear-
ing force acting on the slider surface because of the eddy
viscosity of air, and this force drives the levitated slider
to move in the horizontal direction. In addition, because
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Fig. 4. Variation of the stator vibration velocity with position.

Fig. 5. Principle of the motor. a) Sound field and acoustic streaming
between the stator and the slider; b) sound field distribution and
normal Reynolds’ stress.

of the gradient of the stator vibration amplitude, the lev-
itation distance between the slider and the stator changes
with position. The levitation distance decreases with de-
creasing stator vibration amplitude. When the levitation
distance becomes very small, the slider stops because of
the friction between the slider and the stator.

The occurrence of the acoustic streaming is explained as
follows. Because the stator vibration velocity Vsy has a gra-
dient in the length direction, the sound field between the
stator and the slider has a horizontal component Vfx(x, y)
in addition to a vertical component Vfy(x, y). Thus, a fluid
element between the stator and the slider experiences a
Reynolds’ normal stress ρV 2

fx as shown in Fig. 5(b), where
the bar denotes averaging over time [17], [18]. Reynolds’
shear stress is not given in Fig. 5(b) because a further
analysis shows that it hardly contributes to the acous-
tic streaming. Because of Reynolds’ normal stress, the air
layer in the range [O, P1] tends to flow in the +X direc-
tion, and the air layer in the range [P1, P2] tends to flow
in the −X direction. Because the amplitude of the stator
vibration decreases in the +X direction, the amplitude of
air vibration velocity Vfx also decreases in the +X direc-
tion. So, the air flow trend in the range [O, P1] is stronger
than that in the range [P1, P2], and the net air flow in the
range [O, P2] (half wavelength) is in the +X direction. For
the same reason, the air in the range [P2, P3] of another
half wavelength also flows in the +X direction. Therefore,
there is a unidirectional acoustic streaming on the bottom
surface of the slider. Furthermore, the acoustic streaming
can be regarded as a turbulent flow approximately because
of the vibration and flow of air in the +Y direction.

IV. Theoretical Model

A theoretical model for this motor was developed on
the basis of the preceding explanation and the experimen-
tal results. The model consists of three parts involving
analysis of A) the sound field between the stator and the
slider, B) the driving force acting on the slider, and C) the
characteristics of the motor.

A. Sound Field Between the Stator and the Slider

For the convenience of analysis, it is assumed that the
stator vibration velocity in the +Y direction Vsy is given by

Vsy = Vsym(x) cos kxx cosωt (1)

where ω is the angular frequency of the stator vibration,
kx is the average wave number in the operation part,
and Vsym(x) is the amplitude of the stator vibration ve-
locity. For the prototype motor, kx is 1624.2 rad/m, so
the wavelength (=2π/kx) is 3.87 mm. The peak values of
the stator vibration velocity were measured in the range
0 < x < 300 mm, and their asymptote is shown in Fig. 6.
From this figure, it is known that Vsym(x) can be ex-
pressed as

Vsym(x) = V0e
−ax (2)
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Fig. 6. Normalized asymptote of the amplitude of the stator vibration
velocity.

where V0 is the amplitude of the stator vibration velocity
at x = 0, and a is the spatial attenuation factor of the
stator vibration, which is calculated as 12 m−1 for the
prototype motor.

In the analysis of the sound field between the stator and
the slider, only the sound field that is outside the boundary
layers on the surfaces of stator and slider is analyzed. The
slider that has a length of L is located in the range [x, x+
L]. The average levitation distance in this range is assumed
to be roughly constant and has an average value ha, which
is a function of x. Also, it is assumed that the sound field is
linear and has no vibration component in the Z direction.

The sound field is governed by the following wave equa-
tion and boundary conditions:

∂2ϕ

∂2t
= c2∇2ϕ (3)

Vf = Vfxi + Vfyj = −∇ϕ (4)
Vfy|y=0 = Vsy Vfy|y=ha = 0 (5)

where c is the velocity of sound in air, ϕ is the potential
of the vibration velocity, Vf is the vibration velocity of
the fluid between the stator and the slider, and Vfx and
Vfy are the components of Vf in the X and Y directions,
respectively. Eq. (3) can be derived from the mass conser-
vation equation, Euler’s equation, and the pressure-density
relationship [17], [22]. From (4), we have

Vfx = − ∂ϕ

∂x
(6)

Vfy = − ∂ϕ

∂y
. (7)

Substituting (1) and (7) into (5), the boundary conditions
are transformed into

∂ϕ

∂y
|y=0 = −Vsym(x) cos kxx cosωt (8)

∂ϕ

∂y
|y=ha = 0. (9)

From (3), (8), and (9), we have

ϕ = − Vsym(x)
β

(sinβy + ctgβha cosβy) cos kxx cosωt
(10)

where

β2 = (ω/c)2 − k2
x. (11)

Substituting (10) into (6) and (7), the vibration velocities
of air are given by

Vfx =Vfxm cosωt (12)

Vfxm =
1
β

(sinβy + ctgβha cosβy)[
dVsym(x)

dx
cos kxx − kxVsym(x) sinkxx

]
(13)

Vfy = (cosβy − ctgβha sinβy)Vsym(x) cos kxx cosωt.
(14)

B. Driving Force Acting on the Slider

From (1), the amplitude of the stator vibration displace-
ment is

A(x) = Vsym(x) cos(kxx)/ω =
V0

ω
e−ax cos(kxx).

(15)

For a slider of length L, width W , and weight mg located
in the region [x, x + L], the following relation holds [19]:

W

∫ x+L

x

1
4

(1 + γ)ρc2
A2(X)

h2
a

dX = mg (16)

where ρ and γ are the density and the specific heat ratio
of air, respectively. Because ha is a constant for a given x,
we have

ha =
c

2

√
(1 + γ)ρW

mg

∫ x+L

x

A2(X)dX. (17)

Substituting (2) and (15) into (17), we obtain the approx-
imate expression:

ha =
BV0e

−ax

ω
√

mg/(LW )
(18)

where

B =
1
4

√
2(1 + γ)ρc2

√
1 − aL + 2a2L2/3√

1 + a2/(a2 + k2
x). (19)

Further, by means of the theory of acoustic streaming in
the boundary layer [16], [20], [21], the driving stress acting
on the slider surface in the horizontal direction is

τx = −0.25 ρδ
µe

µ

(
∂Vfxm

∂x
Vfxm

)
y=ha

(20)
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where

δ =
(

2µ
ωρ

)0.5

(21)

is the thickness of the acoustic boundary layer on the bot-
tom surface of the slider, and µe and µ are the eddy and
shearing viscous coefficient of air, respectively. From (2),
(13), and (20), the driving force acting on the slider located
in the region [x, x + L] is approximately

F (x) = 0.125 ρδ
µe

µ

a2(1 − e−2aL)W
β2 sin2 βha

V 2
0 e−2ax.

(22)

A previous experimental study [16] indicates that the
ratio µe/µ depends on the roughness of the bottom sur-
face of the slider Rz (ten-point average roughness) and
the turbulence of the acoustic streaming in the boundary
layer on the bottom surface of the slider. The turbulence is
caused mainly by the air motion in the vertical direction.
The stronger this air motion, the stronger the turbulence.
Moreover, this air motion becomes weaker as the distance
between the stator and the slider decreases. Based on these
results, we assume that

µe

µ
= Ce

(
ha

δ

)ξ

(23)

where Ce is a constant. The experimental results in this
study indicate that ξ = 3; so this value will be used in the
derivation of the average slider speed u in the following
section.

C. Characteristics of the Motor

The displacement of the slider from the tip of the stator
to the stopping place can be obtained from [17]:

l =
1
a

ln
V0B

ωhcr

√
mg/(WL)

(24)

where hcr is the critical levitation distance at which the
slider stops. The slider speed u(x) at the position [x, x+L]
can be approximately found by equating the driving force
with the drag force:

F (x) = WL
ρ

2
Cdu

2(x) (25)

where Cd is the drag coefficient. By using (18), (22), (23),
(25) and the relationship kx >> a and βha << 1, the
average slider speed u in the range 0 < x < l is given by

u =
1
l

∫ l

0
u(x)dx

=Cava
1.5β−2B0.5δ−1ω−0.5

(Ce/Cd)0.5
V 1.5

0 (mg/WL)−0.25 (26)

where

Cav =
1 − e−1.5al

1.5
√

2al
. (27)

Fig. 7. Approximate measurement of the driving force.

V. Measurements

A laser Doppler vibrometer (Polytech OFV3001) was
used to measure the stator vibration velocity. The upper
surface of the stator was accurately adjusted to lie in a
horizontal plane, and the displacement of the slider was
measured. The average slider speed was calculated by di-
viding the slider displacement (l) from the tip of the stator
to its stopping place by the time taken to make this dis-
placement. The driving force on the slider was measured
approximately by the way shown in Fig. 7. The stator was
fixed at a small tilting angle θ with the horizontal plane.
The slider was placed on the stator. When the slider was
levitated, the angle θ was adjusted until the driving force F
and the gravity component mg sin θ balanced each other.
The driving force F was then calculated from

F = mg sin θ. (28)

Theoretically, it can be proved that the driving force ob-
tained this way is approximately equal to the real one if θ is
very small. Glass and brass sliders were used in our exper-
iments. In addition, abrasive powder with various particle
sizes was used for producing different roughness on the
bottom surface of the slider.

VI. Results and Discussion

In this section, unless otherwise specified, the experi-
ment and/or calculation were carried out under the fol-
lowing conditions. 1) The driving frequency f is 88.8 kHz.
2) The wave number of the stator vibration kx is
1624.2 rad/m. 3) The spatial attenuation factor of the
stator vibration a is 12 m−1. 4) The glass slider is a rect-
angular plate, which has dimensions 20 × 20 × 0.15 mm,
surface roughness (Rz) of 0.2 µm, and weight per unit area
of 0.37 mN/cm2. 5) The brass slider is a circular washer,
which has an outer diameter of 11.4 mm, inner diame-
ter of 3.6 mm, thickness of 1.0 mm, surface roughness of
5 µm, and weight per unit area of 7.4 mN/cm2. 6) Ce was
found by comparing the measured driving force with (22).
Ce = 3.1×10−3 and 9.1×10−3 for the glass and brass slid-
ers, respectively. 7) hcr was found by comparing the mea-
sured slider displacement with (24). hcr = 17 and 6 µm for
the glass and brass sliders, respectively. 8) Assuming that
Cd is the same for the glass and brass sliders, Cd = 2.9, as
found by comparing the measured slider speed with (26).
Also, the properties of air used in the calculation are shown
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TABLE I
Properties of Air Used

in the Calculation.

Density ρ (kg/m3) 1.2
Sound velocity c (m/s) 343
Specific heat ratio γ 1.4
Viscosity µ (kg/m/s) 1.81 × 10−5

Fig. 8. Dependence of the displacement and average speed of the
glass slider on the stator vibration velocity.

in Table I. In the following figures, the slider displacement
l means the displacement of the slider from the tip of the
stator to the stopping place, the slider speed u means the
average speed within the range 0 < x < l, and the vibra-
tion velocity V0 means the peak vibration velocity at the
tip of the stator.

The dependencies of the slider displacement l and the
average slider speed u on the stator vibration velocity V0
are shown for the glass and brass sliders in Fig. 8 and 9, re-
spectively. It is observed that both l and u increase with in-
creasing V0. The displacement and speed of the sliders were
also calculated using (24) and (26), respectively, and Fig.
8 and 9 show that there is good agreement between the
theoretical and experimental results.

For the brass slider, the observed relationship between
the input electrical power and the stator vibration velocity
V0 is shown in Fig. 10. By comparing the data in Fig. 9
and 10, it is observed that the brass slider can be trans-
ported 17 cm at an average speed of 10 cm/s by using an
input power of 2.5 W.

Fig. 11 shows a comparison between the calculated driv-
ing force acting on the glass slider and the experimental
data. At V0 < 1 m/s, there is good agreement between the
theoretical and experimental results. The driving force in-
creases with the stator vibration velocity. This is because
the acoustic streaming between the stator and the slider

Fig. 9. Dependence of the displacement and average speed of the
brass slider on the stator vibration velocity.

Fig. 10. Input electrical power versus stator vibration velocity for the
brass slider. The points are experimental data.

increases with the stator vibration velocity. It is also found
that the driving force is much less than the measured fric-
tional force of 0.5 mN, indicating that the slider is levi-
tated.

The dependence of the slider displacement on the weight
per unit area of the brass slider was investigated exper-
imentally and theoretically at a constant stator vibra-
tion velocity (V0 = 1.4 m/s), and the results are shown
in Fig. 12. It is observed that the decrease of the slider
displacement with increasing weight per unit area of the
slider is well reproduced by the theoretical calculation. As
the weight per unit area of slider increases, the levita-
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Fig. 11. Driving force versus stator vibration velocity for the glass
slider.

Fig. 12. Slider displacement versus weight per unit area of the brass
slider.

tion distance decreases [see (18)], so the levitation distance
reaches the critical value hcr at a position closer to the tip
of the stator.

The dependence of the average slider speed on the
weight per unit area of the brass slider was investi-
gated experimentally at a constant stator velocity of
1.4 m/s (Fig. 13). The average slider speed decreases with
increasing weight per unit area of the slider. As discussed
previously, an increase in weight per unit area of the slider
leads to a decrease of the levitation distance, and this
weakens the perpendicular turbulent flow in the Y direc-
tion, thus greatly reducing the eddy viscosity µe. As a

Fig. 13. Average slider speed versus weight per area of the brass
slider. The points are experimental data.

Fig. 14. Effect of the roughness of the bottom surface of the brass
slider on the average slider speed. The points are experimental data.

result, the driving force decreases despite the increase in
the energy density of the sound field between the slider
and the stator.

The effect of the roughness of the bottom surface of the
brass slider on the average slider speed was investigated
experimentally, and the results are shown in Fig. 14. It is
seen that the roughness of the bottom surface of the slider
has an effect on the average slider speed, and there ex-
ists an optimum roughness between 1 µm < Rz < 5 µm
at which the slider speed has a maximum. This can be ex-
plained as follows. When the bottom surface of the slider is
too rough, the acoustic streaming near the bottom surface
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Fig. 15. Average levitation distance versus position for the glass slider
at two stator vibration velocities.

of the slider becomes weak because of the flow resistance.
On the other hand, when the bottom surface of the slider
is too smooth, the driving force becomes small because of
the decrease of fluid impact in the horizontal direction.

The dependence of the average levitation distance ha

on position was calculated for the glass slider at two dif-
ferent V0 (Fig. 15). The average levitation distance is pro-
portional to the stator vibration amplitude and decreases
with increasing x [(15), (18)].

The dependencies of the slider displacement and the
average slider speed on the spatial attenuation factor of
the stator vibration a was calculated for the glass slider
at V0 = 1.45 m/s (Fig. 16). The results show that when a
increases (i.e., when the gradient of the stator vibration
amplitude increases), the slider displacement decreases,
and the average slider speed increases. The decrease of
the slider displacement is due to the decrease of stator vi-
bration amplitude, and the increase of the average slider
speed is due to the increase of the acoustic streaming on
the bottom surface of the slider.

Assuming that the stator vibration amplitude at x = 0
is 2 µm, the average slider speed of the brass slider was
calculated as a function of driving frequency (Fig. 17).
It is observed that the average slider speed decreases as
the driving frequency increases. At driving frequencies less
than 10 kHz, the slider speed increases very rapidly with
decreasing driving frequency. In practice, the driving fre-
quency may be decreased by increasing the thickness of
the vibration excitation part of the stator.

In addition, from (18) and (24), it can be shown that the
slider displacement is independent of the driving frequency
when the average wave number kx is much larger than the
spatial attenuation factor a.

Fig. 16. Dependence of the displacement and average speed of the
glass slider on the spatial attenuation factor of the stator vibration.

Fig. 17. Average speed of the brass slider versus driving frequency.

VII. Summary

In this paper, a standing wave-type noncontact linear
ultrasonic motor is proposed. It uses a wedge-shaped sta-
tor to archive a gradient of the stator vibration amplitude
to drive a slider. The upper surface of the stator is accu-
rately adjusted to lie horizontally. At an input power of
2.5 W, a slider with a planar bottom surface and a weight
per unit area of 7.4 mN/cm2 can be transported 17 cm at
an average speed of 10 cm/s. Furthermore, on the basis
of the theories of near boundary acoustic streaming and
turbulent flow, a theoretical model has been developed for
the analysis of the characteristics of the motor. The model
gives results that compare well with experimental data.
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It is found that increasing the amplitude of the stator vi-
bration displacement, decreasing the gradient of the stator
vibration velocity, and decreasing the weight per unit area
of the slider all increase the slider displacement. It is also
found that increasing the amplitude and gradient of the
stator vibration velocity, decreasing the weight per unit
area of the slider, and decreasing the driving frequency all
increase the slider speed. There is an optimum roughness
of the bottom surface of the slider at which the slider speed
has a maximum.
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