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Curie-Weiss law in thin-film ferroelectrics
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The stationary self-polarization field of a thin film in an open circuit is analytically solved for
temperatures near the para-/ferroelectric transformation within the Ginzburg-Landau theory. For
second-order ferroelectrics, or first-order ferroelectrics with a sufficiently large elastic self-energy of
the transformation strain, the solution is real and stable, from which the corresponding electric
susceptibility of the film can be derived. A Curie-Weiss-type relation of the permittivity is obtained
for both the supercritical and subcritical temperature regimes near the transition. In the paraelectric
state, the Curie parameter of the thin film is found to be independent of its thickness, whereas in the
ferroelectric state, its magnitude decreases rapidly with decreasing film thickness. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2336979�
I. INTRODUCTION

The large surface to bulk ratio causes ferroelectric thin
films to exhibit phase-transition characteristics that are gen-
erally different from their bulk counterparts. Indeed, in ex-
treme cases, such as in PbTiO3, BaTiO3, and lead zirconic
titanate �PZT� thin films, the ferroelectric transition can even
be totally suppressed, when the film thickness is below cer-
tain critical values. This dependence of the phase-transition
characteristics on the sample size has been investigated using
both first-principles calculations1,2 and thermodynamic
models.3–5 Experiments have also confirmed that the Curie
temperatures of epitaxial films of PbTiO3 grown on SrTiO3

�001� substrate decrease rapidly with the film thickness be-
low 50 nm, as predicted theoretically.5,6

Due to the ever-increasing size and complexity of elec-
tronic circuitry that has to be packed into the limited space of
modern integrated circuit �ICs�, the influence of sample size
on material properties is a subject of general interest to both
scientific and technological investigations.10–12 For the gen-
eral phase-transition problem of finite size systems, some
scaling laws have been established,7–9 and it is not unusual
that controlling parameters for phase transitions such as the
Curie temperature may differ substantially from those in the
bulk materials. In addition, important physical properties
may also become sensitive to sample dimensions through the
stability of the prevailing phase.

In a previous paper,5 we studied the relationship between
the film thickness and the Curie temperature of the para-/
ferroelectric transition in a thin film on a rigid substrate. By
considering the dynamic stability of the stationary solution
of the Ginsberg-Landau equation, simple expressions of the
Curie temperature as a function of film thickness were de-
rived without having to go through the complexities of an
explicit solution. The order of the transition and the differ-
ence between the heat-up and cool-down transition tempera-
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tures, on the other hand, were found to be independent of the
film thickness, but might depend on the constraint of the
substrate. This conclusion was further investigated in another
work,13 in which the Ginzburg-Landau equation for a thin
film on a substrate with varying compliance was solved in
the neighborhood of the transition temperature. Although the
conclusion of Ref. 5 was confirmed, yet for the case of a
compliant substrate, Ref. 13 found that the order of transition
of a thin film of first-order ferroelectric material did not re-
main constant, but may indeed change according to the film
thickness relative to that of the substrate.

In the present paper, we are interested in the effect of the
film thickness on the Curie-Weiss law of electric susceptibil-
ity. In this calculation, the explicit solution of the Ginzburg-
Landau equation is required, which we obtained via a pertur-
bation series expansion method.13 In Sec. II, the evolution of
the ferroelectric thin films is formulated following Wang and
Woo5 within the dynamic Ginzburg-Landau theory using the
corresponding free energies, in which the local self-
polarization near a free surface is subsumed in the boundary
conditions through the “extrapolation length” parameter. The
constraint of a rigid substrate is assumed, and we consider
electric boundary conditions under which the film is between
electrodes from which it is insulated. In Sec. III, the station-
ary solutions of the Ginzburg-Landau equation are obtained
in the neighborhood of the transition temperature, by means
of a perturbation series expansion method. The solutions are
then used in our investigation in Sec. IV. The paper is sum-
marized and concluded in Sec. V.

II. FORMULATION

We consider a ferroelectric thin film of dimensions �
���h �i.e., h=film thickness� on a rigid substrate, i.e., one
with a thickness much larger than h. The origin of the coor-
dinate system is at the center of the cell. We base our formu-
lation on the classical description of electrical susceptibility

of a collection of polar molecules, the local polarization Ptotal
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at any point consists of a permanent molecular component P
and an induced component PE. P arises from the permanent
electric moment due to the polar nature of the molecular
structure/configuration of the material, e.g., its crystallogra-
phy, in its prevailing para-/ferroelectric phase. P is thus a
function of the temperature, the electric field and the me-
chanical stresses in the sample through its Curie temperature.
We call P the self-polarization, instead of “spontaneous po-
larization” like what we used to Ref. 5, to distinguish it from
the more commonly used meaning of the total �i.e., ob-
served� polarization in the absence of an external field. We
note that Ptotal and P are equal only when the depolarization
field vanishes, such as in the bulk material between short-
circuited electrodes.

The induced component PE is the polarizations �ionic
+electronic� induced by the total electric field E in the ma-
terial according to PE=�dE, where �d is the temperature-
independent component of the susceptibility corresponding
to the field-induced part of the polarization. We may identify
E, which has its origin from the combined effects of P and
Ex, as the sum of the external field Ex and the depolarization
field Ed. In this regard, the displacement field in the ferro-
electric can be written either in terms of Ptotal or P:

D = �0E + Ptotal = �0E + P + �dE = �dE + P ,

where �0 is the background permittivity, and �d is that part of
the permittivity of the ferroelectric corresponding to �d.

For simplicity the nonzero component of the self-
polarization P of the ferroelectric thin film is assumed to be
orthogonal to the surface of the film. The eigenstrain �xx

T

=�yy
T =QP2 due to the para-/ferroelectric transition is con-

strained by the rigid substrate, causing an elastic self-energy
Fe=GQ2���VP4d�, where G= �C11+C12−2C12

2 /C11�, C11

and C12 being components of the elastic modulus, and V the
volume, of the film. We neglect the effects of the epitaxial
stresses to simplify the discussion in the present work. It is
clear from Ref. 5 that its inclusion only has the equivalent
effect of shifting the bulk transition temperature. Following
Ref. 5, with the help of the Ginzburg-Landau functional, the
dynamic equation of the self-polarization in the thin film can
be written as

M
�P

�t
= −

�F

�P
= − A�T − TC0�P − �B + 4GQ2�P3 − CP5

+ Ed + D
d2P

dz2 , �1�

with the boundary conditions,

dP

dz
= �

P

�
, z = ±

h

2
, �2�

where M is the kinetic coefficient related to the domain wall
mobility; A, B, C, and D, are expansion coefficients of the
Ginzburg-Landau functional of the homogeneous self-
polarization in the bulk ferroelectric; TC0 is the correspond-
ing Curie temperature; Ed is the depolarizing field, and � is
the extrapolation length that describes the near-surface relax-
ation effect of the local self-polarization.14,15 The meaning of

the other symbols are as given in Ref. 5.
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The electric and polarization fields in the ferroelectric
are related through conditions on the boundaries via the laws
of electrostatics. In this paper, a ferroelectric thin film in an
open circuit is considered, i.e., the film is insulated from the
electrodes. In this case, the depolarization field Ed has been
derived5

Ed = −
P

�d
. �3�

Note that the Ed here is different from and generally much
larger than that in Ref. 15.

Most of bulk ferroelectrics exhibit a first-order phase
transition. In such cases, the parameter B is negative, and the
parameter C is positive. For bulk materials in which the
ferroelectric transition is second order, the parameter B is
positive and the higher order terms can be neglected.

III. STEADY-STATE SOLUTION NEAR THE
BIFURCATION POINT

The condition of dynamic stability of the paraelectric
state of the evolution equation Eq. �1� has been established,5

from which the critical temperature Tc at which the state
becomes unstable can be obtained as a function of the film
thickness h:

Tc = TC0 −
1

A�d
−

D

A
kz min

2 , �4�

where kz min is the minimum solution of the following tran-
scendental equation:

cot� kzh

2
� = ks� . �5�

As explained in Ref. 5, Tc is the para-/ferroelectric tran-
sition temperature for the thin film. Putting �P /�t=0 in Eq.
�1�, the corresponding stationary equation of the order pa-
rameter P can be written as

LcP � − A�Tc − TC0�P −
1

�d
P + D

d2P

dz2 , �6�

where Lc is the parabolic operator evaluated at the bifurca-
tion point T=Tc, in the neighborhood of which the solution P
is small, if assumed continuous. Following Nicholis and
Prigogine,16 both P and ��T−Tc can be expanded in a
power series in terms of a small perturbation � from the
critical point:

P = �P1 + �2P2 + ¯ ,

� = T − Tc = ��1 + �2�2 + ¯ . �7�

This expansion is more flexible than the seemingly more
natural one in which P is expanded in a power series of �T
−Tc�.

16 More importantly, it allows fractional power depen-
dence of P on �T−Tc�. By substituting the expansion �7� into
Eq. �6�, and equating coefficients of equal powers of �, a set

of relations of the following form can be obtained:
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LcPk = ak, k = 1,2, ¯ , �8�

which have to be satisfied together with the boundary and the
initial conditions:

dPk

dz
= �

Pk

�
, z = ±

h

2
. �9�

The first several coefficients ak are

a1 = 0,

a2 = A�1P1, �10�

a3 = A�1P2 + A�2P1 + �B + 4GQ2�P1
3.

It is easy to check that under the boundary condition �9�, the
operator Lc is self-adjoint, and

�LcP
*,Pk� = 	

−h/2

h/2

PkLcP
*dz

= �P*,LcPk�

= �P*,ak�

= 	
−h/2

h/2

P*akdz = 0, �11�

where P* is the solution of the following homogeneous equa-
tion:

LcP
* = 0,

dP*

dz
= �

P*

�
, z = ±

h

2
, �12�

Eq. �11� can be used to determine the coefficients �i. Then
from the second relation of Eq. �7�, one can determine � as a
function of �T−Tc�. Substituting the resulting � into the first
relation of Eq. �7� and solving the inhomogeneous equations
�9� results in an explicit expression for the solution P.

Let us consider the �	0 case, which is satisfied by most
ferroelectrics. Equation �4� dictates that the transition tem-
perature of the thin film is lower than that of the bulk mate-
rial. The solution of Eq. �12� can be written as

P* = M cos�
z� + N sin�
z� , �13�

where


 = 
A�TC0 − Tc�/D − 1/�dD . �14�

Suppose the P is distributed symmetrically along the thick-
ness direction, i.e., dP* /dz=0 at z=0, then N=0, and the
solution �13� becomes

P* = M cos�
z� . �15�

Similarly, the solution of the first equation in Eq. �8� can be
obtained in the same form as P*. Thus,

P1 = M cos�
z� . �16�

By using the orthogonal condition in Eq. �11�, �1 and �2 can
be determined,

�1 = 0 since 	h/2

P1P*dz = 	h/2

P1
2dz � 0. �17�
−h/2 −h/2
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�2 = −
B + 4GQ2

A

	
−h/2

h/2

P1
4dz

	
−h/2

h/2

P1
2dz

. �18�

If the corresponding bulk ferroelectrics transition is of
second order, i.e., B	0, B+4GQ2 is also positive, and sub-
stitution of Eq. �18� into �7� gives

� = ± �Tc − T

− �2
�1/2

for T � Tc, �19�

i.e., the solution is defined in the supercritical �ferroelectric�
regime. According to Theorem 3.1 for the bifurcation of a
simple eigenvalue,17 the bifurcating solutions are both as-
ymptotically stable in the supercritical regime. The phase
diagram for this case is shown in Fig. 1�a�. Thus, if the bulk
ferroelectrics exhibits second-order phase transition, their
thin-film counterparts will also exhibit the same order of
phase transition, and the universal critical exponents remain
unchanged.

On the other hand, if the corresponding transition in the
bulk material is first order, i.e., B�0, then depending on the
magnitude of the elastic self-energy of the transformation
volume 4GQ2, which is positive definite and has a magnitude
of the same order as B, B+4GQ2 can be either positive or
negative. When 4GQ2 is sufficiently large, B+4GQ2 is posi-
tive definite, as in BaTiO3 and PbTiO3, then a first-order
bulk ferroelectrics becomes second-order one in a rigidly
constrained thin film. This is consistent with the results of
Pertsev et al.18 For the two classical perovskite ferroelectrics,
BaTiO3 and PbTiO3, these authors also found that the two-
dimensional clamping of the film could result in a change of
transition order. Nevertheless, the results of Ref. 18 should
be interpreted noting the assumption that the gradient terms
in the free energy were negligible.

If the transformation volume satisfies B+4GQ2=0, the
solution will include higher order terms of expansions, and
thus the critical exponents will differ from their bulk coun-
terpart. If B+4GQ2 is negative, substitution of Eq. �18� into
Eq. �7� gives

� � ± �T − Tc

�2
�1/2

for T 	 Tc, �20�

i.e., the solution is defined only in the subcritical �paraelec-
tric� regime, and both branches are unstable. Physically,
there is a maximum value of Tmax above which only one
solution is admissible. Therefore, the subcritical branches

FIG. 1. Schematic of bifurcation diagram for ferroelectric thin film.
have to turn, at some value Tmax, in the direction of decreas-
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ing temperature �Fig. 1�b��. Thus, the solution of P near the
critical point can be obtained in the form as

P = P1�

= �±M cos�
z��Tc − T

− �2
�1/2

, B + 4GQ2 	 0 and T � Tc

±M cos�
z��T − Tc

�2
�1/2

, B + 4GQ2 � 0 and T 	 Tc.
�21�

It is clear from Eq. �21� that for rigidly constrained thin-film
ferroelectrics the order of transitions is independent of its
thickness, but depends on the elastic self-energy of the trans-
formation strain under the constraint of the substrate. Fur-
thermore, we note that the second solution in Eq. �21� is
unstable, and the actual transition is discontinuous. The be-
havior of the self-polarization P in the foregoing discussions
agrees completely with that derived earlier using linear sta-
bility analysis.5 Of course, the solution of P in Eq. �21� can-
not be obtained in Ref. 5.

IV. DIELECTRIC SUSCEPTIBILITY OF
FERROELECTRIC FILMS NEAR THE CRITICAL POINT

The susceptibility �total of a ferroelectric material mea-
sures the response of the total �i.e., observable� polarization
in an external field, and is defined by

�total = � �Ptotal

�Eext
�

Eext→0
. �22�

For the present boundary conditions, it can be shown from
the laws of electrostatics,

�total =
1

d
�� �P

�Eext
�

Eext→0
+ �d� �

1

d
��s + �d� , �23�

where d is the dielectric constant �=�d /�0�.
It is sufficient to calculate �s, which is much larger than

�d near the transition temperature. �s can be calculated via
the total free energy as usual,

�s
−1 =

�2f

�P2

= A�T − TC0� +
1

�d
+ 3�B + 4GQ2�P2 + 5CP4 + D
2

= A�T − Tc� + 3�B + 4GQ2�P2 + 5CP4. �24�

In deriving Eq. �24�, we have used Eqs. �4� and �13b� and the
following relations:

�2

�P2� �P

�z
�2

=
�

�P
� �z

�P

�

�z
� �P

�z
�2�

= 2
�

�P
� �2P

�z2 � = 2
�z

�P

�3P

�z3 �25�

For positive B+4GQ2, substitution of the first equation
of �21�, and 
 in Eq. �13b�, into Eq. �24� yields the inverse

susceptibility near Tc,
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�s
−1 = ��A + 3�B + 4GQ2�M2 cos2�
z�/�2��T − Tc�

for T � Tc,

A�T − Tc� for T 	 Tc.
 �26�

The average value of �s cannot be integrated analytically,
such as the average value of the reciprocal. Thus,

��s
−1� =

1

h
	

−h/2

h/2

�s
−1dz

= A�1 −
3��Tc − T�

h

�	
−h/2

h/2

cos2�
z�dz�2

	
−h/2

h/2

cos4�
z�dz �T − Tc�

= A�1 − 3��Tc − T�

�
4 sin2�
h� + 8
h sin�
h� + 4
2h2


h sin�2
h� + 8
h sin�
h� + 6
2h2��T − Tc� ,

�27�

where ��x�=0 for x�0, and ��x�=1 for x	0 is the step
function. Equation �27� may be rewritten in the form

��s
−1�−1 =

A−1�−1�h�
�T − Tc�

. �28�

Equation �28� shows that, on both sides of the transition
temperature, the Curie-Weiss law holds, and that the average
susceptibility of the film diverges with a critical exponent of
−1. In addition, the corresponding Curie parameter
d

−1A−1�−1�h� also changes sign discontinuously across the
transition temperature. Both aspects of its behavior are the
same as the bulk counterpart. However, for films of finite
thickness, the magnitude of the Curie parameter varies ac-
cording to the thickness, leading to asymmetric divergences
across the transition temperature. Indeed, the Curie param-
eter is independent of the film thickness ��−1=1� on the
paraelectric side �T	Tc�, a well known fact, but depends on
the film thickness on the ferroelectric side. Taking the limits
in Eq. �27� and using the relations between 
 and h derived
in Ref. 5, it can be shown that the value of �−1 depends on
the film thickness h, approaching −�1− �8� /3h�� for thick
films �h���, and −0.5�1+ �h2 /5�2�� for thin films �h���.
FIG. 2. Normalized susceptibility vs the temperature.
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Accordingly, for a film thickness of h=8�, the Curie param-
eter d

−1�−1 of the ferroelectric phase would have dropped
33%. These characteristics are shown in Fig. 2, where the
normalized susceptibility, i.e., �−1 / �T−Tc� as a function of
temperature, is compared between thick films �h→�� and
thin films �h→0�. We note that ��total� also has a similar
relation to T−Tc, as discussed in the foregoing.

From the free energy expression in Ref. 5, the contribu-
tion from the upper and lower surfaces of the ferroelectric
thin film increases the susceptibility according to

�� =
2�

D
, �29�

which is negligible near the transition temperature.
In the following, we consider the example of a well

known ferroelectric PbTiO3, the material constants of which
are shown in Table I.5 The normalized Curie parameter
−���h��−1 is plotted against the film thickness h in Fig. 3, in
which the Curie temperature was obtained as a function of h
by using Eqs. �4� and �5�. It can be seen that the magnitude
of the normalized Curie parameter does decrease rapidly
from 1 to 0.5 with decreasing thickness. Indeed, for films of
PbTiO3 about 40 nm �=8��, the ferroelectric transition is ac-
companied with a decrease of the Curie parameter of about
33%. Similar behavior is also found experimentally for BST
films.19 A review on the properties of ferroelectric materials
was given in references.20–22

V. SUMMARY AND CONCLUSIONS

In this paper, the explicit solution of the steady-state
Ginzburg-Landau equation for a ferroelectric film near the

FIG. 3. The normalized Curie-Weiss parameter −���h��−1 vs the film thick-
ness h for PbTiO3.
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transition temperature was derived using a perturbation ap-
proach. It was found that the order of the transition and the
critical exponents can be changed by the constraint of the
substrate. A Curie-Weiss-type relation of dielectric permittiv-
ity was obtained in both the supercritical and subcritical re-
gions. It was found that in paraelectric state, the Curie pa-
rameter is independent of the film thickness, and remains the
same as their bulk counterpart. In the ferroelectric state, on
the other hand, the magnitude of the Curie parameter of the
film decreases rapidly as its thickness decreases.
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