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Abstract　Shared Memory Processors (SMP ) workstation clusters are becoming more and more popular . To

optimize communication between the workstations , a new graph partition problem was developed to schedule

tasks in SMP clusters. The problem is NP -complete and a heuristic algori thm was developed based on Lee ,

Kim and Park 's algorithm . Experimental results indicate that our algorithm outperforms thei rs , especiall y when

the number of partiti ons is large . This algorithm can be integrated in a parallelizing compi ler as a back end

optimizer for the distributed code generator .
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Introduction

Shared Memory Processors (SMP )

workstation clusters are being used more and
more . The communication cost inside an SMP

machine is much less than the inter -machine
communication cost . So tasks should be carefully

allocated to minimize the inter -machine
communication . Figure 1shows a simple execution

model for an SMP cluster . The execut ion model
used here is simplified , with just one

communication phase and we assume that the cost
of the calculat ion phase is equal for all parallel

tasks . For many parallel applications , this model

is an acceptable simplificat ion and it is a good
start ing point to solve the general task allocation

problem for SMP workstation clusters .

Inter -node communication is separated from

internal communicat ion in Fig . 1as a simplification
but they are combined during actual execut ion . If

the cost of the calculation phase of each task is the
same , the whole program execution time would be

minimized when the inter -node communicat ion is

minimized . A parallel program does not finish unt il
the last task finished , the largest inter -node

communicat ion cost from one node to other nodes
should be minimized . If each SMP node has the

same number of processors , the tasks should also
be allocated such that each SMP node has the

same number of tasks .

Fig. 1　 A simple execution model for an SMP cluster

1　 Problem Formulation
This section first defines some notation , then

the notat ion is used to formulate a communicat ion

opt imizat ion problem into a graph part it ion
problem .



1. 1　 Definition

1. 1. 1　 Size of nodes and subsets
Consider a g raph G(V , E ) w ith N nodes (v1 ,

v 2 ,… , vN ) and E edges (e1 ,e2 ,… ,eE ) . Let the size

o f vi be deno ted by S (vi ) and co st o f ej by W (ej ) .

The size o f each node and the cost of each edge are
assumed to be non-negativ e integer v alues.

The size o f node set V is deno ted by S ( V ) ,

w here S (V )=∑
v∈ V

S(v ) .

1. 1. 2　 Balanced partition concept
Equal-sized parti tions are generali zed into

balanced parti tio ns since equality can no t be

achiev ed in general. Let a k-cut , C , pa rtition the
nodes o f G into k subsets P1 , P2 ,… , Pk . W e call C

a balanced parti tion if ∑
1≤i < j≤ k

|S ( Pi ) - S ( P j )|i s a

minimum.

1. 1. 3　Weighted sum between subsets
The w eighted sum of edges betw een subsets

Pi , Pj i s deno ted by Ws (P i ,P j ) ,

w here

W s (P i ,P j ) = ∑
u∈ P

i
, v∈ P

j

W ( (u ,v ) ) ,

and the w eighted sum of edges betw een one subset

Pi and all other subsets is denoted by Sw s (P i ) ,

w here

Sws ( Pi ) = ∑
1≤ j≤ k, i≠ j

W s ( Pi , P j ) .

1. 1. 4　 Goal functions
Gm (C ) = max

1≤ i≤ k
Sws ( Pi ) ,

Gs (C ) = ∑
1≤ i < j≤ k

W s ( Pi , P j ) .

1. 2　 Problem statement

With the no ta tion defined in Section 1. 1, the
communication optimization problem can be stated

as:
Giv en a g raph G ( V , E ) wi th non-nega tive

costs on i ts edges and sizes on its nodes, a k-cut ,

C , pa rtitions the nodes of G into k subsets P1 ,P2 ,

… , Pk , of balanced size, such tha t C is a balanced

parti tio n and Gm (C ) is minimized. We deno te this

problem as MM P ( Minimizing Gm Problem) .

2　 Related Work
A well-know n similar problem is called the

unifo rm k-w ay pa rtitioning problem.

Giv en a g raph G ( V , E ) wi th non-nega tive

costs on i ts edges and sizes on its nodes, a k-cut ,

C , pa rtitions the nodes of G into k subsets P1 ,P2 ,

… , Pk , o f balanced size, such that Gs ( C ) i s

minimized. We denote this problem as M SP
( Minimizing Gs Problem) .

M SP has been ex tensiv ely studied in the past
and is N P-complete, so resea rchers have been

fo cused on finding fast heuristic alg orithms.
Kernighan-Lin 's algo ri thm is the basis of

these heuristic algo ri thms
[1 ] . Their algo ri thm uses

a pai rwise-exchange scheme to transform an

existing par ti tio n. The time complexi ty o f this
algo ri thm is g rea ter thanO ( N 2 log2N ) , where N is

the number of nodes in the g raph.

Many resea rchers have improved Kernighan-

Lin 's alg o ri thm in various way s
[2 4 ] . Fiduccia and

Ma t they ses propo sed the one-move idea which

means mov ing one element at a time a s the basic
technique to transform an ex isting pa rtition to

reduce the problem
[2 ] . Krishnamurthy improved

the alg orithm by using more sophisticated

heuristics
[3 ]

, but bo th algo ri thms only improve the
performance fo r the 2-w ay par titio ning problem.

Lee, Kim and Park t ransfo rmed the M SP into a
max k-cut problem and used the one-move

technique
[ 4]
. ( We deno te thei r algo ri thm as the L-

K-P algo ri thm. ) The L-K-P alg orithm a lso deals
wi th nodes o f v arious sizes wi thout perfo rmance

deg radation and wo rks w el l in k-way par titio ning.

It s computing time fo r a pass is O (kN
2
) .

The MMP is defined fo r the fi rst time in this
paper. MMP is show n to be N P-complete and a

heuristic alg orithm is developed that ex tends the
L-K-P alg orithm to so lv e the MMP.

3　Heuristic Algorithm

3. 1　 NP-completeness of MMP

The Bisection Width problem is as fol low s.

Giv en a g raph G( V , E ) , lo ok for a cut S , V- S of
size M or less such that |S|= |V - S|. The

Bisection Width problem is N P-complete
[5 ] .

Fo r MM P, examine the special case w here the

sizes of all nodes are 1 and k= 2. The MM P is the
Bisection Width in this special case, w hich is N P-

complete.

This proves tha t MM P is N P-complete, ev en

fo r the special case k= 2.

3. 2　 Heuristic algorithm def inition

3. 2. 1　 Goal functions
Define the goal functions,

Cs (C ) = ∑
1≤ i≤k

S
3
ws (P i ) ,

Tcs (C ) = ∑
1≤ i < j≤ k

S ( Pi ) S ( Pj ) R - Cs (C ) ,
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where R is a predefined constant, R∈ Z
+

and

R> ∑
|E|

i= 1
W (ei )

3

.

3. 2. 2　 Gain function
Define a gain function w hich indicates the gain

in value of Tcs (C ) when a node vr moves f rom one

parti tio n to ano ther par ti tio n P j , where C is the

o rig inal cut andC
*

i s the new cut af ter vr moves to
P j .

g (v r , P j ) = Tcs (C* ) - T cs (C ) .

3. 2. 3　Node to partition weighted sum
Define a node to parti tio n w eight sum to more

quickly calculate the gain function,

W n2p (vr ,P j ) = ∑
u∈ P

j

W ( (u ,vr ) ) .

Wn 2p i s the weighted sum of the edges f rom a node

to a subset. Ano ther function, w hich represents

the w eigh ted sum of the edges f rom a node to all
the subsets ex cept the specified one, is

W′n2p (vr ,P j ) = ∑
u∈/ P

j

W ( (u ,vr ) ) .

3. 3　 Problem transformation

Since MMP is N P-complete, a fast heuristic

alg orithm is needed to so lv e i t. Because the
potential application o f MMP is scheduling tasks

fo r SM P clusters, the alg o ri thm should have good
perfo rmance when k i s qui te larg e. The L-K-P

alg orithm has good performance in dealing wi th
la rg e k , so the L-K-P algo ri thm w as chosen as a

sta rting point. The problem transforma tion and
the goal function w ere modi fied to so lv e the MMP.

Na turally, Gm would be directly minimized in
the heuristic algo ri thm to so lv e the MM P. But our

experience show s tha t Gm is no t a good candida te
because i t wil l be of ten trapped in a local optimal

va lue. In most cases, i t ev en fails to obtain a
balanced parti tio n. Therefo re, Cs was used instead

o f Gm . Intuitiv ely, th e effect of la rg er Sws value is
enlarged in Cs. A cubic function w as used instead

o f a square function o r a higher order function to
simultaneously evalua te the“ enlarging ef fect” , the

precision and the computing complexi ty. Our
experiments indicate tha t the cubic function is the

most appropria te. The original MM P is
t ransformed to the following problem.

Giv en a g raph G ( V , E ) wi th non-nega tive
costs on i ts edges and sizes on its nodes, a k-cut ,

C , pa rtitions the nodes of G into k subsets P1 ,P2 ,
… , Pk , of balanced size, such that Cs ( C ) i s

minimized. W e denote this problem as Minimizing

Cubic Sum Problem ( MCSP) .

The MCSP still has tw o goals: ( 1) Balanced

pa rtition and ( 2 ) Minimizing Cs ( C ) . Ef ficient
heuristics are developed by transfo rming the

problem to incorporate one goal into the other.

The L-K-P algo ri thm transfo rmed the o rig inal

g raph into another g raph by reassigning the w eight
of each edge. W e do not di rectly t ransform the

edge w eight to create a new g raph in our
algo ri thm , instead, w e just t ransform the goal

function. Our method simpli fies the calculational
process and is easy to combine w ith other

destination functions. The t ransfo rmed problem is
as fo llow s.

Giv en a g raph G ( V , E ) wi th non-negativ e
co sts on i ts edges and sizes on i ts nodes, a k-cut,
C , parti tio ns the nodes of G into k subsets P1 , P2 ,
… ,Pk , such tha t Tcs (C ) is max imized. W e denote
this problem as Transfo rmed Maximizing Cubic

Sum Problem ( TMCSP) .

Now w e prove that the so lution pa rtition of

TMCSP is the solution parti tio n fo r M CSP.

Theorem 1　 A solution pa rtition of TMCSP is
also a solution pa rtitio n of M CSP.

Proof　 Let a solution parti tion of TMCSP,

C , pa rtition the nodes of G into k subsets P1 , P2 ,
… , Pk . Assume that the pa rtitio n C is no t
balanced. Let cut Co be a balanced pa rtition o f G,

w hich pa rtitions G into k subsets P1o , P2o ,… , Pko .
Since

∑
k

i= 1

S( Pi ) = ∑
k

i= 1

S( Pi o ) = const

and by defini tio n of the balanced par titio n,

∑
1≤ i < j≤k

|S (P io ) - S ( Pj o )|<

∑
1≤ i < j≤ k

|S (Pi ) - S ( Pj )|,

then,

∑
1≤ i < j≤ k

S ( Pio ) S (P jo )≥ ∑
1≤ i < j≤k

S (P i ) S (P j ) + 1.

　　 By the defini tio n of TMCSP,

Tcs (C )≥ Tcs (Co ) .

So,

∑
1≤ i < j≤ k

S( Pi ) S ( P j ) R - Cs (C )≥

∑
1≤i < j≤ k

S (P io ) S (P jo ) R - Cs (Co )≥

∑
1≤ i < j≤ k

S ( Pi ) S ( Pj ) R+ R - Cs (Co ) .

Then,
R≤ Cs (Co ) - Cs (C ) ,

w hich is contradictory to the defini tion of R , which
proves that C is a balanced pa rtition.

Since ∑
1≤ i < j≤k

S (P i )· S (P j )· R is constant for all

balanced k-cut , for Tcs (C ) to be maximized, Cs (C )

must be minimized among ba lanced k-cuts.
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This proves that C must be a solution of
M CSP.

3. 4　 Algorithm

This section describes the heuristic alg orithm

to solv e the TMCSP. In essence, the method
sta rts wi th any a rbit rary pa rti tion C and tries to

increase Tcs (C ) by choo sing one node f rom one
subset and moving i t to ano ther. The node to be

moved is chosen to obtain the maximum increase in
the T cs (C ) . The mov ing of the node forms a new

parti tio n w hich is used to move the nex t node
among the unmoved nodes. Moving all the nodes

finishes a pass. If a pass can no t improve Tcs (C )

any mo re, or the improvement is v ery small ( i. e. ,

less than a pre-defined value, VGATE
-
VALUE ) , the

alg orithm ends. Otherwise another pass is begun

based on the new parti tion. Convergence of this
alg orithm is easy to prove. Any sta rting parti tio n

has just a limi ted gain function value ( V IN IT
-

GAIN )

and any g raph has a limi ted gain function upper
bound ( VM AX ) . Increasing the gain function a t least

VGATE
-

VALUE per pass w ould run at most

( VM AX
-

V INI T
-

GA IN ) /VGATE
-

VALUE + 1 passes before

stopping.
A key step in the alg orithm is to choo se the

node movement by calcula ting the gain function of

each possible move in a pass. The calcula tion of
gain function should be as fast as possible.

Lemma 1　When a node vr moves f rom P from to
ano ther parti tio n P to ,

Sw s (P
*
from ) = Sws ( P from ) + W n2p (v r , P from ) -

W′n2p (vr , P from ) ,

Sws ( P
*
to ) = Sws ( P to ) - W n2p (vr ,P to ) +

W′n2p (v r , P to ) ,

w here P
*
i , 1≤ i≤ k is the co rresponding subset

af ter the movement.
Proof　 The definitions of Sws , W n2p , a nd

W′n2p can be used to easily prove the lemma. The

proof is omi tted fo r simplification.

Theorem 2　When a node v r moves f rom Pf rom

to another pa rtition P to ,

g (vr , P to ) = ( S (P from ) ) - S( P to ) - 1) R+

( S
3
ws ( P from ) + S

3
w s (P to ) - S

3
ws ( P

*
from ) -

S
3
w s (P

*
to ) ) ,

w here P
*
i , 1≤ i≤ k is the co rresponding subset

af ter the movement.

　　 Proof　 By defini tio n

g (vr , Pj ) = T cs (C* ) - Tcs (C ) = ∑
1≤ i < j≤ k

S( P
*
i ) S (P

*
j ) R - Cs (C* ) -

∑
1≤ i < j≤ k

S( Pi ) S ( P j ) R - Cs (C ) = ∑
1≤ i < j≤ k

S ( P
*
i ) S ( P

*
j ) - ∑

1≤ i < j≤ k

S (P i ) S (P j )  

R+ (Cs (C ) - Cs (C* ) ) .

　　 Since S ( Pi )= S ( P
*
i ) fo r all i≠ f rom and i≠ to, and

S (P from ) = S ( P
*
f rom ) + 1, S ( P to ) = S (P

*
to ) - 1,

　　 then,

∑
1≤ i < j≤ k

S ( P
*
i ) S ( P

*
j ) = ∑

1≤ i < j≤ k, i≠ from, i≠ to, j≠ from, j≠ to
S( P

*
i ) S( P

*
j ) +

∑
1≤ i≤ k, i≠ from

S ( P
*
from ) S ( P

*
i ) + ∑

1≤ i≤ k , i≠ to

S ( P
*
to ) S ( P

*
i ) - S (P

*
from ) S( P

*
to ) =

∑
1≤ i < j≤ k , i≠ f rom, i≠ to, j≠ from, j≠ to

S ( P
*
i ) S ( P

*
j ) + ∑

1≤ i≤ k , i≠ f rom, i≠ to
S (P

*
from ) S( P

*
i ) +

∑
1≤i≤ k , i≠ f rom, i≠ to

S (P
*
to ) S (P

*
i ) + S( P

*
from ) S ( P

*
to ) = ∑

1≤ i < j≤ k, i≠ from, i≠ to, j≠ from, j≠ to
S( Pi ) S( P j ) +

∑
1≤ i≤ k, i≠ from, i≠ to

( S( P from ) - 1) S( Pi ) + ∑
1≤ i≤k , i≠ from, i≠ to

( S ( P to ) + 1) S ( Pi ) +

( S( P from ) - 1) ( S( P to ) + 1) = ∑
1≤ i < j≤ k , i≠ fr om, i≠ to, j≠ from, j≠ to

S ( Pi ) S (P j ) +

∑
1≤ i≤ k, i≠ from, i≠ to

S ( P from ) S ( Pi ) + ∑
1≤ i≤ k, i≠ from, i≠ to

S ( P to ) S ( Pi ) + S (P from ) S( P to ) +

( S ( P from ) - S( P to ) - 1) = ∑
1≤ i < j≤ k

S ( Pi ) S ( Pj ) + (S ( P from ) - S( P to ) - 1) ,

　　 So ,

g (vr , Pj ) = ∑
1≤ i < j≤ k

S( P
*
i ) S( P

*
j ) - ∑

1≤ i < j≤ k

S ( Pi ) S ( Pj )  R+ (Cs (C ) - Cs (C* ) ) =

( S (P from ) - S ( P to ) - 1) R+ (Cs (C ) - Cs (C* ) ) .

　　 By defini tio n,
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Cs (C* ) = ∑
1≤ i≤k

S
3
w s (P

*
i ) = ∑

1≤ i≤ k, i≠ from, i≠ to

S
3
ws ( P

*
i ) + S

3
w s ( P

*
f rom ) + S

3
ws ( P

*
to ) .

　　 Since Sws ( Pi )= Sws ( P
*
i ) fo r all i≠ f rom and i≠ to,

then,

Cs (C* ) = ∑
1≤ i≤ k , i≠ f rom, i≠ to

S3
w s (P

*
i ) + S3w s (P

*
from ) + S3

w s (P
*
to ) = ∑

1≤ i≤k , i≠ f rom, i≠ to

S3
w s (Pi ) + S3

w s (P
*
from ) + S3w s (P

*
to ) =

∑
1≤ i≤ k , i≠ from, i≠ to

S3
w s (Pi ) + S3

w s (P f rom ) + S3
w s (P to ) - ( S3

w s (P f rom ) + S3
w s (P to ) ) + S3

w s (P
*
from ) + S3

w s (P
*
to ) =

Cs (C ) - ( S3
w s (P from ) + S3

ws (P to ) ) + S3
w s (P

*
from ) + S3

ws (P
*
to ).

　　 Since
g (v r , P j ) = ( S (P from ) - S ( P to ) - 1) R+ (Cs (C ) - Cs (C* ) ) ,

　　 then,

g (v r , P j ) = ( S (P from ) - S ( P to ) - 1) R+ (Cs (C ) - Cs (C* ) ) =

( S ( Pf rom ) - S ( P to ) - 1) R+ ( S
3
w s (P from ) + S

3
ws ( P to ) ) - ( S

3
ws ( P

*
f rom ) + S

3
ws ( P

*
to ) ) .

　　 Figure 2 show s the algo ri thm detai ls. The MMP solv er is v ery simila r to the L-K-P algo ri thm. The
main di fference is the method to calcula te g (vr , P j ) , which in this method is based on Lemma 1 and

Theo rem 2, w hich means w e have to calculate and upda te a rra ys Sws , W n2p , and W′n2p .

Algorithm: MM P-solv er

Input: Graph G

Output: k-par titio n∥ PART [ 1. .|V|]
Variables

　 PART [ 1. .|V|]: integ er; ∥ PART [i ]= pa rtitio n number o f vi
　 GAIN [1. .|V|] [ 1. . k ]: r ea l;∥ GAIN [i ] [j ]= g ( vi , P j )

　 STATE [1. .|V|]: bo olean;∥ 0= unused, 1= used

　 HISTO RY[ 1. .|V|] [1. . 2]: integ er; ∥ HIS TORY [i ] [1 ] sav es the node to move

∥ HIS TORY [i ] [2 ] sav es the o riginal pa rtitio n this node

∥ belong s to.

　 TEM P[ 1. .|V|]: integ er; ∥ tempo rar y gain for move histo ry

　 SWS [1. .k ] [ 1. . k ]: real; ∥ SWS [i ] [j ]= Sws ( i, j )

　 N2P [1. .|V|] [1. . k ]: real; ∥ N2P [i ] [j ]= Wn2p ( vi , P j )

　 N2P1[ 1. .|V|] [1. . k ]: r ea l; ∥ N2P [i ] [ j ]= W′n2p (vi , P j )

　 S[1. . k ]: integ er; ∥ S [i ]= S ( Pi )

Begin

　 ( 1) Construct an ini tial pa rtition; ∥ PART [i ]= 1 for all i

　 ( 2) Calculate S[1. . k ] , W SW [1. . k ] [1. . k ] , N2P [1. .|V|] [ 1. . k ] a nd N 2P [1. .|V|] [1. . k ] based on

current pa rti tion

　 ( 3) for i = 1 to|V|do
　 ST ATE [i ] = 0;∥ UNU SED
　 fo r j = 1 to k do
　　 GAIN [i ] [ j ] = g (vi , P j )∥ Calculate GAIN [i ] [ j ] based on Lemma 1 and Theo rem 2

　 endfor

endfo r

　 ( 4) for i = 1 to|V|do

　 ( 4. 1) select unused vd such that g (vd ,Pn )= maxj ,p ( GAIN [j ] [p ] )∥ vd∈ Pm

　 ( 4. 2) Recalculate S [1. . k ] , W S [m ] [1. . k ], SWS [n ] [1. . k ] , N 2P [1. .|V|] [m ] , N2P [1. .|V|] [n ],

N2P1[1. .|V|] [m ] and N2P1 [1. .|V|] [n ] af ter moving vd to Pn

　 ( 4. 3) ST ATE [d ] = 1∥ vd is used

　 ( 4. 4) PART [d ] = n∥ Change the parti tio n
　 ( 4. 5) HISTORY[i ] [1 ] = d∥ Save the node to be moved
　 ( 4. 6) HISTORY[i ] [2 ] = m∥ Save the node 's original parti tio n number
　 ( 4. 7) TEM P[i ] = GAIN [d ] [n ]∥ Save gain o f this moving

　 ( 4. 8) fo r i = 1 to|V|do∥ Upda te gain acco rding to the new parti tion

　 for j = 1 to k do
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　　 GAIN [i ] [j ] = g (vi ,P j )∥ Calculate GAIN [i ] [j ] based on Lemma 1 and Theorem 2

　 endfo r

endfo r

endfor

( 5) Choo se t to maximize G=∑
t

j= l

TEM P[j ];

( 6) if G> 0 then∥ complete one pass

fo r j = t+ 1 to|V|do

　 PART [ HIS TO RY [j ] [1] ] = HIS TO RY [j ] [2];

endfo r

endif

end

Fig. 2　MMP solver algorithm

3. 5　 Algorithm complexity

First analyze the complexi ty of calcula ting

g (vi , P j ) . According to Lemma 1, Sws ( P
*
from ) and

Sws ( P
*
to ) are calcula ted in O ( 1) time i f we maintain

an a rray o f current SWS[ ] , N 2P [ ] , and N2P1 [ ].

Then calculate g (vi , Pj ) based on Theo rem 2. The

time complexi ty is a lso O ( 1) . Thus, calcula ting

one g (vi , P j ) requires O( 1) time.

For the MM P solv er algo ri thm , Step 1 needs

O (k ) time. The complexity of Step 2 is O (|V|
2
) .

The complexity of Step 3 is O (k|V|) because

calculating one gain function needs O ( 1) time.

Each iteration o f Step 4 needs O ( k|V|) time,

w hich is mainly due to Step 4. 8. So th e complexi ty

o f Step 4 is O (k|V|
2 ) . The complexi ty of Step 5

and 6 is O(|V|) . Therefo re, Step 2-step 6 need a

to tal o f O (k|V|
2
) computing time, which is the

complexi ty fo r one alg orithm pass.

4　 Performance
The alg o ri thm w as implemented on a Sun

Ult ra5 wo rkstation wi th the So la ris 2. 5 operating

sy stem. The algo ri thm w as compiled by GNU gcc
2. 7. 2 wi th the“ -O2” option. We tested cases f rom
16 nodes to 128 nodes. For all cases, 50 g raphs

w ere generated randomly. Because the main

po tential application o f this problem is scheduling

SM P clusters, w e set the size o f all nodes to 1,

w hich indica tes tha t each processo r in the SM P

cluster has the same computational pow er. There

are approx imately 0. 05* |V|2 edges in the g raph,

w here|V|i s the number of nodes in the g raph.

The resul t i s show n in Table 1. In Table 1,

“Mean” i s the average value of Gm (C ) fo und by the

algo ri thm fo r the 50 g raphs, t is the average time

fo r solving one g raph pa rti tion problem.

Table 1　 Experimental results of MMP solver

Number o f

nodes (|V|)
Numbe r of

par titions (k )

MM P-So lv er

M ean t /ms

L-K-P 's Alg o rith m

Mean t /m s

16 4 202 3. 1 214 0. 5

16 8 334 4. 6 337 0. 7

32 4 874 19. 4 899 2. 7

32 8 820 36. 6 883 4. 1

32 16 786 57. 4 857 6. 4

64 4 274 100. 3 314 13. 7

64 8 3157 189. 8 3354 19. 4

64 16 2150 361. 4 2414 32. 9

64 32 1585 566. 5 1728 59. 5

128 4 20 085 480. 9 20 488 78. 0

128 8 13 401 990. 1 13 694 141. 6

128 16 8234 1803. 5 8772 187. 9

128 32 5067 3332. 3 5454 311. 3

128 64 3186 3474. 4 3487 552. 7

(Continued on page 41)
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the acquisi tio n o f the ini tial values fo r the leaf

nodes and the method fo r processing uncertain

info rmation.
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　　 The data in Table 1 show s the following. ( 1)

In all cases, the MMP so lv er determines a bet ter

mean so lution than the L-K-P algo ri thm. ( 2 )

Generally speaking , for a f ix ed number of nodes,

the larger k , MMP so lv er outperfo rms L-K-P

alg orithm more. For the scheduling problem fo r

SM P clusters, an SM P usually has 2, 4 or 8

nodes. Therefo re, k in the practica l situa tions is

quite large. ( 3 ) The computing time fo r MMP

solver is longer than that fo r the L-K-P alg ori thm ,

but the complexity o f the tw o alg o ri thms is the

same. The speed of the MMP solver is sti ll

acceptable as a backend in an optimizing compiler.

5　 Conclusions
This paper defines a new g raph parti tio n

problem ( MM P) that can be used in scheduling

tasks for SM P clusters. MMP is show n to be NP-

complete and a heuristic algo ri thm is developed fo r

i t based on the L-K-P alg orithm, which was

o rig inally used for solving M SP. Experimental

resul ts indicate tha t our algo ri thm outperfo rms the

L-K-P alg orithm , especially when the number of

pa rtitions is la rg e.
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