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Communication Optimization for SMP Clusters
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Abstract Shared Memory Processors (SMP ) workstation clusters are becoming more and more popular. To

optimize communication between the workstations , a new graph partition problem was developed to schedule

tasks in SMP clusters. The problem is NP eomplete and a heuristic algorithm was developed based on Lee,

Kim and Park s algorithm . Experimental results indicate that our algorithm outperforms theirs , especially when

the number of partitions is large. This algorithm can be integrated in a parallelizing compiler as a back end

optimizer for the distributed code generator.
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Introduction

Shared Memory Processors (SMP)
workstation clusters are being used more and
more . The communication cost inside an SMP
machine is much less than the inter machine
communication cost. So tasks should be carefully
allocated to minimize the intermachine
communication . Figure 1shows a simple execution
model for an SMP cluster. The execution model
used here is simplified, with just one
communication phase and we assume that the cost
of the calculation phase is equal for all parallel
tasks . For many parallel applications , this model
is an acceptable simplification and it is a good
starting point to solve the general task allocation
problem for SMP workstation clusters .

Inter Aode communication is separated from
internal communication in Fig. las a simplification
but they are combined during actual execution. If
the cost of the calculation phase of each task isthe
same , the whole program execution time would be
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minimized when the inter node communication is
minimized . A parallel program does ncot finish until
the last task finished, the largest inter node
communication cost from one node to other nodes
should be minimized. If each SMP node has the
same number of processors , the tasks should also
be allocated such that each SMP node has the
same number of tasks.
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Fig- 1 A simple execution mode for an SMP cluster

1 Problem Formulation

This section first defines some notation, then
the notation is used to formulate a communication
optimization problem into a graph pattition
problem.
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1. 1 Definition

1. 1.1 Size of nodes and subsets

Consider a graph G(V, E) with N nodes (v1,
v2, ,w) and E edges (el,e2 ,er). Let the size
of vi be denoted by S(vi) and cost of ¢ by W(e ).
The size of each node and the cost of each edge are
assumed to be non-negative integer values.

The size of node set V' is denoted by S (V),
where S(V):Ze: S(v).
vV

1. 1. 2 Balanced partition concept

Equal-sized partitions are generalized into
balanced partitions since equality can not be
achieved in general. Let a k—cut, C, partition the

nodes of G into k subsets P1, P2,--- ,Pr. We call C
a balanced partition if z | S(P)- S(P/)‘ is a
i<i=k

minimum.
1 1.3 Weighted sum between subsets

The weighted sum of edges between subsets
Pi, P is denoted by W. (P:,P)),

where

W.(Pi,Pj) = 2 W((u,v)),

€ PP,
and the weighted sum of edges between one subset
Pi and all other subsets is denoted by Sws(Pi),
where
> W.(P,P).
< ki~
1. 1. 4 Goal functions

Gn(C) = glg)iSws(P[),

G(C)= >, W.(P.,P).

i<y k

Sws(Pi) =

1. 2 Problem statement

With the notation defined in Section 1. 1, the
communication optimization problem can be stated
as

Given a graph G(V, E) with non-negative
costs on its edges and sizes on its nodes, a k—cut,
C, partitions the nodes of Ginto k subsets P1,P2,
-+, Px, of balanced size, such that C is a balanced
partition and G» (C) is minimized. We denote this
problem as MM P (Minimizing G Problem).

2 Related Work

A wellknown similar problem is called the
uniform k-way partitioning problem.

Given a graph G(V, E) with non-negative
costs on its edges and sizes on its nodes, a k—cut,
C, partitions the nodes of Ginto k subsets P1,P2,
-+, Pr,, of balanced, size, such that G (C) s

minimized. We denote this problem as MSP
(Minimizing G Problem).

M SP has been extensively studied in the past
and is NP-complete, so researchers have been
focused on finding fast heuristic algorithms.

Kernighan-Lin§ algorithm is the basis of
these heuristic algorithmsm- Their algorithm uses
a pairwiseexchange scheme to transform an
existing partition. The time complexity of this
algorithm is greater than O(N’logN ), where N is
the number of nodes in the graph.

Many researchers have improved Kernighan—
Fiduccia and

Mattheyses proposed the one-move idea which

. . . . [2-4]
Lins algorithm in various ways

means moving one element at a time as the basic
technique to transform an existing partition to
reduce the problemm-
the algorithm by

Krishnamurthy improved
using more sophisticated
heuristics”’, but both algorithms only improve the
performance for the 2-way partitioning problem.
Lee, Kim and Park transformed the M SP into a
max k-eut problem and wused the one-move
techniquem. (We denote their algorithm as the 1-
K-P algorithm.) The LK-P algorithm also deals
with nodes of various sizes without performance
degradation and works well in k-way Partitioning-
Its computing time for a passis O(kN").

The MMP is defined for the first time in this
paper. MMP is shown to be NP—complete and a
heuristic algorithm is developed that extends the

LK-P algorithm to solve the MMP.

3 Heuristic Algorithm

3.1 NP-completeness of MMP

The Bisection Width problem is as follows.
Given a graph G(V,E), look fora cut S, V= § of
size. M or less such that | Sl = | V= S[. The
Bisection Width problem is NP—complete[S]~

For MM P, examine the special case where the
sizes of all nodes are | and k= 2. The MM Pis the
Bisection Width in this special case, which is NP-
complete.

This proves that MM P is N P—complete, even
for the special case k= 2.

3. 2 Heuristic algorithm definition

3.2.1 Goal functions
Define the goal functions,

C.(C) = ;/ksi(m,
To(C)= 2 S(Py S(Py R- C(C).

i<y k
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WhereHR is a predefined constant, RE Z and
g

R>| = W(e)
3. 2.2 Gain function

Define a gain function which indicates the gain
in value of T (C) when a node v+ moves from one

3

partition to another partition Pj, where C is the
original cut and C is the new cut after vr moves to
P;.

gvi,Pi)= Tu(C ) - Ta(C).
3.2.3 Node to partition weighted sum

Define a node to partition weight sum to more

quickly calculate the gain function,

W (ve, Pr) = 20 W ((u,v0).

j

Wiy is the weighted sum of the edges from a node
to a subset. Another function, which represents
the weighted sum of the edges from a node to all
the subsets except the specified one, is

!
W (Ve ,Pj) = . W((u,w)).

3. 3 Problem transformation

Since MMP is NP-complete, a fast heuristic
algorithm is needed to solve it. Because the
potential application of MMP is scheduling tasks
for SM P clusters, the algorithm should have good
The LK-P
algorithm has good performance in dealing with
large k, so the L-K-P algorithm was chosen as a

performance when k is quite large.

starting point. The problem transformation and
the goal function were modified to solve the MM P.

Naturally, Gn would be directly minimized in
the heuristic algorithm to solve the MM P. But our
experience shows that Gm is not a good candidate
because it will be often trapped in a local optimal
value. In most cases, it even fails to obtain a
balanced partition. Therefore, Cs was used instead
of Gn. Intuitively, the effect of larger Sv value is
enlarged in Cs. A cubic function was used instead
of a square function or a higher order function to
simultaneously evaluate the“ enlarging effect” , the
precision and the computing complexity. Our
experiments indicate that the cubic function is the
appropriate.  The original MMP is
transformed to the following problem.

most

Given a graph G(V, E) with non-negative
costs on its edges and sizes on its nodes, a k-cut,
C, partitions the nodes of Ginto k subsets P1,P2,
-, Pr, of balanced size, such that Cs (C) is
minimized. We denote this problem as Minimizing
Cubic Sum Problem (M CSP).

The M CSP still has two goals (1) Balanced
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Efficient

transforming the

partition and (2) Minimizing Cs (C).
heuristics are developed by
problem to incorporate one goal into the other.
The L-K-P algorithm transformed the original
graph into another graph by reassigning the weight
of each edge. We do not directly transform the
edge weight to create a new graph in our
algorithm, instead, we just transform the goal
function. Our method simplifies the calculational
process and is easy to combine with other
destination functions. The transformed problem is
as follows.

Given a graph G (V, E) with non-negative
costs onits edges and sizes on its nodes, a k—cut,
C, partitions the nodes of Ginto k subsets P1, P2,
-+ ,Pk, such that Tes(C) is maximized- We denote
this problem as Transformed Maximizing Cubic
Sum Problem (TM CSP).

Now we prove that the solution partition of
TMCSPis the solution partition for M CSP.

Theorem 1 A solution partition of TM CSP is
also a solution partition of M CSP.

Proof Let a solution partition of TM CSP,
C, partition the nodes of Ginto k subsets Pi, P2,
*, Pc. Assume that the partition C is not
balanced. Let cut Co be a balanced partition of G,
which partitions G into k subsets Pio, P2, , Pro.

Since

K k
D S(PYy=>, S(Pu) = const
£ 1 i= 1
and by definition of the balanced partition,
>, | S(Pu) - S(Po)l <
i<k
> sy - s,
Ei<j=k
then,
Ei<i=k i<k

By the definition of TM CSP,
T‘(s(c)> E'S(C‘)) .

So,
> S(P) S(P;Y R- C.(C)=
Ei<j= k
S(Pi) S(Pu) R = C.(C)=
i<i= k
Ei<j=k
Then,

R< G (Co) - C(O),
which is contradictory to the definition of R, which
proves that C is a balanced partition.

Since S(P:y S(Pi) R is constant for all
Ck

i<

balanced k—cut, for T (C) to be maximized, Cs (C)

must be minimized among balanced k—uts.
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This proves that C must be a solution of
MCSP.

3. 4 Algorithm

This section describes the heuristic algorithm
to solve the TMCSP. In essence, the method
starts with any arbitrary partitton C and tries to
increase Ts (C) by choosing one node from one
subset and moving it to another. The node to be
moved is chosen to obtain the maximum increase in
the T (C).
partition which is used to move the next node
Moving all the nodes

The moving of the node forms a new

among the unmoved nodes.
finishes a pass. If a pass can not improve T (C)
any more, or the improvement is very small (i. e. ,
less than a pre-defined value, Voam vawe), the
algorithm ends. Otherwise another pass is begun
based on the new partition. Convergence of this
algorithm is easy to prove. Any starting partition
has just a limited gain function value (Vi can )
and any graph has a limited gain function upper
bound (¥uax). Increasing the gain function at least
VGate vaLue  per pass would run at most

(Vmax_ vt G6AN ) /VoatE VALUE + 1 passes before

Proof By definition
g(Vr,Pj)z T’(s(ci< )— T‘(s C)_ {

> S(P

i<~k

stopping.
A key step in the algorithm is to choose the

node movement by calculating the gain function of
each possible move in a pass. The calculation of
gain function should be as fast as possible.
Lemma 1l When a node v- moves from Pion to
another partition P,
Sus(Prom) = Swe(Prom)+ Warp(ve, Proom) —
W' (vr, Prom) ,
Sus(Puw)= Sws(Pu) = Wiy (ve,Pu)+
W op(ve, P,
where P, K & k is the corresponding subset

after the movement.

Proof  The definitions of Sw, Wiy, and

!
W n2p can be used to easily prove the lemma. The

proof is omitted for simplification.
Theorem 2 When a node v: moves from Prran
to another partition P,
g(vi,Pu) = (S(Prom)) — S(Pm) - DR+
(Ses (Pruom) + 5&(1% — Sue(Prom) -
Seu(Pu)).
where P, , K & k is the corresponding subset

after the movement.

)Mﬁ)R—awﬂ—

[2 S(P) S(P;) R - cs(c] = [2 S(P Yy S(P ) - 2 Sy S(P;ﬂ

Ki<j<k

Fi<i= k

R+ (C.(C) - C.(C)).

1, S(Pu) = S(Puw) - 1,

S(P. )y S(P; )+

i <j= kF from. % o, % from,j= to

S(Po) S(P ) = S(Pin) S(Pu)=

Since S(Pi)= S(Pt ) for all # from and # to, and
S(Pfrom) = S(Pium)"l‘
then,
>, S(P)S(P)=
i<k
D S(Pun) S(P )+ 20
£ i< ki~ from £ i< kit to

S(P )y S(P )+ >

£ i<j< k.,# from, i to,j7 from,j~ to

S(Pu) S(Pi )+ S(Pion) S(Pu) =

i k,# from, i to

Z (S(Prrom) — 1y S(P:) +

4= = k, £ from,i~ to

(S(Pim) = 1y (S(Pu)+ 1)=

S (Prom)” S(P: ) +
£ = ki from, i to

S(P) S(Pi)+

1 i <j< k,i* from,i* 1o, from,j~ to

> (S(Po)+ 1) S(P)+

£ = k,# from, i to

S(Pi) S(Pi)+

= i<f< ki from, 3 to, = from,j~ to

> S(Pion) S(P)+

+ = k, i from, i~

(S(Pl’rum) - S(Plo -

Ei<ik

So,

gv,P)= [Z S(P ) S

Ki<i=k

By definitien,

S(Pu) S(P)+ S(Piom) S(Pu)+

ik, i from, i~ to

= >, S(PY)

S(P )+ (S(Pim) - S(Pu) - 1),

- >0 S(P) S(Pf} "R+ (C(C) - C(C)) =

i<k

(S(Pton) = S(Pu) - 1) R+

(G(C) = C(C ).



22 Tsinghua Science and Technology, March 2001, 6(1): 18- 24

CAC )= 2, SUP )= 20 SAP )+ S(Pu)+ SL(P.).

ik <k, i from, - to
Since Sws(Pi)= Sw(Pi ) for all # from and # to,
then,
C.(C )= 2 S3 (P )+ 8. (Prom) + Si(Po) = > L SL(P)+ Si(Phow) ¥ Sai(Pa) =
I= &= k7 from, i to K =k, i# from,i7 to

Sec(P)+ Si(Pr)t Si(Py) = (S5.(Prm)+ Si(Pu))+ Si.(P

from
4 ki fom, - to

)+ Su(P,) =

CC) = (85 (Piom) + Su(Pu))+ S\ (Py)+ Si(P,).

Since
g(ve,Pj) = (S(Piom) = S(Po) = 1) R+ (G(C)- C(C)),
then,
g, Pi) = (S(Pwn) = S(Pu) = 1) R+ (G(C) - C(C )=
(S(Prran) = S(Pw) = 1) R+ (Sas(Pion)+ Sus(Po)) = (Sas(Prom)+ Swe(Pu)).
Figure 2 shows the algorithm details. The MMP solver is very similar to the L-K-P algorithm. The
main difference is the method to calculate g (vr, P;), which in this method is bflsed on Lemma 1 and

Theorem 2, which means we have to calculate and update arrays Swvs, Wn, and Wup.

Algorithm MM P-solver
Input Graph G
Output k—partition// PART[1..l ¥l ]
Variables
PART[1..| ¥Vl | integer; /7 PART [i]= partition number of v;
GAIN[L.| VI 1[L .k} real:// GAN[i1[j 1= g(w.P))
STATE[L .| ¥l } boolean; / 0= unused, I= used
HISTORY[1..| 7l I[1.. 2} integer; // HISTORY [[]1[1] saves the node to move
// HISTORY [i 1{2] saves the original partition this node
/ belongs to.
TEMP[L.[ 7l | integer / temporary gain for move history
SWS[L .k |[1.k} real; / SWS[i ][ Sw(i.j)
N2P[L .| V1 |[L.k} real / N2P[i][j|= Wy (vi.P;)
N2PI[1..| VI J[L .k} real; / N2P[i][j Wﬁzp(w,P/)
S[1..k} integer; / Sli]= S(P)
Begin
(1) Construct an initial partition; // PART [i]= 1for alli
(2) Caleulate S[1..k], WSW[1..k][L.k], N2P[L .| 7| ][ .k]and N2P[L .| 7| ][L.k] based on
current partition
(3) foriz=1 ol M do
STATE[i k= 0;/ UNUSED
forj:= ltok do
GAIN[i ][j = g(w,Pj)// Calculate GAIN[i ][j ] based on Lemma 1 and Theorem 2
endfor
endfor
(4) fori:= 1to |V do
(4. 1) select unused va such that g(v,Pr)= maxj» (GAIN[j ] [p ])// Sy
(4.2) Recalculate S[L .k], WS[m ][L.k], SWS[n][L.k], N2P[L..| ¥l J[m], N2P[L .|Vl ][n ],
N2PI[1..| 7| 1[m ] and N2P1[L .| ¥ ][n] after moving va to Pu
(4.3) STATE[d]:= V/ w is used
(4.4 PARTI[d )= n// Change the partition
(4.5) HISTORY[i][1] = d/ Save the node to be moved
(4.6) HISTORY[i 1[2k = m/ Save the node & original partition number
(4.7) TEMP[i]:= GAIN[d][n}/ Save gain of this moving
(4.8) fori:= 1tol ¥l do// Update gain according to the new partition
for js= 1 to k. do
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GAIN[i|[j]:= g(vi,Pj)// Calculate GAIN [i | [/ ] based on Lemma 1 and Theorem 2

endfor
endfor
endfor

(5) Chooset to maximize Gzz TEM P[j }
=1

(6) if G> 0 then/ complete one pass
forji=# 1tol ¥l do

PART[HISTORY[j ][1]]:= HISTORY[j ] [2];

endfor
endif
end

Fig. 2 MMP solver algorithm

3.5 Algorithm complexity

First analyze the complexity of calculating
g(vi,Pi). According to Lemma 1, SW-‘(P::rom) and
Sws(Pw) are calculated in O(1) time if we maintain
an array of current SWS[], N2P[], and N2P1[].
Then calculate g(vi, P ) based on Theorem 2 The
time complexity is also O(1). Thus, calculating
one g(vi,Pj) requires O( 1) time.

For the MM P solver algorithm, Step 1 needs
O(k) time. The complexity of Step 2is O( VI 2).
The complexity of Step 3 is O (k| V| ) because
calculating one gain function needs O (1) time.
Each iteration of Step 4 needs O(k| v ) time,
which is mainly due to Step 4. 8. So the complexity
of Step 4is O(kl ¥1?). The complexity of Step 5
and 61is O(| 14 ). Therefore, Step 2-step 6 need a
total of O (k| V1?) computing time, which is the
complexity for one algorithm pass.

4 Performance

The algorithm was implemented on a Sun
UltraS workstation with the Solaris 2. 5 operating
system. The algorithm was compiled by GNU gce
2.7 2 with the“-02" option. We tested cases from
16 nodes to 128 nodes. For all cases, 50 graphs
were generated the main
potential application of this problem is scheduling
SMP clusters, we set the size of all nodes to 1,
which indicates that each processor in the SMP
cluster has the same computational power. There
are approximately 0. 05 |2 edges in the graph,

randomly. Because

where | 77| is the number of nodes in the graph.
The result is shown in Table 1. In Table 1,
“Mean istheaverage value of Gn(C) found by the
algorithm for the 50 graphs, ¢ is the average time
for solving one graph partition problem.

Table 1 Experimental results of MMP solver

Number of Number of MM P-Solver L-K-P5s Algorithm

nodes (I 1) partitions (k) M ean t /ms Mean t /ms
16 4 202 31 214 0.5
16 8 334 46 337 0.7
32 4 874 19. 4 899 2.7
32 8 820 36.6 883 4.1
32 16 786 57. 4 857 6.4
64 4 274 100. 3 314 13.7
64 8 3157 189. 8 3354 19. 4
64 16 2150 361. 4 2414 32.9
64 32 1585 566. 5 1728 59.5
128 4 20 085 480.9 20 488 78.0
128 8 13 401 990. 1 13 694 141. 6
128 16 8234 1803. 5 8772 187.9
128 32 5067 3332.3 5454 311. 3
128 64 3186 3474. 4 3487 552.7

(Continued on page 41)
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the acquisition of the initial values for the leaf
nodes and the method for processing uncertain
information.
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