
   
Figure 1. Interactive deformation of virtual tissues. 
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Abstract—Mass-spring model is a popular method to simulate 

soft tissues in virtual surgery applications. However, the setting 

of appropriate model parameters to reproduce the real 

mechanical responses of the tissues, which is anisotropic in 

general, remains an issue. This paper presents a hybrid 

heuristic approach to identify the parameters by incorporating 

simulated annealing into genetic algorithms. The optimization 

process is performed with reference to the benchmarks 

obtained by applying continuum mechanics and the finite 

element method. Experiments are performed to evaluate the 

feasibility of the approach. 
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I.  INTRODUCTION 

Virtual-reality simulation of operative procedures is a 
promising approach to facilitate medical education or 
surgical planning. In these simulators, interactive 
deformation of virtual tissues is a key feature, as shown in 
Fig. 1. It requires both real-time and realistic modeling of 
soft-tissue responses so that the virtual tissues can respond to 
user's action by changing their shape autonomously. Finite 
element method (FEM) and mass-spring model (MSM) are 
the two major physics-based approaches for simulating soft-
tissue deformation. They are at the opposite ends of the 
accuracy-efficacy spectrum, where the former is considered 
more accurate, and the latter is computationally efficient and 
thus suitable for real-time interactive simulations. 

Although MSM has been successfully applied in many 
virtual surgery applications [1], the model parameter should 
be set appropriately in order to simulate the actual tissue 
responses. Unlike FEM, the parameters in MSM do not have 
direct relationship with the elastic constants that describe the 
mechanical properties of materials, e.g. Young’s modulus 
and Poisson’s ratio. As a result, the setting of MSM 
parameters usually resorts to repeated manual tuning until 
the simulated responses become seemingly realistic. 
Attempts have been made to obtain the parameters 
heuristically [2-5] and analytically [6, 7]. In this paper, a 
hybrid heuristic approach combining simulated annealing 
(SA) and genetic algorithms (GA) is developed to identify 
the MSM parameters automatically. Since FEM is 
parameterized directly with material’s elastic constants, 
deformation simulated by FEM are employed here as the 
benchmarking reference to identify the MSM parameters. 

While previous work has been limited to isotropic materials 
[2-5], this paper concerns the identification of MSM 
parameters for simulating anisotropic materials, in particular, 
transversely isotropic and orthotropic materials. 

II. MECHANICS OF MATERIALS 

In continuum mechanics, the stress σ applied to an elastic 
material is linearly related to the resulting strain ε by the 
generalized 3D Hooke’s Law, ε = Cσ, where ε and σ are 6×1 
column vectors, and C is the material matrix, a 6×6 square 
matrix describing the mechanical properties of material. Soft 
tissues are often modeled as being purely isotropic to 
simplify the mathematical formulation, where C only 
depends on two elastic constants, Young’s modulus and 
Poisson’s ratio. However, many biological tissues are 
orthotropic or transversely isotropic [8]. Orthotropic material 
exhibits different mechanical properties along three 
orthogonal axes. The corresponding material matrix C is thus 
evaluated with three sets of Young’s modulus E, Poisson’s 
ratio ν and shear modulus G, totally 9 independent elastic 
constants. They are E1, E2, E3, ν12, ν13, ν23, and G12, G13, G23, 
where the subscripts 1, 2 and 3 denote the three orthogonal 
axes respectively. For transversely isotropic materials, the 
mechanical properties are the same in a plane and different 
along the direction perpendicular to that plane. Suppose the 
properties in the plane containing axis 2 and 3 are the same, 
and that along axis 1 is different, C is evaluated with 5 
independent constants, i.e. E1, E2, ν, ν12 and G12, where 
ν = ν23 = ν32. Hence, to simulate the deformation of 
orthotropic and transversely isotropic materials by 
continuum mechanics and FEM, it is necessary to provide 9 
and 5 elastic constants respectively. These constants are 
available from experiments or literature. In this study, the 
simulated deformations obtained by continuum mechanics 
and FEM are used as the benchmarking references for tuning 
the MSM parameters. The mathematical formulations of 
FEM are available from standard texts [9]. 

This is the Pre-Published Version.



     

 (a) (b) 

Figure 2. (a) Modified crossover algorithm XSA, (b) modified 

mutation algorithm MSA. 

III. OPTIMIZING MSM AGAINST FEM 

A. Heuristic Optimization 

The objective here is to determine a set of optimum 
parameters for MSM such that the simulated deformation is 
close to the reference obtained by FEM. This is achieved by 
tuning the MSM parameters until the difference is 
minimized. The basic steps are as follows. 
1. Obtain reference deformation using FEM (benchmark). 
2. Under the same conditions in Step 1, use MSM to 

simulate deformation with a certain set of parameters. 
3. Compute the difference in deformation between the 

benchmark in Step 1 and the result in Step 2. 
4. Obtain a new set of parameters based on the difference 

computed in Step 3. 
5. Use the new parameters in Step 4, repeat Step 2 to Step 5 

until the difference computed in Step 3 is minimized and 
the corresponding set of parameters is the optimum 
solution. 

The set of model parameters in Step 2 and Step 4 is referred 
to as a solution to the problem, and the difference in Step 3 is 
the cost of optimization and computed with a cost function f. 
Heuristic techniques have been used to minimize the cost by 
tuning the parameters automatically. These include SA 
which mimics the thermal annealing process of metals, and 
GA which imitates the crossover and mutation processes of 
chromosomes in the evolution of species. Details about SA 
and GA can be obtained from standard texts [10, 11].  

An early work applied SA to identify the model 
parameters of a 2D mass-spring array [3]. The reference was 
obtained from the analytical solution to static deformation of 

a square plate due to shear and tensile stress. Later work 
primarily employed GA to set the MSM parameters, and the 
reference deformation was obtained numerically by applying 
FEM and continuum mechanics to model elastic materials [2, 
4, 5]. While GA is becoming a common heuristic approach 
to identify MSM parameters, it is well-known for being poor 
in hill-climbing that an immediate solution could be trapped 
by a local minimum, leading to premature convergence. The 
random nature of crossover and mutation operations may 
also result in inferior offspring. Besides, a large population 
of solutions is required in GA. Hybrid algorithms combining 
SA with GA have been proposed and shown to be 
advantageous over pure GA [12, 13]. In addition to the 
reduction in population size, improvement in hill-climbing 
performance at the later stages is achieved by allowing for 
high mutation probability (usually 1% in pure GA). Higher 
reliability and consistency are also demonstrated [14]. This 
hybrid heuristic approach is thus capitalized upon in this 
paper to develop an efficient algorithm for identifying the 
MSM parameters of anisotropic materials.  

B. Integrating SA into GA 

In the proposed approach, standard GA is employed as 
the skeleton of the heuristic optimization process, where SA 
comes into play as an extra step to screen the offspring 
generated by crossover or mutation before they are accepted 
as new chromosomes in the next generation. To this end, the 
Metropolis Criterion in SA is embedded into the crossover 
and mutation operations. The modified crossover algorithm, 
XSA, is shown in Fig. 2(a). After the two offspring 
chromosomes o1 and o2 are created by mating a pair of 
parent chromosomes p1 and p2, each individual offspring is 
compared with the best of the two parents based on the 
Metropolis Criterion. Suppose p1 is better than p2, i.e. 

fp1) < fp2), or in terms of fitness , p1) > p2). If the 

fitness of the offspring is higher than p1), the offspring is 
directly accepted by the new population. Otherwise, the 
offspring may still be accepted if the Metropolis Criterion is 
satisfied, or it is discarded and replaced by its parent. 

On the other hand, SA is incorporated in a similar way to 
give the modified mutation algorithm MSA. As shown in 
Fig. 2(b), after mutation is performed, the mutated 

chromosome m and the original chromosome 0 are 

compared. If m fits better, i.e. m) > 0), it will be 
accepted and put into the new population of the next 

generation. Conversely, if 0 has better fitness, there is still a 

chance of accepting m with a probability of exp(-f/T), 

otherwise m will be rejected, reverting to the original 

chromosome 0. The overall algorithm that incorporates SA 
as an additional screening step in GA is shown in Fig. 3.  

IV. HYBRID HERUISTIC OPTIMIZATION 

The hybrid parameter identification algorithm presented 
above has been applied to obtain the MSM parameters for 
simulating the deformation of orthotropic and transversely 
isotropic materials. The parameters required to model these 
two types of materials using FEM and MSM are given in 
Table I. For MSM, d denotes the nodal damping and k's are 



 

Figure 3. The hybrid algorithm merging GA with SA. 

the spring constants along the principal axes. The MSM 
parameters are unknown and to be identified by the hybrid 
algorithm. 

TABLE I.  MECHANCAL PARAMETERS 

Material FEM MSM 

Orthotropic E1, E2, E3, ν12, ν13, ν23, G12, G13, G23 k1, k2, k3, d 

Trans. isotropic E1, E2, ν12, ν, G12. k1, k2, d 

A. Crossover and Mutation 

In the algorithm, the MSM parameters d and k’s are 
regarded as the genes. The quadruple (k1, k2, k3, d) and 
ordered triple (k1, k2, d) are respectively the general 
representation of a chromosome for orthotropic and 
transversely isotropic materials. A two-point crossover 
operation is implemented for mating a chromosome pair, 
where the starting and end points of the crossover are 
selected at random. A gene in the offspring is created by 
blending the two corresponding genes from each parent by 
linear combination. Furthermore, the two parent genes are 
blended in random proportion to give the new gene. For 
example, suppose two-point crossover is performed on the 
pair of chromosomes (k11, k21, k31, d1) and (k12, k22, k32, d2), 
and the randomly picked crossover points are the third and 
fourth genes, the two offspring will be (k11, k21, k3+, d+) and  

(k12, k22, k3-, d-), with k3+=1k31+(1–1)k32, d+=2d1+(1–2)d2, 

k3-=3k31+(1–3)k32 and d-=4d1+(1–4)d2. The blending 

parameters 1, 2, 3 and 4 in the above expressions are 
random numbers between 0 and 1, so that the genes in the 
offspring carry some information from both parents. On the 
other hand, mutation is implemented by randomly picking 
one of the genes from a given chromosome and replacing it 
with a new value generated at random.  

A slow cooling schedule [15] is adopted in the algorithm. 
The annealing temperature is reduced by one temperature 
step whenever the population evolves into the next 
generation. That is, at each generation, SA is applied to 
crossover and mutation at the same temperature.  

B. Cost Function 

The cost function f() of the algorithm is the sum of the 
Euclidean distance between the nodes obtained with the 
MSM and FEM. Mathematically, the cost function is 
expressed as 
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MSM

ix  and 
FEM

ix are the position vectors of node i in 

the MSM and FEM respectively; N is the number of nodes; 
and F1, F2,..., Fm refer to m sets of nodal forces applied to the 
object. Each set of nodal forces corresponds to a specific 
configuration of the experiment, defining the magnitude and 
direction of the forces exerted on the nodes as well as the 

boundary conditions applied. The fitness function ) in GA 

is defined as the reciprocal of the cost function f(). 
FEM

ix is 

obtained by using static FEM with the known elastic 

constants of materials when equilibrium is reached. f() is 
minimized by tuning the MSM parameters encapsulated in 

chromosome  using the hybrid algorithm. 

C. Parameter Identification 

The proposed algorithm has been tested with cubic 
deformable objects made of orthotropic and transversely 
isotropic materials, denoted respectively by A and B. The 
density of the materials is set to be 1040 kgm

-3
. Both 

deformable objects have a size of 0.1
3
 m

3
, and are modeled 

with 512 nodes. Besides, 1344 springs and 343 hexahedrons 
are used respectively in the MSM and FEM. The elastic 
constants required by the FEM are given in Table II. 

The benchmarking references are obtained with the FEM 
by applying forces respectively along the three principal axes 
in such a way that the forces are exerted on the nodes on one 
face while the opposite face is kept fixed throughout the 
deformation simulation. Fig. 4 shows the reference 
deformation computed for the orthotropic object A. In 
addition, constant forces with magnitudes 1, 5 and 10 N are 
also applied respectively to the objects along each principal 
axis. Hence, for each object, nine sets of reference data (i.e. 
m = 9 in (1)) are obtained by the FEM and used as the 
benchmark, each containing the position of nodes after 
deformable simulation is performed with the force 
configurations and boundary conditions described above. On 



 
Figure 4. Reference FEM deformation of object A: (a) perspective 

view; orthographic views with forces applied along (b) Axis 1, (c) 

Axis 2 and (d) Axis 3. 

the other hand, the MSM parameters identified heuristically 
by the hybrid algorithm are used to simulate the deformation 
under the same force configurations and boundary 
conditions. By benchmarking against each set of reference 
data, the cost function and fitness are evaluated by using (1). 
A population of 50 chromosomes is allowed to evolve for 
100 generations in the genetic algorithms. The MSM 
parameters identified are shown in Table III. 

The optimization errors, i.e. the discrepancy between the 
optimized MSM and the FEM benchmark, are measured by 
calculating the Euclidean distance of the nodes in MSM and 
FEM, normalized to the rest length of spring in the MSM. 
The average and maximum nodal position errors along the 
three principal axes under the specified force configurations 
are given in Table IV and Table V. The minimum nodal 
position error is zero since the positions of some nodes in 
both models are identical. The average error is in the range 
of 0.54% to 6.78% for object A and 0.71% to 10.2% for 
object B, which will not produce noticeable visual 
difference. Nevertheless, it is found that in the specified 
range of external forces, discrepancy increases with the 
magnitude of applied forces. This is because the underlying 
principles of MSM and FEM are different. The large 
deformation resulting from strong external forces exposes 
more conspicuously the inherent difference between them, 
making it more difficult for the MSM to match the FEM 
reference. Besides, the error is smallest along the axis where 
the Young’s modulus is largest, i.e. Axis 3 of object A and 
Axis 1 of object B (see Table IV and Table V). Since 
Young’s modulus is a measure of stiffness, the extent of 
deformation along the principal axis with higher stiffness is 
smaller under the same external forces and MSM is able to 
approximate FEM more closely along those axes, thus 
resulting in small optimization error.  

The convergence of the proposed hybrid method has 
been studied by comparing with the pure GA and pure SA 
approach. A population of 50 chromosomes is allowed to 
evolve for 100 generations in both the hybrid and the pure 
GA approach. The settings of the genetic algorithm in these 
two approaches are identical. The pure SA approach is 
implemented by allowing annealing to proceed for 50 
iterations at each temperature for 100 temperature steps. At 
each temperature step, the average and standard deviation of 
fitness are calculated with the fitness values of the 50 
iterations. Similarly, the settings of the annealing parameters 
in the hybrid and the pure SA approach are the same. The 
results are shown in Fig. 5 and Fig. 6, which demonstrate the 
advantage of the hybrid approach (GA+SA) that asymptotic 
convergence can be attained much sooner even when a high 
mutation probability of 20% is applied. The fluctuation of 
the average and standard deviation of fitness in the hybrid 
approach is also significantly less than that of the pure GA or 
pure SA approach, which is attributed to the use of the 
Metropolis Criterion as an extra screening step. This finding 
is in agreement with research work on heuristic algorithms 
that incorporate SA into GA [14]. 

 

TABLE II.  MECHANCAL PARAMETERS 

Object A 

E1  E2  E3 ν12  ν13  ν23  G12  G13 G23  

179 188 228 0.26 0.30 0.31 57.1 65.8 71.1 

Object B 

E1  E2   ν12   ν23 G12    

170 115  0.46  0.58 33   

TABLE III.  OPTIMIZATION RESULTS 

MSM parameters Object A Object B 

 k1 968.2 735.5 

 k2 1010.0 679.9 

 k3 1137.7 -- 

 d 795.3 537.2 

TABLE IV.  OPTIMIZATION ERROR (%) OF OBJECT A 

 Axis 1 Axis 2 Axis 3 

Force Avg. Max. Avg. Max. Avg. Max. 

1 N 0.67 2.08 0.64 1.97 0.54 1.62 

5 N 3.39 10.3 3.22 9.85 2.71 8.10 

10 N 6.78 20.6 6.44 19.6 5.14 16.1 

TABLE V.  OPTIMIZATION ERROR (%) OF OBJECT B 

 Axis 1 Axis 2/3 

Force Average Max. Average Max. 

1 N 0.71 2.14 1.03 2.87 

5 N 3.55 10.6 5.15 14.2 

10 N 7.07 21.9 10.2 28.4 

 

V. CONCLUSION 

This paper reports a study to develop a hybrid heuristic 
method for identifying MSM parameters by benchmarking 



 

 
Figure 5. Evolution of the average and standard deviation of fitness 

for the orthotropic object A. 

 

 
Figure 6. Evolution of the average and standard deviation of fitness 

for the transversely orthotropic object B. 

the reference obtained by continuum mechanics and FEM. 
Instead of simple elastic materials, transversely isotropic and 
orthotropic properties are considered. With the FEM 
references, a heuristic optimization approach is developed by 
incorporating SA into GA to identify the MSM parameters 
automatically. Results demonstrate that this method exhibits 
better convergence over pure GA approach. Using the 
parameters identified by the hybrid approach to set the mass-
spring models, the virtual tissues and organs are able to 
deform autonomously in a way similar to that achieved by 
the mathematically more accurate FEM but at the speed of 
the computationally efficient MSM. The discrepancy is 
visually not noticeable when virtual tissues are subjected to 
moderate forces, which is adequate for medical education to 
embrace virtual reality for procedural training or for 
applications where rigorous numerical accuracy is not 
necessary, e.g. medical palpation training and virtual surgery 
simulation involving small deformations. The presented 
method provides a feasible approach to automate the setting 
of parameters in mass-spring models for simulating 
deformable objects in the virtual environment. 

ACKNOWLEDGMENT 

The work was supported in part by the Research Grants 
Council of Hong Kong (Project No. PolyU5145/05E and 
PolyU5147/06E) and the Hong Kong Polytechnic University 
(Block Grant, Project a/c code 1-ZV2U and 1-ZV5E). 

REFERENCES 

[1] H. Delingette, “Toward realistic soft-tissue modeling in medical 
simulation,” Proc. IEEE, vol. 86, pp. 512-523, 1988. 

[2] G. Bianchi, B. Solenthaler, G. Székely, and M. Harders, 
“Simultaneous topology and stiffness identification for mass-spring 

models based on FEM reference deformations,” Proc. Medical Image 
Computing and Computer-Assisted Intervention, 2004, pp. 293-301. 

[3] O. Deussen, L. Kobbelt, and P. Tucke, “Using simulated annealing to 
obtain good nodal approximations of deformable bodies,” Proc. 
Eurographics Workshop on Computer Animation and Simulation 
1995, pp. 30-43. 

[4] J. Mosegaard, “Parameter optimization for the behaviour of elastic 
models over time,” Proc. Medicine Meets Virtual Reality, 2004, pp. 
253-255. 

[5] G. Bianchi, M. Harders, and G. Székely, “Mesh topology 
identification for mass-spring models,” Proc. Medical Image 
Computing and Computer-Assisted Intervention, 2003, pp. 50-58. 

[6] A. Van Gelder, “Approximate simulation of elastic membranes by 
triangulated spring meshes,” J. Graphics Tools, vol. 3, pp. 21-42, 
1998. 

[7] A. Lloyd, G. Szekely, and M. Harders, “Identification of spring 
parameters for deformable object simulation,” IEEE Trans. 
Visualization and Computer Graphics, vol. 13, pp. 1081-1094, 2007. 

[8] W. Maurel, Y. Wu, N. Thalmann, and D. Thalmann, Biomechanical 
Models for Soft Tissue Simulation. Berlin: Springer-Verlag, 1988. 

[9] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 6th 
ed. Oxford ; New York: Elsevier/Butterworth-Heinemann, 2005. 

[10] E. H. L. Aarts and J. Korst, Simulated annealing and Boltzmann 
machines: a stochastic approach to combinatorial optimization and 
neural computing. Chichester, England ; New York: Wiley, 1989. 

[11] D. E. Goldberg, Genetic algorithms in search, optimization, and 
machine learning. Reading, Mass.: Addison-Wesley Pub. Co., 1989. 

[12] D. E. Goldberg, “A note on Boltzmann tournament selection for 
genetic algorithms and population-oriented simulated annealing,” 
Complex Systems, vol. 4, pp. 445-460, 1990. 

[13] D. J. Sirag and P. T. Weisser, “Toward a unified thermodynamic 
genetic operator,” Proc. 2nd Int'l Conf. on Genetic Algorithms, 1987, 
pp. 116-122. 

[14] D. Adler, “Genetic algorithms and simulated annealing: A marriage 
proposal,” IEEE Int'l Conf. Neural Networks, 1993, pp. 1104 -1109. 

[15] M. Lundy and A. Mees, “Convergence of an annealing algorithm,” 
Mathematical Programming, vol. 34, pp. 111-124, 1986. 

 




