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Abstract: Biomaterials in nature exhibit delicate structures that are greatly beyond the 

capability of the current manufacturing techniques. Duplicating these structures and 

applying them in engineering may help enhance the performance of traditional functional 

materials and structures. Inspired by gecko’s hierarchical micro- and nano-fibrillar structures 

for adhesion, in this work we fabricated micro-pillars and tubes by adopting the tubular 

dentine of black carp fish teeth as molding template. The adhesion performances of the 

fabricated micro-pillars and tubes were characterized and compared. It was found that the 

pull-off force of a single pillar was about twice of that of the tube with comparable size. Such 

unexpected discrepancy in adhesion was analyzed based on the contact mechanics theories. 
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1. Introduction 

Decades of study on the biological attachment systems showed that micro- and nano-fibrillar 

structures could enhance adhesion [1]. For instance, it was demonstrated that the excellent climbing 

capability of gecko was essentially due to the intermolecular adhesion (van der Waals force) between 

millions of nanoscaled fibrils on its feet and the solid surface it attaches on [2]. The adhesion 

enhancement due to fibrillar structures works even in aquatic environment. Northern clingfish adheres 

firmly to surface under water through micro-fibrillar structures. The adhesion force could reach up to 

230 times of its body weight [3]. To get a better understanding on the mechanism of adhesion 

enhancement by fibrillar structure, a “contact splitting” principle [4] was proposed, predicting that 

adhesion force would increase by a factor of n1/2 if one larger contact is divided into n smaller contacts. 

This theory may explain why in nature heavier animals have finer fibrillar structures for attachment [5]. 

In addition to the size, other parameters, such as fibril geometry [6,7], tilt angle [7–12], contact  

shape [6,13,14], humidity [15] and hierarchical structure [16], also play important roles in determining 

robust adhesion and easy detachment [17]. A design map was established to show the effects of  

these parameters on the adhesion, giving a practical guideline for the design of manmade micro- and  

nano-fibrillar structures for adhesion [18]. 

Inspired by these natural fibrillar structures, people tried out to fabricate micro- and nano-fibrillar 

structures for potential application as artificial adhesive systems. So far, several fabrication techniques 

have been applied, such as mold casting [19], nanodrawing [20], chemical-vapor deposition [21] and 

UV nano-embossing [22]. Among them, mold casting is one of the most widely used approaches in 

which liquid polymers and curing agents are injected into tubular templates. After curing of the 

polymers and removal of the templates, polymeric fibrillar structures are obtained. The structure of the 

obtained fibrils precisely duplicates that of the tubules. Therefore, having a tubular mold of high 

quality is an essential step for the fabrication of fibrillar structures. Nowadays, the prevailing 

techniques used to fabricate microscopic tubular structures include three-dimensional (3D) 

lithographic patterning [19] and anodic oxidation [23,24], both of which involve either subtle 

conditions of chemical reaction or sophisticated experimental facilities. Finding environmentally-friendly 

and cost-effective templates is of great interest and value to the community of biomimetic and 

functional materials. In this work, an attempt was made to do this by resorting to natural materials. 

In nature, biomaterials [25] tend to adopt delicate structures at multiple length scales to achieve 

unique properties and functions. It could be an efficient and practical way to apply biomaterials and 

structures as templates to duplicate both their structures and the consequent properties and functions. 

For example, the alumina replicas of the wing of a Morpho peleides butterfly inherited the excellent 

optical reflection properties and could be used as waveguide and beam splitter [26]. The 

nanostructured surfaces duplicated from the compound eyes of household fly showed superior  

anti-reflection properties, implying significant promise in solar energy harvesting [27]. Artificial 

leaves mimicking rice and lotus leaves were fabricated by a two-step phase-separation micromolding 

process, exhibiting anisotropic wettability and the superhydrophobicity, respectively [28]. In order to 

fabricate micro fibrillar-structures for adhesion, templates with tubular structures are needed. 

Coincidently, in our recent study on the teeth of black carp fish [29], we found that the dentine of black 

carp teeth exhibits delicate tubular structures, making it an ideal template for the fabrication of fibrillar 
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structures. In this paper, fibrillar structures for adhesion use were fabricated by adopting dentine of 

black carp as molding templates. The adhesion properties of the fabricated fibrillar structures were 

studied and compared with the theoretical estimations. 

2. Results and Discussion 

2.1. Tubular Microstructures in Dentine of Black Carp Fish 

As it happens with the teeth of other animals such as mammals, the pharyngeal teeth of black carp 

(Mylopharyngodon piceus), one of the autochthonous fishes inhabiting in East China, exhibit a  

two-layer structure with an outer enameloid layer and inner dentine layer (Figure 1a). Within the 

dentine layer, the tubules are aligned along the radial direction from the inner side to the outer side.  

It was reported that these tubular structures result from the retreat of odontoblasts from the formed 

dentine towards the pulp when the dentine was made up [30]. Scanning Electron Microscopy (SEM) 

characterization indicated that the tubular structure of dentine exhibits distinct structural features at 

different depths. Roughly, it can be divided into four regions (Figure 1a): in Region A, close to the 

enameloid layer, the tubular structure is completely hollow (Figure 1b). This region covers a thickness 

of around 700 μm. In Region B with a thickness of about 500 μm, protrusions of 600 nm diameter 

appear on the walls of the tubules (Figure 1c). Figure 1d shows the subsequent Region C, in which the 

tubules are not hollow but filled with solid cores or fillers. In the most inner region near the pulp 

cavity, Region D, the tubular structures appear hollow again (Figure 1e). In addition, the walls of the 

tubules of Region D seem rougher than those of Region B. It is still unclear why nature adopts such 

sophisticated tubular structures in the dentine of black carp fish. 

Figure 1. (a) Schematic of the longitudinal section of a pharyngeal tooth of black carp and 

(b–e) SEM images of a longitudinal section of black carp teeth from regions A–D indicated 

in (a). 
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Figure 1. Cont. 

  

  

To shed more light on the tubular structure, SEM imaging of the transverse sections of Regions A 

and C was carried out. It can be seen from Figure 2 that the hollow micro-tubules in Region A have a 

1–2 μm diameter and an inter-tubule spacing of 1–3 μm. In contrast, in the Region C, the micro-tubules 

contain solid fillers with diameter ~1.2 μm. The fillers do not completely occupy the space in the 

tubules. Instead, there is some free space between the fillers and inner wall of the tubules. 

Figure 2. SEM images of transverse sections of dentine in (a) Region A; and (b) Region C. 

  



Int. J. Mol. Sci. 2014, 15 14913 

 

 

Energy-dispersive X-ray spectroscope analysis (EDX) was conducted to identify the composition of 

fillers that are encapsulated in the tubules. Figure 3b shows the EDX spectra collected from Points 1 

and 2 (Figure 3a). It can be seen that the EDX spectra at Points 1 and 2 have similar patterns, with 

phosphorus (P), calcium (Ca), carbon (C) and oxygen (O) being the main constituent elements. This 

result confirms that fillers are composed by the same constituents as those of dentine. 

Figure 3. (a) Locations from where X-ray spectroscope analysis (EDX) spectra were 

obtained: Point 1 is on the dentine layer; Point 2 is located on the filler that is encapsulated 

in the tubules of dentine; (b) EDX spectra obtained at Points 1 and 2. 
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2.2. Fabricated Micro-Pillars and Tubes 

Figure 4 shows the micro-pillar and tube arrays fabricated using black carp dentine as the template. 

The pillar diameter is around 1.5 µm and the inter-pillar spacing is 1–3 µm, which are in agreement 

with the dimensional features of the tubular structures in the dentine template (Figure 4a). As it 

happened with the fiber arrays fabricated using other techniques [22,31], bunching phenomenon was 

also observed in our product when longer micro-pillars were fabricated (Figure 4b). In addition  

to micro-pillars, micro-tubes were also obtained by using templates incised from Region C of the 

dentine (Figure 4c). The diameter and wall thickness of the tubes are 1–2 µm and 100–300 nm, 

respectively (Figure 4d). 

Figure 4. SEM images of the fabricated (a,b) micro-pillars and (c,d) micro-tubes. 

 

  

Surprisingly, a two-leveled hierarchical fibrillar structure was obtained (Figure 5a). This is basically 

due to the nano pores branching from the micro main tubules, as shown in Figure 5b. The diameter of 

these nano pores ranges from 100 to 300 nm, justifying the diameter of the branching fibrils shown  

in Figure 5a. 
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Figure 5. SEM images of the (a) fabricated hierarchical fibrillar structure and (b) hierarchical 

tubular structure in black carp dentine. 

  

2.3. Adhesion Properties of Single Micro-Pillar and Tube 

The tip shape of fibrillar structures was found to play an important role in determining their 

adhesion performance [6,7,10,11]. In order to compare the adhesive performances of the fabricated 

micro-pillar and tube, measurement of adhesion force for a single micro-pillar and tube was carried 

out. The aspect ratios of the selected micro-pillar and tube are around 1:2.5. The measured  

force-displacement curves are shown in Figure 6b. It can be seen that the pull-off force for micro-pillar 

is 37.3 ± 2.2 nN (n = 5), while 20.3 ± 1.2 nN (n = 5) for micro-tube. By taking the cross section area as 

the apparent contact area, the strengths (or pull-off stress) are estimated to be around 21.1 and 24.9 kPa for 

a single micro-pillar and tube respectively, which are comparable to the values of adhesive structures 

with other tip shapes [6,32]. 

Figure 6. (a) SEM image of the micro-pillar attached on the tipless Atomic Force 

Microscopy (AFM) probe; (b) Measured adhesion curves of single fabricated micro-pillar 

and micro-tube. 
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Figure 6. Cont. 

 

In contact mechanics, the Johnson-Kendall-Roberts (JKR) theory [33] indicates that the pull-off 
force between an elastic sphere and a substrate is 1.5π γcF R= Δ , where R stands for the radius of the 

sphere and γΔ  is the adhesion energy. For the micro-pillar, if it is assumed that the pillar tip is a  

semi-sphere with radius of 750 nm, the work of adhesion is estimated to be: 

2γ /1.5π 10.6 mJ / mcF RΔ = =  (1)

which is consistent with the previous measurements of van der Waals interaction between 

Polydimethylsiloxane (PDMS) and glass [34]. 

For the adhesion between tube and substrate, the pull-off force can be theoretically estimated by 

considering the end of the tube as a donut-shaped ring with outer and inner radii being R1 and R2 

respectively. Due to the similarity between the axi-symmetric problem and plane strain problem in 

mechanics, the pull-off force between a micro-tube and a flat substrate then can be equated to the  

pull-off force of a 2D (plane strain) cylinder of unit length multiplying the circumference of the ring [35]. 

Therefore, the pull-off force between the tube and substrate is given by the expression. 
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where E and ν are the Young’s Modulus and Poisson’s Ratio of PDMS. Taking E = 750 kPa [36],  
ν = 0.5, γ 10.6Δ =  mJ/m2, R1 = 750 nm and R2 = 550 nm, the pull-off force is estimated to be around 

159 nN, which is much higher than the experimental value 20 nN. The discrepancy between the 

theoretical estimation and experimental measurement of the micro-tube may be attributed to the tilt of 

the tube during adhesion, which results in incomplete contact with the substrate and a much lower  

pull-off force. Similar reduction of pull-off force due to tilting has been also reported for the fibril with 

flat tip but not for fibrils with spherical tip [7,12]. Therefore, tubes may not necessarily lead to stronger 

adhesion in comparison to pillars, unless a complete contact is ensured which, however, is difficult to 

get in practice. 
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3. Experimental Section 

3.1. Fabrication of Templates 

The teeth of black carp were cut from the pharyngeal bone by water-lubricated low-speed corundum 

saw (Minitom, Struers). After cleaning with deionized water and drying in air, the samples were 

embedded in epoxy resin. After curing in air for 10 h, the samples were incised into 300–500 μm thick 

slices with a diamond saw. The incisions were made in such a way that the sections were basically 

perpendicular to the longitudinal direction of the tubules in dentine. After ultrasonic cleaning within  

10 s, rinsing with deionized water and drying in air, the slices were ready for use as the templates of 

mold casting. 

3.2. SEM Characterization and EDX Analysis 

All the specimens were sputtered with a gold coating prior to SEM characterization (JSM-6490, 

JOEL and Quanta 450, FEI) with accelerating voltage equal to 20 kV. For dentine, SEM characterization 

was made on both longitudinal and transverse sections. In order to identify the chemical components of 

the filler encapsulated in the tubules of dentine, EDX analysis was conducted. 

3.3. Fabrication of Micro-Pillars and Tubes Using Mold Casting 

PDMS and curing agent (Sylgard 184) were mixed with volume ratio of 10:1 at 25 °C. The mixture 

was placed in vacuum for 2 min to eliminate the entrapped air bubbles. The dentine template was 

placed on a substrate. The PDMS mixture was poured into the template with the help of a fence  

(a short piece of plastic straw), which was placed onto the top of the template to avoid the PDMS from 

draining away (Figure 7a). The whole assembly was then put into a vacuum oven for curing, at 70 °C, 

for 100 min (Figure 7b). After cooling down at room temperature, the dentine template was etched 

away by immersing the assembly into the 37 wt % hydrochloric acid solution for 8 h, giving rise to the 

micro-pillars or tubes (Figure 7c). 

Figure 7. Schematics of fabrication process: (a) casting; (b) curing at 70 °C for 100 min; (c) demolding. 

 

3.4. Adhesion Measurement 

A micromanipulator (450PM, the Micromanipulator Co., Carson City, NV, USA) was used to pick 

single micro-pillar or tube from the array, which was then attached to the end of a tipless Atomic Force 
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Microscopy (AFM) probe using silver epoxy (No. 16043, Ted Pella, Inc., Redding, CA, USA) (Figure 6a, 

for the pillar). The spring constant of the probe was calibrated by thermal tune method after the 

determination of deflection sensitivity [37]. After mounting the modified probe on the AFM (SPM 

Multimode 8, Bruker Corporation, Billerica, MA, USA), adhesion force between the micro-pillar/tube 

and glass slide was measured under contact mode. Each measurement was repeated by 5 times at 

different positions on the glass slide. Preload of ~2.0 nN was applied in our measurements. 

4. Conclusions 

In summary, in this paper micro-pillars and tubes were fabricated using mold casting technology 

with dentine of black carp as the template. In comparison to the traditional chemical synthetic 

approaches [19–22,24], our dentine templates are easier to prepare and allow us to obtain the  

micro-pillars and tubes at the same time. Our result showed that the micro-pillar exhibits higher  

pull-off force in comparison to the tube of similar diameter. This finding deviates from the theoretical 

estimation based on contact mechanics. Such discrepancy can be attributed to the sensitivity of the 

pull-off force of microscopic tube to the angle at which it makes contact with the substrate. Therefore, 

the tip geometry of a single fibril and the statistical distribution of tilting angles in a fibril array matter 

and deserve more attention in the design of fibrillar structures for adhesion. 
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