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Approach to solving spin-boson dynamics via non-Markovian quantum trajectories
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We develop a systematic and efficient approach for numerically solving the non-Markovian quantum state
diffusion equation for an open quantum system that can be strongly coupled to an environment. As an important
application, we consider a real-time simulation of a spin-boson model in a strong-coupling regime that is difficult
to deal with using conventional methods. We show that the non-Markovian stochastic Schrödinger equation can
be efficiently implemented as a real-time simulation for this model, so as to give an accurate description of
spin-boson dynamics beyond the rotating-wave approximation.
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I. INTRODUCTION

The dynamics of open quantum systems has been exten-
sively studied in the last decades due to its pivotal importance
in the areas of quantum optics, quantum dissipative dynamics,
and quantum information [1–3]. The Lindblad master equa-
tions under the Born-Markov approximations are the major
theoretical tools in depicting quantum evolution under the
influence of external noises, but they are doomed to fail when
the system-environment coupling becomes strong or when the
environment is a structured medium [4]. Moreover, the widely
used rotating-wave approximation (RWA) ceases to be valid
at a strong-coupling regime [1,5–7]. It becomes clear that to
correctly explain the novel quantum-mechanical phenomena
arising from the strong-coupling physics, the counter-rotating
terms neglected in the RWA must be taken into account
properly. In addition, the counter-rotating terms are known
to be important in understanding quantum Zeno and anti-Zeno
effects [8–10]. All the current researches going beyond the
RWA and Markov approximation have shown the necessity of
developing a powerful approach to dealing with new physics
arising from the strong coupling between the open quantum
system of interest and its environment [9–13].

A stochastic Schrödinger equation, named the non-
Markovian quantum state diffusion (QSD) equation, derived
from a microscopic model has several advantages over the
exact master equations. While the exact master equations
exist only for a few solvable models (see, e.g., Ref. [14]),
the exact QSD equation has been established for a generic
class of quantum open systems [15]. However, the applications
of the exact QSD equation are severely limited unless this
time-nonlocal integro-differential equation can be cast into a
numerically implementable time-local form [15–18].

*Corresponding authors: jqyou@csrc.ac.cn; C.H.Lam@polyu.
edu.hk

In real-world problems, solving the exact dynamical equa-
tions in a strong-coupling regime is very difficult. Therefore it
is imperative to develop an efficient perturbative method that
can be implemented to solve open system dynamics dictated
by the strong coupling and structured medium.

In this paper, we develop a systematic and efficient
approach to solving the non-Markovian QSD equations for
open quantum systems up to arbitrary orders of noises.
The major breakthrough is to convert the non-Markovian
QSD equation into a set of coupled stochastic ordinary
differential equations (SODEs) which efficiently evaluates a
series expansion of the previously unsolvable O operator up to
arbitrarily high orders. The method can be generally applied to
an arbitrary finite-state open system coupled to a bosonic bath
with a Lorentzian noise spectrum at zero temperature. As an
important example, our method is used to solve a spin-boson
model with a Lorentzian environment at zero temperature
in the strong-coupling regime that is previously intractable
when real-time quantum dynamics is needed.

II. EXACT QSD EQUATION

To put our discussion into perspective, we first consider a
generic open quantum system with the following Hamiltonian
(setting � = 1)[15]:

Htot = Hsys +
∑

k

(gkLb
†
k + g∗

kL
†bk) +

∑
k

ωkb
†
kbk, (1)

where Hsys is the Hamiltonian of the system under con-
sideration, L is the Lindblad operator, and bk denotes the
annihilation operator of the kth mode of the bosonic bath.
The state of the bath may be specified by a set of complex
numbers {zk} labeling the (Bargmann) coherent states of all
modes. The function zt that characterizes time-dependent
states of the bath may be defined by the Fourier expansion
z∗
t ≡ −i

∑
k g∗

k z
∗
ke

iωkt . When zk is interpreted as a Gaussian
random variable, then zt becomes a Gaussian process with
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the correlation function obtained by the statistical mean
α(t − s) = 〈ztz

∗
s 〉 = ∑

k |gk|2e−iωk (t−s). For the simple case
with a zero-temperature bath, the system state at time t

obtained from projecting the total state to the bath state |z〉,
ψt (z∗) ≡ 〈z|�tot(t)〉, which is called a quantum trajectory,
obeys a linear QSD equation [15],

ψ̇t = −iHsysψt + Lz∗
t ψt − L†Ōψt . (2)

Here, the O operator is defined by δψt/δz
∗
s = O(t,s,z∗)ψt , and

Ō(t,z∗) = ∫ t

0 α(t − s)O(t,s,z∗)ds. Evaluating the O operator
poses a major challenge in solving quantum open systems in
real-world applications. It is remarkable that the evolution is
completely decoupled from projections to other bath states
and hence can be solved independently. In practice, one may
adopt an important sampling scheme in which the normalized
system state ψ̃t (z̃∗) = ψt (z̃∗)/|ψt (z̃∗)| is governed by the
norm-conserving nonlinear QSD equation [15],

˙̃ψt = −iHsysψ̃t + (L − 〈L〉t )z̃∗
t ψ̃t

− [(L† − 〈L†〉t )Ō − 〈(L† − 〈L†〉t )Ō〉t ]ψ̃t , (3)

where Ō denotes Ō(t,z̃∗) and 〈...〉t = 〈ψ̃t |...|ψ̃t 〉. We define a
shifted noise as z̃∗

t = z∗
t + yt , where the shift yt = ∫ t

0 α∗(t −
s)〈L†〉sds satisfies y0 = 0, and

ẏt = −γyt + α∗(0)〈L†〉t . (4)

The state of the open quantum system at t , represented
by the reduced density matrix ρt = Trenv|�tot〉〈�tot|, can be
recovered from an ensemble average ρt = 〈|ψ̃t (z̃∗)〉〈ψ̃t (z̃∗)|〉.

The QSD equations (2) and (3) are exact. A key challenge
is the determination of the O operator contained in these
equations. For most practical problems except for a few
specific examples where the exact O may be explicitly deter-
mined [15–18], one has to resort to a functional expansion [16]
in terms of z̃∗

t , which after adapting to Ō is written as

Ō(t,z̃∗) = Ō(0)(t) +
∫ t

0
Ō(1)(t,υ1)z̃∗

υ1
dυ1

+
∫ t

0

∫ t

0
Ō(2)(t,υ1,υ2)z̃∗

υ1
z̃∗
υ2

dυ1dυ2 + · · ·

+
∫ t

0
· · ·

∫ t

0
Ō(n)(t,υ1, · · · ,υn)z̃∗

υ1
· · · z̃∗

υn

× dυ1 · · · dυn + · · · , (5)

where Ō(n) is symmetric with respect to the time variables
υi . However, finding Ō(n) and performing the integrations for
higher-order terms are formidable tasks and have only been
performed up to n � 2 for some specific models [19].

III. SODE FORMULATION

In this work, we show that the QSD perturbation may be
carried out to an arbitrary order of noise terms. Specifically,
we can efficiently evaluate Eq. (5) up to N = 100 perturbative
terms for the spin-boson model under consideration. We first

rewrite it as

Ō(t,z̃∗) =
NQ∑
n=0

Q
(n)
0 (t,z̃∗), (6)

where NQ = N nominally but we allow NQ < N when
higher-order terms are vanishingly small. We also define a
generalized operator,

Q(n)
m (t,z̃∗) =

∫ t

0
· · ·

∫ t

0
α(t − υ1) · · ·α(t − υm)z̃∗

υm+1
· · ·

× z̃∗
υn

Ō(n)(t,υ1, . . . ,υn)dυ1 · · · dυn. (7)

For m �= 0, Q(n)
m does not contribute directly to Ō but is an

auxiliary operator which needs to be solved simultaneously.
Let 〈gk〉 be a mean coupling strength. Up to leading orders
α(t) ∼ 〈gk〉2, we have z̃∗

t ∼ 〈gk〉, and hence Q(n)
m ∼ 〈gk〉n+m+2

when using also Ō(n) ∼ α(t) [16].
From Eq. (7), each Q(n)

m is an n-dimensional definite time
integral from 0 to t in every dimension. At time t = 0, Q(n)

m

is exactly zero. For sufficiently small t , Q(n)
m roughly scales as

tn, assuming that the integrand varies smoothly with t ; then
Q(n)

m ∼ tn → 0 for large n and small t . Therefore the infinite
series in Eq. (5), which involves only the Q

(n)
0 ’s in particular,

is then guaranteed to be convergent at least for small t . More
generally, Q(n)

m has a finite support (i.e., a domain where Q(n)
m

takes nonzero values) on the (n,m) plane, which expands
with t . Therefore Eq. (5) and equivalently Eq. (6) can be
arbitrarily accurate at a finite NQ. As t increases, especially
for a strong-coupling regime, the support might expand
unboundedly. In practice, we impose the constraint NQ � N
by choosing a large N to assure the accuracy, and consider
Q(n)

m only up to n + m � N , corresponding to order 〈gk〉N+2.
For simplicity, we consider the environmental noise zt

characterized by the Ornstein-Uhlenbeck noise with the
autocorrelation

α(t − s) = 
γ

2
e−γ |t−s|. (8)

Taking the time derivative of Eq. (7) and applying the evolution
equation of Ō(n) [16], we arrive at our central analytical result
after some algebra (see Appendix A):

Q̇(n)
m = δn,0α(0)L + m

n′ α(0)
[
L,Q

(n−1)
m−1

]
+ n − m

n′ z̃t
∗[L,Q(n−1)

m

]
− (m + 1)γQ(n)

m − i
[
Hs,Q

(n)
m

]
−

n∑
k=0

lb∑
l=la

Ck
l C

n−k
n−m−l

Cn
m

[
L†Q(k)

k−l ,Q
(n−k)
m−k+l

]

− (n + 1)L†Q(n+1)
m+1 , (9)

where n′ = max{1,n},la = max{0,k − m},lb = min{k,n −
m}, Q(−1)

m = Q
(n)
−1 = 0, and Ck

l is the binomial coefficient.
Equations (3), (4), and (9) for n + m � N then constitute a
set of coupled SODEs from which ψ̃t (z̃∗) can be obtained. To
make the results more apparent, we also explicitly show in
Appendix B some examples of the evolution equations for the
lower-order terms Q(n)

m (t,z̃∗).
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FIG. 1. (Color online) Spin state 〈σz〉 for various memory param-
eters: γ = 0.2, 0.4, and 0.8. Here ω = 1, 
γ = 0.2, and N = 100.

IV. RESULTS ON A SPIN-BOSON MODEL

Now we apply our method to a spin-boson model with
Hsys = ω

2 σz and L = σx [20–23], assuming an initial system
state of 〈σz〉 = 1 with the bath at zero temperature. In the
following calculations, all coupling strengths and frequencies
are in units of ω. We use

√

γ/2 to characterize the coupling

strength between the system and the environment. This is
consistent with the single-mode case where the bath spectrum
function (i.e., the Lorentzian form) for the Ornstein-Uhlenbeck
noise is reduced to J (ω) = 
γ δ(ω)/2, with 
γ/2 being the
square of the usual single-mode coupling constant. We take

γ = 0.2 in order to consider the strong-coupling regime [24]
(i.e.,

√

γ/2 ∼ 0.32 ∈ [0.1,1] in units of ω) and γ = 0.2, 0.4,

and 0.8 for the bath memory time 1/γ to show Markovian and
non-Markovian behaviors. Each statistical mean involves an
ensemble of Nz = 8000 of complex colored Gaussian noise zt

obeying the correlation function in Eq. (8). For each realization
zt , we obtain one quantum trajectory ψ̃t (z̃∗

t ) by numerically
solving the SODEs up to N = 100 terms. The reduced density
matrix of the system is recovered by a statistical mean:
ρt = 〈|ψ̃t (z̃∗)〉〈ψ̃t (z̃∗)|〉.

Figure 1 shows the evolutions of 〈σz〉. For γ = 0.2
corresponding to a relatively long memory time in our study,
an oscillatory behavior superimposed with a nonexponential
decay of 〈σz〉 is observed, exemplifying strong non-Markovian
effects. The decay behavior becomes more monotonic as γ

is increased. At γ = 0.8, it is essentially exponential early
on, demonstrating weak memory effects [20]. In general,
exponential decay is ensured when t � 1/γ . Because the
ground state of the total system is no longer a product of the
unexcited system state and the vacuum state of the reservoir
when including the counter-rotating terms, collapse and revival
of the system’s state population occur, which indicates that
〈σz〉 approaches zero instead of −1 for a long time. As will
be explained below, 〈σz〉 reported in Fig. 1 admits about 1%
error.

For comparison, the result for the most interesting case of
γ = 0.2 is replotted in Fig. 2 and labeled as N = 100. The
results for other values of N are also shown. We also plot
〈σz〉 calculated similarly using RWA by taking L = σ−. RWA

FIG. 2. (Color online) Spin state 〈σz〉 for N = 100, 70, 40, 10,
and 0, Ō = 0, and RWA. Here γ = 0.2 and 
γ = 0.2.

is known to be accurate when the system-bath coupling is
weak. At the strong coupling considered here, we observe that
the non-Markovian oscillatory behavior of 〈σz〉 is successfully
reproduced. However, in the RWA, 〈σz〉 drops considerably
faster due to neglecting the counter-rotating terms.

V. ALGORITHMS AND ACCURACY

Figure 3(a) plots the average 〈‖ Q
(n)
0 ‖〉 = 〈Tr

√
Q

(n)
0

†
Q

(n)
0 〉

of the trace norm of each perturbative term in Eq. (6) for γ =
0.2. Initial oscillatory behaviors are observed in the four lowest
orders and should be responsible for the similar oscillations
in 〈σz〉. Moreover, note that the low-order terms rise from 0
earlier than the high-order ones. This verifies that the support of
Q(n)

m expands gradually from low orders as explained above.
For n � 10, 〈‖ Q

(n)
0 ‖〉 is already close to 0, implying good

convergence of the functional expansion. We also observe that
〈‖ Q

(n)
0 ‖〉 tends to become constant at large t . Such saturation

is indeed clearly observed for γ = 0.4 and 0.8 at t � 1/γ , and
the saturated value decreases exponentially to 0 with n. For
any given realization, ‖ Q

(n)
0 ‖, however, persists to fluctuate

and arrives only at a dynamic steady state.
To solve the SODEs efficiently, we hence put NQ = 1

initially and increase it adaptively during the time integration
with Euler’s method and a time step �t = 0.02. Only Q(n)

m

values for n + m � NQ are calculated and the rest are
approximated by zeros. Q(n)

m values for n + m = NQ are
monitored at every time step. If the magnitude of any of their
matrix elements goes beyond a threshold εthres = 10−8, NQ is
incremented unless it has reached N , and the last Euler’s step
is recalculated.

The number of calculated terms NQ hence indicates the
number of nonzero terms in the functional expansion. It
depends on both t and z∗

t , and hence admits ensemble
fluctuations. Figure 3(b) plots the probability density P (NQ)
of its final value at t = 12 for NQ < N from the simulations in
Fig. 1. Interestingly, we observe that the distribution is not nar-
row. The tails fit very well to exponential forms. The average
〈NQ〉 increases with the memory time 1/γ . Moreover, it also
increases with the coupling constant 
γ (results not shown).
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FIG. 3. (Color online) (a) Average 〈‖ Q
(n)
0 ‖〉 of the trace norm

of perturbative terms Q
(n)
0 from the simulation in Fig. 1 for γ = 0.2.

(b) The probability density P (NQ) of NQ at t = 12 from the
simulations in Fig. 1 for γ = 0.2, 0.4, and 0.8. Solid lines show
fits to exponential distributions for the tails of the distributions.

To study the importance of individual terms, we have also
simulated with Ō = 0 (i.e., N < 0), N = 0, and N = 10.
The results are shown in Fig. 2. We observe, as expected, that
the decay of 〈σz〉 becomes faster and more monotonic when
fewer terms are included. Incidentally, the results for Ō = 0
and N = 0 for γ = 0.2 in Fig. 2 resemble the accurate results
for γ = 0.8 and 0.4, respectively, in Fig. 1. This suggests that
neglecting the non-Markovian terms effectively decreases the
bath correlation time. For N = 10, 〈σz〉 has nearly converged
to the accurate result at N = 100.

Moreover, for γ = 0.2 and N � 20, the solution of the
SODEs unexpectedly becomes nontrivial. Once NQ is con-
strained at N and the magnitude of a matrix element of
Q(n)

m with n + m = N exceeds a tolerance εtol = 10−4, the
SODEs eventually become unstable with Q(n)

m at large n and
m, diverging smoothly but rapidly with t even at much reduced
�t . The concerned noise realization z∗

t is hence rejected and
excluded from all ensemble averages. Allowing rejection, we
have also performed simulations at N = 40 and 70 and the
results are plotted in Fig. 2. The rejection rates for N = 40,70,
and 100 are R = 11%, 6.6%, and 5.4%, respectively. Due to
the exponential distribution of NQ, R is expected to decrease
exponentially against N . We find that the rejected noise
realizations z∗

t in general are those with large magnitudes.
The rejection induces errors associated with an ensemble bias
which decreases with N . Again, the result for N = 70 has
nearly converged to our most accurate result at N = 100. For

γ = 0.4 and 0.8, as shown in Fig. 1, 〈NQ〉 is much smaller and
thus noise rejection events become rare.

Since the SODEs are exact, the errors occurring in our
algorithm can be fully analyzed. The rms error of 〈σz〉 can
be approximated by

√
E2

Nz + E2
�t + E2

N . Here, ENz ∼ 1/
√

Nz

denotes the ensemble sampling error. For all calculations
reported in Fig. 1, we find ENz � 0.004 after averaging over
time. The time discretization error E�t is found to be about
0.001 from simulations with identical noise but different �t .
Also, EN is due to including at most N = 100 perturbative
terms. For γ = 0.4 and 0.8, EN � 0 because higher-order
terms are vanishingly small. For γ = 0.2, we find EN � 0.002
from comparing results at N = 70 and 100 with identical
noise. Finally, 〈σz〉 admits about 1% error in all three cases.
The simulations for γ = 0.2, 0.4, and 0.8 take about 36,
10, and 2 days, respectively, to execute on an Intel core-i7
CPU core. Indeed, QSD approaches are fully capable of
parallelization. The accuracy for γ = 0.4 and 0.8 can be further
improved substantially by increasing Nz. More challenging is
the γ = 0.2 case, since one must also reduce EN by increasing
N . This leads to much more intensive computations. Note that
the program run time is of the order NzN 4/�t . Minimizing EN
and ENz simultaneously to produce accurate results will be crit-
ical and challenging when pushing to even stronger couplings.

VI. CONCLUSION

In conclusion, we have developed a high-order non-
Markovian QSD approach for open quantum systems based on
a set of coupled SODEs which can be efficiently implemented
in numerical simulations. As an important example, our
method is applied to a spin-boson model with a Lorentzian bath
spectrum at zero temperature in the strong-coupling regime.
Note that a generalization to the finite temperature case is
straightforward [25]. In particular, for this spin-boson model,
the finite-temperature non-Markovian QSD equation actually
takes the exact same form as the zero-temperature QSD
equation. An extension to general interaction spectra may also
be possible by including coupled equations for a full set of new
operators analogous to Q(n)

m in Eq. (7), each with a particular
subset of α’s replaced by their derivatives. Our numerical sim-
ulations of the spin-boson model have shed a new light on the
spin dynamics without the RWA. It is shown that even though
the RWA may successfully reproduce non-Markovian spin-
state transient oscillations, it cannot accurately capture the bath
memory effects. We emphasize that our proposed approach is
efficient and readily applicable to numerically solving the non-
Markovian quantum dynamics for open quantum systems with
strong coupling and structured bosonic medium. Possible fur-
ther applications include, for example, multilevel quantum sys-
tems in a strong-coupling regime [26], photonic band-gap ma-
terials [4,27], and also chemical and biological systems [28].

Note added: Recently, we become aware of a different kind
of numerically exact hierarchical equations by Strunz and co-
workers [29].
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APPENDIX A: DERIVATION OF EQ. (9)

In this section we provide basic ideas and key derivations to support our central analytical result given by Eq. (9). Our
motivation for a systematic and efficient approach to solving the non-Markovian quantum state diffusion equation is to solve
the formidable challenge in the numerical evaluation of the multidimensional integrals in the functional expansion of the O

operator [16],

O(t,s,z̃∗) = O(0)(t,s) +
∫ t

0
O(1)(t,s,υ1)z̃∗

υ1
dυ1 +

∫ t

0

∫ t

0
O(2)(t,s,υ1,υ2)z̃∗

υ1
z̃∗
υ2

dυ1dυ2 + · · ·

+
∫ t

0
· · ·

∫ t

0
O(n)(t,s,υ1, . . . ,υn)z̃∗

υ1
· · · z̃∗

υn
dυ1 · · · dυn + · · · , (A1)

or the Ō operator in Eq. (5) of the main text. In the notation of Eq. (6) of the main text, it is clear that only the value of Q
(n)
0

contributes to Ō directly. However, in order to have a closed set of equations, we need to introduce more general operators Q(n)
m

with n � m � 0, which are defined in Eq. (7) with Ō (n) = ∫ t

0 α(t − s)O(n)ds. To derive readily solvable evolution equations, we
differentiate Q(n)

m with respect to time. The calculation is in general straightforward, except that one of the terms contains in the
integrand a nontrivial factor

∫ t

0 α(t − s)Ȯ(n)(t,s,υ1, . . . ,υn)ds. Using an expression of Ȯ (n) from Ref. [16], we obtain

∫ t

0
α(t − s)Ȯ(n)(t,s,υ1, . . . ,υn)ds = −i[HS,Ō

(n)(t,υ1, . . . ,υn)]

− 1

n!

∑
Pn∈Sn

n∑
k=0

[L†Ō(k)(t,υPn(1), . . . ,υPn(k)),Ō
(n−k)(t,υPn(k+1), . . . ,υPn(n))]

− (n + 1)L†
∫ t

0
α(t − υn+1)Ō(n+1)(t,υ1, . . . ,υn,υn+1)dυn+1. (A2)

In the following we consider cases n = 0 and n > 0 separately for the Ornstein-Uhlenbeck noise in Eq. (8). For n = 0, Eq. (7)
reduces to

Q
(0)
0 (t,z̃∗) = Ō(0)(t). (A3)

Differentiating Eq. (A3) gives

Q̇
(0)
0 (t,z̃∗) = α(0)L − γQ

(0)
0 (t,z̃∗) − i

[
HS,Q

(0)
0 (t,z̃∗)

] − [
L†Q(0)

0 (t,z̃∗),Q(0)
0 (t,z̃∗)

] − L†Q(1)
0 (t,z̃∗), (A4)

where we have used Eq. (A2) with n = 0 and the initial condition O(0)(t,t) = L [16].
For n > 0, we differentiate Eq. (7) and obtain

Q̇(n)
m (t,z̃∗) = ∂tQ

(n)
m (t,z̃∗)

= (
∂t1 + ∂t2 + ∂t3 + ∂t4 + ∂t5

) ∫ t1

0
ds

∫ t2

0
dυ1 · · ·

∫ t2

0
dυm

∫ t3

0
dυm+1 · · ·

∫ t3

0
dυnα(t4 − s)

×α(t4 − υ1) · · ·α(t4 − υm)z̃∗
υm+1

· · · z̃∗
υn

O(n)(t5,s,υ1, . . . ,υn)|t1=t2=t3=t4=t5=t

= m

n
α(0)

[
L,Q

(n−1)
m−1 (t,z̃∗)

] + n − m

n
z̃∗
t

[
L,Q(n−1)

m (t,z̃∗)
] − (m + 1)γQ(n)

m (t,z̃∗) − i
[
Hs,Q

(n)
m (t,z̃∗)

]

−
n∑

k=0

lb∑
l=la

Ck
l C

n−k
n−m−l

Cn
m

[
L†Q(k)

k−l(t,z̃
∗),Q(n−k)

m−k+l(t,z̃
∗)

] − (n + 1)L†Q(n+1)
m+1 (t,z̃∗). (A5)

Here we have used Eq. (A2), the symmetric property of Ō with regard to time variables υi , i.e.,

Ō(n)(t,υ1, . . . ,υi, . . . ,υj , . . . ,υn) = Ō(n)(t,υ1, . . . ,υj , . . . ,υi, . . . ,υn), (A6)
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and the conditions [16]

O (n)(t,t,υ1, . . . ,υn) = 0 (for n ≥ 1), (A7)

O(n)(t,s,t,υ2, . . . ,υn) = 1

n
[L,O(n−1)(t,s,υ2, . . . ,υn)] (for n ≥ 1). (A8)

Equations (A4) and (A5) can be combined and rewritten as Eq. (9) of the main text.

APPENDIX B: EXAMPLES OF Q̇(n)
m AT LOW ORDERS

In this section, we give some examples of the evolution equations for the lower-order terms Q(n)
m (t,z̃∗) in order to make our

results more apparent.
(1) When n = 1,m = 0,

Q̇
(1)
0 (t,z̃∗) = z̃∗

t

[
L,Q

(0)
0 (t,z̃∗)

] − γQ
(1)
0 (t,z̃∗) − i

[
Hs,Q

(1)
0 (t,z̃∗)

]
−

1∑
k=0

min{k,1}∑
l=max{0,k}

Ck
l C

1−k
1−l

C1
0

[
L†Q(k)

k−l(t,z̃
∗),Q(1−k)

−k+l (t,z̃
∗)

] − 2L†Q(2)
1 (t,z̃∗)

= z̃∗
t

[
L,Q

(0)
0 (t,z̃∗)

] − γQ
(1)
0 (t,z̃∗) − i

[
Hs,Q

(1)
0 (t,z̃∗)

] − [
L†Q(0)

0 (t,z̃∗),Q(1)
0 (t,z̃∗)

]
− [

L†Q(1)
0 (t,z̃∗),Q(0)

0 (t,z̃∗)
] − 2L†Q(2)

1 (t,z̃∗). (B1)

(2) When n = m = 1,

Q̇
(1)
1 (t,z̃∗) = α(0)

[
L,Q

(0)
0 (t)

] − 2γQ
(1)
1 (t,z̃∗) − i

[
Hs,Q

(1)
1 (t,z̃∗)

]
−

1∑
k=0

min{k,0}∑
l=max{0,k−1}

Ck
l C

1−k
0−l

C1
1

[
L†Q(k)

k−l(t,z̃
∗),Q(1−k)

1−k+l(t,z̃
∗)

] − 2L†Q(2)
2 (t,z̃∗)

= α(0)
[
L,Q

(0)
0 (t)

] − 2γQ
(1)
1 (t,z̃∗) − i

[
Hs,Q

(1)
1 (t,z̃∗)

] − [
L†Q(0)

0 (t,z̃∗),Q(1)
1 (t,z̃∗)

]
− [

L†Q(1)
1 (t,z̃∗),Q(0)

0 (t,z̃∗)
] − 2L†Q(2)

2 (t,z̃∗). (B2)

(3) When n = 2,m = 1,

Q̇
(2)
1 (t,z̃∗) = α(0)

2

[
L,Q

(1)
0 (t,z̃∗)

] + z̃∗
t

2

[
L,Q

(1)
1 (t,z̃∗)

] − 2γQ
(2)
1 (t,z̃∗) − i

[
Hs,Q

(2)
1 (t,z̃∗)

] −
{

2∑
k=0

Ek

}
− 3L†Q(3)

2 (t,z̃∗),

where {
2∑

k=0

Ek

}
= 1

2!

∫ t

0
dυ1

∫ t

0
dυ2α(t − υ1)z̃∗

υ2

∑
P2∈S2

2∑
k=0

[L†Ō(k)(t,υP2(1),...,υP2(k)),Ō
(2−k)(t,υP2(k+1),...,υP2(2))]

= 1

2!

∫ t

0
dυ1

∫ t

0
dυ2α(t − υ1)z̃∗

υ2
{2[L†Ō(0)(t),Ō(2)(t,υ1,υ2)] + [L†Ō(1)(t,υ1),Ō(1)(t,υ2)]

+ [L†Ō(1)(t,υ2),Ō(1)(t,υ1)] + 2[L†Ō(2)(t,υ1,υ2),Ō(0)(t)]}

=
2∑

k=0

min{k,1}∑
l=max{0,k−1}

Ck
l C

2−k
1−l

C2
1

[
L†Q(k)

k−l(t,z̃
∗),Q(2−k)

1−k+l(t,z̃
∗)

]
. (B3)

Therefore,

Q̇
(2)
1 (t,z̃∗) = α(0)

2

[
L,Q

(1)
0 (t,z̃∗)

] + z̃∗
t

2

[
L,Q

(1)
1 (t,z̃∗)

] − 2γQ
(2)
1 (t,z̃∗) − i

[
Hs,Q

(2)
1 (t,z̃∗)

] − 3L†Q(3)
2 (t,z̃∗)

− 1

2

{
2
[
L†Q(0)

0 (t,z̃∗),Q(2)
1 (t,z̃∗)

] + [
L†Q(1)

1 (t,z̃∗),Q(1)
0 (t,z̃∗)

] + [
L†Q(1)

0 (t,z̃∗),Q(1)
1 (t,z̃∗)

]
+ 2

[
L†Q(2)

1 (t,z̃∗),Q(0)
0 (t,z̃∗)

]}
. (B4)
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(4) When n = m = 2,

Q̇
(2)
2 (t,z̃∗) = α(0)

[
L,Q

(1)
1 (t,z̃∗)

] − 3γQ
(2)
2 (t,z̃∗) − i

[
Hs,Q

(2)
2 (t,z̃∗)

]
−

2∑
k=0

min{k,0}∑
l=max{0,k−2}

Ck
l C

2−k
0−l

C2
2

[
L†Q(k)

k−l(t,z̃
∗),Q(2−k)

2−k+l(t,z̃
∗)

] − 3L†Q(3)
3 (t,z̃∗)

= α(0)
[
L,Q

(1)
1 (t,z̃∗)

] − 3γQ
(2)
2 (t,z̃∗) − i

[
Hs,Q

(2)
2 (t,z̃∗)

] − [
L†Q(0)

0 (t,z̃∗),Q(2)
2 (t,z̃∗)

]
− [

L†Q(1)
1 (t,z̃∗),Q(1)

1 (t,z̃∗)
] − [

L†Q(2)
2 (t,z̃∗),Q(0)

0 (t,z̃∗)
] − 3L†Q(3)

3 (t,z̃∗). (B5)

(5) When n = 3,m = 1,

Q̇
(3)
1 (t,z̃∗) = 1

3
α(0)

[
L,Q

(2)
0 (t,z̃∗)

] + 2

3
zt

[
L,Q

(2)
1 (t,z̃∗)

] − 2γQ
(3)
1 (t,z̃∗) − i

[
Hs,Q

(3)
1 (t,z̃∗)

]

−
3∑

k=0

min{k,2}∑
l=max{0,k−1}

Ck
l C

3−k
2−l

C3
1

[
L†Q(k)

k−l(t,z̃
∗),Q(3−k)

1−k+l(t,z̃
∗)

] − 4L†Q(4)
2 (t,z̃∗)

= 1

3
α(0)

[
L,Q

(2)
0 (t,z̃∗)

] + 2

3
zt

[
L,Q

(2)
1 (t,z̃∗)

] − 2γQ
(3)
1 (t,z̃∗) − i

[
Hs,Q

(3)
1 (t,z̃∗)

]
− [

L†Q(0)
0 (t,z̃∗),Q(3)

1 (t,z̃∗)
] − 1

3

[
L†Q(1)

1 (t,z̃∗),Q(2)
0 (t,z̃∗)

] − 2

3

[
L†Q(1)

0 (t,z̃∗),Q(2)
1 (t,z̃∗)

]
− 2

3

[
L†Q(2)

1 (t,z̃∗),Q(1)
0 (t,z̃∗)

] − 1

3

[
L†Q(2)

0 (t,z̃∗),Q(1)
1 (t,z̃∗)

] − [
L†Q(3)

1 (t,z̃∗),Q(0)
0 (t,z̃∗)

]
− 4L†Q(4)

2 (t,z̃∗). (B6)

(6) When n = 3,m = 2,

Q̇
(3)
2 (t,z̃∗) = 2

3
α(0)

[
L,Q

(2)
1 (t,z̃∗)

] + 1

3
z̃∗
t

[
L,Q

(2)
2 (t,z̃∗)

] − 3γQ
(3)
2 (t,z̃∗) − i

[
Hs,Q

(3)
2 (t,z̃∗)

]

−
3∑

k=0

min{k,1}∑
l=max{0,k−2}

Ck
l C

3−k
1−l

C3
2

[
L†Q(k)

k−l(t,z̃
∗),Q(3−k)

2−k+l(t,z̃
∗)

] − 4L†Q(4)
3 (t,z̃∗)

= 2

3
α(0)

[
L,Q

(2)
1 (t,z̃∗)

] + 1

3
z̃∗
t

[
L,Q

(2)
2 (t,z̃∗)

] − 3γQ
(3)
2 (t,z̃∗) − i

[
Hs,Q

(3)
2 (t,z̃∗)

]
− [

L†Q(0)
0 (t,z̃∗),Q(3)

2 (t,z̃∗)
] − 2

3

[
L†Q(1)

1 (t,z̃∗),Q(2)
1 (t,z̃∗)

] − 1

3

[
L†Q(1)

0 (t,z̃∗),Q(2)
2 (t,z̃∗)

]
− 1

3

[
L†Q(2)

2 (t,z̃∗),Q(1)
0 (t,z̃∗)

] − 2

3

[
L†Q(2)

1 (t,z̃∗),Q(1)
1 (t,z̃∗)

] − [
L†Q(3)

2 (t,z̃∗),Q(0)
0 (t,z̃∗)

]
− 4L†Q(4)

3 (t,z̃∗). (B7)

(7) When n = m = 3,

Q̇
(3)
3 (t,z̃∗) = α(0)

[
L,Q

(2)
2 (t,z̃∗)

] − 4γQ
(3)
3 (t,z̃∗)

− i
[
Hs,Q

(3)
3 (t,z̃∗)

] −
3∑

k=0

min{k,0}∑
l=max{0,k−3}

Ck
l C

3−k
0−l

C3
3

[
L†Q(k)

k−l(t,z̃
∗),Q(3−k)

3−k+l(t,z̃
∗)

] − 4L†Q(4)
4 (t,z̃∗)

= α(0)
[
L,Q

(2)
2 (t,z̃∗)

] − 4γQ
(3)
3 (t,z̃∗) − i

[
Hs,Q

(3)
3 (t,z̃∗)

] − [
L†Q(0)

0 (t,z̃∗),Q(3)
3 (t,z̃∗)

]
− [

L†Q(1)
1 (t,z̃∗),Q(2)

2 (t,z̃∗)
] − [

L†Q(2)
2 (t,z̃∗),Q(1)

1 (t,z̃∗)
] − [

L†Q(3)
3 (t,z̃∗),Q(0)

0 (t,z̃∗)
]

− 4L†Q(4)
4 (t,z̃∗). (B8)
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[15] L. Diósi, N. Gisin, and W. T. Strunz, Phys. Rev. A 58, 1699
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