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Kraus and Yano (2003) established the share-of-surplus product line optimisation model and developed a heuristic procedure for
this nonlinear mixed-integer optimisation model. In their model, price of a product is defined as a continuous decision variable.
However, because product line optimisation is a planning process in the early stage of product development, pricing decisions
usually are not very precise. In this research, a nonlinear integer programming share-of-surplus product line optimization model
that allows the selection of candidate price levels for products is established. The model is further transformed into an equivalent
linear mixed-integer optimisation model by applying linearisation techniques. Experimental results in different market scenarios
show that the computation time of the transformed model is much less than that of the original model.

1. Introduction

Today, many firms adopt the strategy of product line opti-
misation to satisfy diverse customer requirements and gain
competitive advantages. There are already many product
line optimisation models proposed by scholars, for example,
buyers’ welfare [1], seller’s welfare [2], share-of-choice [3], and
share-of-surplus [4]. The comprehensive descriptions on the
classifications and limitations of product line optimisation
can be found in the survey papers by Kaul and Rao [5] and
Belloni and Freund [6].

Kraus and Yano [4] established the share-of-surplus
product line optimisation model. This model is nonconcave,
which makes it very difficult to obtain the global optimal
solution. To solve the model, they developed a heuristic
algorithm based on simulated annealing to obtain the near-
optimal solutions.

In the Kraus and Yano [4] model, product prices are
defined as continuous decision variables. However, product
line optimisation is a decision process in the early stages of
product development; in addition, although product pricing
is involved in this process, it tends to be strategic and rela-
tively rough. Precise product pricing is determined only after
a product is available for sale. For example, when planning

a product line, a companymay price a product approximately
(e.g., $12,000 or $13,000) rather than precisely (e.g., $12,399).
Therefore, taking product price as a continuous decision
variable and obtaining the precise optimal product price may
not be necessary for most firms; an alternative approach is to
select prices from the candidate price levels. This approach
has been widely applied in many research papers related to
other types of product line optimisation [7–11].

In this research, the Kraus and Yano [4] model is
extended as a nonlinear integer programming model that
allows the selection of candidate price levels for products.
The model is further transformed into an equivalent linear
mixed-integer optimisation model by applying linearisation
techniques. Because the transformed model can be solved by
many well-developed algorithms, such as the simplex-based
branch-and-bound algorithm, it can be handled by existing
commercial optimisation software packages, for example,
IBM ILOG and LINGO. In the numeric experiment section,
the computation times of the originalmodel and transformed
model are compared in various market scenarios, and the
results show that the transformed model is very effective.

The rest of this paper is organised as follows: in Section 2,
an extended model for the share-of-surplus product line
optimisation is established and further transformed into
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an equivalent linear model. In Section 3, simulation cases
of product line optimisation in three market scenarios
are generated, and numeric experiments are performed to
empirically verify the effectiveness of the proposed approach.
Characteristics of the linearised model are discussed and
conclusions are drawn in Section 4.

2. Optimisation Model and Linearisation

2.1. The Extended Share-of-Surplus Product Line Optimisation
Model. The optimisation problem is described as follows. A
firm is going to develop a product line. There are 𝐼 market
segments for the product, each of which contains customers
with homogeneous preferences. The size (or the number of
expected consumers) of the 𝑖th segment is denoted as 𝐷

𝑖
.

A reference set containing 𝐽 candidate products has been
generated for further selection. The utility (measured in
dollars) of the customers in the 𝑖th market segment towards
the 𝑗th product is denoted as 𝑈

𝑖𝑗
. The variable cost of the 𝑗th

product is denoted as 𝑐
𝑗
. There are𝐾

𝑗
product price levels for

the 𝑗th product, and the 𝑘th price level of the 𝑗th product is
denoted by 𝑝

𝑗𝑘
. The purpose of the problem is to determine

which products from the reference set should be included
in the product line and which price level to choose for each
product of the product line to maximise the company’s total
profit.

Assumptions of the optimisation problem include [4] the
following. (1) Customers choose product by following the
share-of-surplus choice rule. Kraus and Yano [4] explained
the rule as follows. “The share-of-surplus choice rule defines
the probability that a customer in a segment selects a certain
product as the ratio of the segment’s surplus from this partic-
ular product to the segment’s total surplus across all products
with positive surplus (for that customer or segment).” (2)

competitive companies do not respond to the company’s
moves (i.e., not a game). (3) The prices of the competitive
products are given constants. (4) Price discrimination is not
allowed. (5)Customers have complete information regarding
the available products and their prices.

Let 𝑦
𝑖𝑗
be a binary decision variable such that 𝑦

𝑖𝑗
= 1 if all

or a portion of customers in the 𝑖th segment choose the 𝑗th
product and𝑦

𝑖𝑗
= 0 otherwise, and let𝑥

𝑗𝑘
be a binary decision

variable such that 𝑥
𝑗𝑘

= 1 if the 𝑘th price level is selected
for the 𝑗th product and 𝑥

𝑗𝑘
= 0 otherwise; the optimisation

problem can be formulated as the following nonlinear integer
programming model (Model A):

Max
𝐼

∑

𝑖=1

𝐽

∑

𝑗=1

𝐷
𝑖
(

𝐾𝑗

∑

𝑘=1

𝑥
𝑗𝑘
𝑝
𝑗𝑘
− 𝑐
𝑗
)

×
[
[

[

(𝑈
𝑖𝑗
− ∑
𝐾𝑗

𝑘=1
𝑥
𝑗𝑘
𝑝
𝑗𝑘
) 𝑦
𝑖𝑗

∑
𝐽

𝑗
󸀠
=1
[(𝑈
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󸀠 − ∑
𝐾
𝑗󸀠
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𝑥
𝑗
󸀠
𝑘
𝑝
𝑗
󸀠
𝑘
) 𝑦
𝑖𝑗
󸀠]

]
]

]

(1)

s.t.
𝐽

∑

𝑗
󸀠
=1

[

[

(𝑈
𝑖𝑗
󸀠 −

𝐾
𝑗󸀠

∑

𝑘=1

𝑥
𝑗
󸀠
𝑘
𝑝
𝑗
󸀠
𝑘
)𝑦
𝑖𝑗
󸀠
]

]

> 0,

𝑖 = 1, 2, . . . , 𝐼

(2)

(𝑈
𝑖𝑗
−

𝐾𝑗

∑

𝑘=1

𝑥
𝑗𝑘
𝑝
𝑗𝑘
)𝑦
𝑖𝑗
≥ 0, 𝑖 = 1, 2, . . . , 𝐼;

𝑗 = 1, 2, . . . , 𝐽

(3)

(𝑈
𝑖𝑗
−

𝐾𝑗

∑

𝑘=1

𝑥
𝑗𝑘
𝑝
𝑗𝑘
)(1 − 𝑦

𝑖𝑗
) ≤ 0,

𝑖 = 1, 2, . . . , 𝐼; 𝑗 = 1, 2, . . . , 𝐽

(4)

𝐾𝑗

∑

𝑘=1

𝑥
𝑗𝑘
= 1, 𝑗 = 1, 2, . . . , 𝐽 (5)

𝑦
𝑖𝑗
, 𝑥
𝑗𝑘
∈ {0, 1} , 𝑖 = 1, 2, . . . , 𝐼;

𝑗 = 1, 2, . . . , 𝐽; 𝑘 = 1, 2, . . . , 𝐾
𝑗
.

(6)

The objective function of the model is to maximise
the total profit (revenue minus cost) of the product line
in all segments. The expression ∑

𝐾𝑗

𝑘=1
𝑥
𝑗𝑘
𝑝
𝑗𝑘

− 𝑐
𝑗
in the

objective function represents the marginal profit of the 𝑗th
product. The expression (𝑈

𝑖𝑗
− ∑
𝐾𝑗

𝑘=1
𝑥
𝑗𝑘
𝑝
𝑗𝑘
)𝑦
𝑖𝑗
/∑
𝐽

𝑗
󸀠
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󸀠 −

∑
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𝑥
𝑗
󸀠
𝑘
𝑝
𝑗
󸀠
𝑘
)𝑦
𝑖𝑗
󸀠] represents the choice probability of cus-

tomers in the 𝑖th market segment towards the 𝑗th product
by following the share-of-surplus purchase choice rule. Con-
straint (2) can avoid the case that the denominator part is
equal to zero. Constraint (3) ensures that a product’s utility
surplus must be nonnegative if the product is selected by
customers. Constraint (4) guarantees that a product’s utility
surplus must be nonpositive if the product is not selected by
customers. Constraint (5) ensures that only one price level
is selected for a specific product. Constraint (6) confines the
decision variables 𝑦

𝑖𝑗
and 𝑥

𝑗𝑘
as binary ones.

2.2. Linearisation Approach. Consider the following linear
mixed-integer programming model (Model B):

Max
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(8)

𝑧1
𝑖𝑗
≤ 𝑀𝑦

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝐼; 𝑗 = 1, 2, . . . , 𝐽 (9)

𝑧1
𝑖𝑗
≤ 𝑧

deno
𝑖

+𝑀(1 − 𝑦
𝑖𝑗
) , 𝑖 = 1, 2, . . . , 𝐼;

𝑗 = 1, 2, . . . , 𝐽

(10)
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𝑧1
𝑖𝑗
≥ 𝑧

deno
𝑖

+𝑀(𝑦
𝑖𝑗
− 1) , 𝑖 = 1, 2, . . . , 𝐼;

𝑗 = 1, 2, . . . , 𝐽

(11)

𝑧2
𝑖𝑗𝑘

≤ 𝑀𝑧4
𝑖𝑗𝑘
, 𝑖 = 1, 2, . . . , 𝐼; 𝑗 = 1, 2, . . . , 𝐽;

𝑘 = 1, 2, . . . , 𝐾
𝑗

(12)

𝑧2
𝑖𝑗𝑘

≤ 𝑧
deno
𝑖

+𝑀(1 − 𝑧4
𝑖𝑗𝑘
) , 𝑖 = 1, 2, . . . , 𝐼;

𝑗 = 1, 2, . . . , 𝐽; 𝑘 = 1, 2, . . . , 𝐾
𝑗

(13)

𝑧2
𝑖𝑗𝑘

≥ 𝑧
deno
𝑖

+𝑀(𝑧4
𝑖𝑗𝑘

− 1) , 𝑖 = 1, 2, . . . , 𝐼;

𝑗 = 1, 2, . . . , 𝐽; 𝑘 = 1, 2, . . . , 𝐾
𝑗

(14)

𝑧4
𝑖𝑗𝑘

≤ 𝑥
𝑗𝑘
, 𝑖 = 1, 2, . . . , 𝐼; 𝑗 = 1, 2, . . . , 𝐽;

𝑘 = 1, 2, . . . , 𝐾
𝑗

(15)

𝑧4
𝑖𝑗𝑘

≤ 𝑦
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝐼; 𝑗 = 1, 2, . . . , 𝐽;

𝑘 = 1, 2, . . . , 𝐾
𝑗

(16)

𝑧4
𝑖𝑗𝑘

≥ 1 +𝑀(𝑥
𝑗𝑘
+ 𝑦
𝑖𝑗
− 2) , 𝑖 = 1, 2, . . . , 𝐼;

𝑗 = 1, 2, . . . , 𝐽; 𝑘 = 1, 2, . . . , 𝐾
𝑗
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𝑖𝑗𝑘𝑘
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𝑖

+𝑀(𝑥
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+ 𝑥
𝑗𝑘
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𝑖𝑗
− 3) ,

𝑖 = 1, 2, . . . , 𝐼; 𝑗 = 1, 2, . . . , 𝐽;

𝑘 = 1, 2, . . . , 𝐾
𝑗
; 𝑘
󸀠
= 1, 2, . . . , 𝐾

𝑗
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𝐽

∑

𝑗
󸀠
=1

(𝑈
𝑖𝑗
󸀠𝑦
𝑖𝑗
󸀠 −

𝐾
𝑗󸀠

∑

𝑘=1

𝑝
𝑗
󸀠
𝑘
𝑧4
𝑖𝑗
󸀠
𝑘
) > 0, 𝑖 = 1, 2, . . . , 𝐼
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𝑖𝑗
𝑦
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−

𝐾𝑗
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𝑘=1

𝑝
𝑗𝑘
𝑧4
𝑖𝑗𝑘

≥ 0, 𝑖 = 1, 2, . . . , 𝐼;

𝑗 = 1, 2, . . . , 𝐽

(20)

𝑈
𝑖𝑗
−

𝐾𝑗

∑

𝑘=1

𝑝
𝑗𝑘
𝑥
𝑗𝑘
− 𝑈
𝑖𝑗
𝑦
𝑖𝑗
+

𝐾𝑗

∑

𝑘=1

𝑝
𝑗𝑘
𝑧4
𝑖𝑗𝑘

≤ 0,

𝑖 = 1, 2, . . . , 𝐼; 𝑗 = 1, 2, . . . , 𝐽

(21)

𝐾𝑗

∑

𝑘=1

𝑥
𝑗𝑘
= 1, 𝑗 = 1, 2, . . . , 𝐽 (22)

𝑦
𝑖𝑗
, 𝑥
𝑗𝑘
∈ {0, 1} , 𝑖 = 1, 2, . . . , 𝐼;

𝑗 = 1, 2, . . . , 𝐽; 𝑘 = 1, 2, . . . , 𝐾
𝑗

(23)

𝑧1
𝑖𝑗
, 𝑧2
𝑖𝑗𝑘
, 𝑧3
𝑖𝑗𝑘𝑘
󸀠 , 𝑧4
𝑖𝑗𝑘
, 𝑧

deno
𝑖

≥ 0,

𝑖 = 1, 2, . . . , 𝐼; 𝑗 = 1, 2, . . . , 𝐽;

𝑘 = 1, 2, . . . , 𝐾
𝑗
; 𝑘
󸀠
= 1, 2, . . . , 𝐾

𝑗
,

(24)

where𝑀 is a large positive number.

Theorem 1. Model B has the same optimisation result as that
of Model A.

Proof of Theorem 1 is given in Appendix.
Compared with Model A, Model B is a mixed-linear

model and thus can be solved by many well-developed
algorithms integrating mature linear programming methods
(e.g., simplex, barrier). Most of the commercial optimisation
software packages, such as IBM ILOG and LINGO, provide
modules for solving this type of problem.

The cost of the transformation lies in the extra inter-
mediate variables and constraints appended to the model.
Model B has 𝐼𝐽𝐾2 +2𝐼𝐽𝐾+ 𝐼𝐽more continuous variables and
𝐼𝐽𝐾
2
+6𝐼𝐽𝐾+3𝐼𝐽+𝐼more constraints thanModelA.However,

the results of the experiments show that the transformation is
still quite efficient.

3. Numeric Experiments

All the experiments in this section were run on a per-
sonal computer (4GB RAM, 3.30GHz CPU, Windows
7). The IBM ILOG software package is version 12.4. The
LINGO software package is version 11.0. All the generated
cases, modelling files, and computational results can be
found at: http://faculty.neu.edu.cn/ise/luoxinggang/paper16/
data&code.htm.

3.1. Case Generation. Three types of product line design
problems, that is, “random,” “rich-poor,” and “quality”,
applied in Kraus and Yano [4], were generated for numeric
experiments. The first type, “random,” corresponds to the
practical scenario where consumers in different market seg-
ments have idiosyncratic preferences towards a product and
there is no obvious relationship between the preferences.The
second type, “rich-poor,” simulates the scenario where the
number of rich consumers with higher utility is small while
the number of poor consumers with lower utility is large.The
third type, “quality,” is designed for representing the scenario
where all consumers prefer products with high production
cost and tend to have higher utilities for products with higher
variable costs.

For the first scenario “random,” as the name implies, all
the parameters of the model, including 𝑈

𝑖𝑗
, 𝑐
𝑗
, and 𝐷

𝑖
, are

generated randomly with a uniform distribution. However,
because 𝑐

𝑗
is the product variable cost, which is smaller than

the utility of the product, it is generated according to the
formula 𝑐

𝑗
= 𝑈[0.05, 0.2] ∗max𝐼

𝑖=1
𝑈
𝑖𝑗
, which implies that the

value of cost is a small percentage of max
𝑖
{𝑈
𝑖𝑗
}.

For the second scenario “rich-poor,” it shows the situation
where there are a few “rich” consumers who prefer high-
price products and a lot of “poor” consumers who prefer
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Table 1: Parameter settings for case generation.

Type Parameter generation

Random
𝑈
𝑖𝑗
= 𝑈[0, 100]

𝑐
𝑗
= 𝑈[0.05, 0.2] ∗max𝐼

𝑖=1
𝑈
𝑖𝑗

𝐷
𝑖
= 𝑈[50, 100]

Rich-poor
𝑈
𝑖𝑗
= (𝑏
𝑖𝑗
+ 100) ∗ 𝑖/𝐼, 𝑏

𝑖𝑗
= 𝑈[0, 100]

𝑐
𝑗
= 𝑈[0.05, 0.2] ∗max𝐼

𝑖=1
𝑈
𝑖𝑗

𝐷
𝑖
= [𝑓
𝑖𝑗
∗ (𝐼 − 𝑖)/𝐼] + 50, 𝑓

𝑖𝑗
= 𝑈[0, 100]

Quality
𝑈
𝑖𝑗
= 𝑏
𝑖𝑗
∗ 𝑐
𝑗
, 𝑏
𝑖𝑗
= 𝑈[1.0, 1.5]

𝑐
𝑗
= 𝑈[5, 20]

𝐷
𝑖
= 𝑈[50, 100]

Note: 𝑈[𝑎, 𝑏] represents a stochastic variable following a uniform distribu-
tion on [𝑎, 𝑏].

low-price products. The formula 𝑈
𝑖𝑗

= (𝑏
𝑖𝑗
+ 100) ∗ 𝑖/𝐼

indicates that a market segment with small 𝑖 represents
“poor” consumers and a market with large 𝑖 represents “rich”
consumers. Correspondently, 𝐷

𝑖
= [𝑓
𝑖𝑗
∗ (𝐼 − 𝑖)/𝐼] + 50

indicates that a market segment with small 𝑖 has a large
number of consumers and a market with large 𝑖 has a small
number of consumers.

For the third scenario “quality,” it assumes that the cost is
the most important influential factor for product quality and
higher costs ensure better quality. According to the formula
𝑈
𝑖𝑗
= 𝑏
𝑖𝑗
∗𝑐
𝑗
and the range of 𝑏

𝑖𝑗
(𝑏
𝑖𝑗
is generated randomlywith

the range of [1.0, 1.5]), it can be inferred that 𝑐
𝑗
= (1/𝑏

𝑖𝑗
) ∗ 𝑈
𝑖𝑗

and the range of 1/𝑏
𝑖𝑗
is [2/3, 1]. In other words, the ratio of

cost to utility in this scenario is much higher than those of
the previous two scenarios, and the cost has great influence
on consumer’s utility towards a product.

Table 1 shows the settings of the model parameters for
generating the cases.

3.2. Experiment Results. Because all parameters of the cases
are randomly generated, for a specific type of product line
design problem at given size of market segment (𝐼), number
of candidate products (𝐽), and numbers of price levels (𝐾),
100 cases are randomly generated. The presented computa-
tional time for each type is the average of computation times
of the 100 homogeneous cases. The number of price levels
is set as a fixed value for all products in a product line in
the experiments for simplicity. Experiments with different
values of 𝐼, 𝐽, and 𝐾 are performed to show the influence of
problem size on average computation time. Table 2 shows the
average computation time ofModels A and B under the three
different types of scenarios in three sets of different values
of parameters 𝐼, 𝐽, and 𝐾. Some of the cells in the table are
marked as “N/A”, indicating that the computation time is not
available because the computation time of a case group (100
cases) is over 24 hours. In the following three experiments,
IBM ILOG software package was applied to solve Models A
and B.

In the first experiment, Models A and B under the three
scenarios were solved when the size of market segment (𝐼) is

set as different values. A comparison ofModelsA andBunder
the three scenarios is shown in Figure 1. The computation
time of Model B is much less than that of Model A. From
the trend line of data points, it can be inferred that the
computation time is almost linearly related to the size of
market segment, although the shapes of data points under
the three scenarios are slightly different. A triangle marker in
Figure 1 represents the difference of Model B’s computation
time and Model A’s computation time. With the increase of
the size of market segment, the value of the difference is
also enhanced rapidly, indicating that Model B can save more
computation time.

In the second experiment, the average computation times
of Models A and B under the three scenarios were compared
when the number of products (𝐽) is changed. Figure 2 shows
that (1) the computation time of Model B is much less than
that of Model A, (2) computation times of Models A and B
are enhanced nonlinearly (probably exponentially) with the
increase of the number of products, and (3) the number of
products heavily influences the computational efficiency of
Models A and B.

In the third experiment, Models A and B under the three
scenarios are solved when the number of price levels (𝐾) is
increased. The results are depicted in Figure 3. The results
also show that Model B has increasingly better computation
efficiency over Model A as the number of price levels
increases.

The value of 𝑀 in Model B should be positive and very
large in order to keep the constraints effective. In the above-
mentioned three experiments,𝑀 is set as (min

𝑖,𝑗,𝑘
𝑈
𝑖𝑗
−𝑝
𝑘
)
−1
+

1 because it can ensure that constraint (9)–(14), (17), and (18)
work properly. For example, this setting of 𝑀 of constraint
(11) can ensure that the constraint always holds (i.e., no effect)
when 𝑦

𝑖𝑗
= 0 since𝑀 is larger than 𝑧deno

𝑖
.

The above-mentioned three experiments were also per-
formed by LINGO. The comparison between computation
time results of Models A and B has similar trends and
conclusions as those by IBM ILOG, except that the compu-
tation time of LINGO is much longer than IBM ILOG. The
computation results using LINGO can be found at the URL
mentioned in the first paragraph of this section.

4. Discussion and Conclusions

In this study, the share-of-surplus product line optimisation
model by Kraus and Yano [4] is extended to allow the
selection of candidate price levels for products, which is more
realistic and has been used in other product line models. The
proposed model is further transformed into an equivalent
linear mixed-integer programming model.

The transformed linear model adds a number of extra
auxiliary continuous variables and linear constraints to the
originalmodel. However, the numeric experiments show that
the computation time of the transformed model is much less
than that of the original one in different market scenarios,
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Table 2: Average computation time (second) of Models A and B.

Random Rich-poor Quality
Model A Model B Model A Model B Model A Model B

𝐼 = 5, 𝐽 = 5,𝐾 = 5 4.51 2.96 5.09 2.87 9.50 3.23
𝐼 = 6, 𝐽 = 5,𝐾 = 5 5.19 3.19 5.91 3.09 13.20 3.26
𝐼 = 7, 𝐽 = 5,𝐾 = 5 6.68 3.21 7.39 3.28 15.34 3.42
𝐼 = 8, 𝐽 = 5,𝐾 = 5 7.87 3.64 8.60 3.66 17.62 3.47
𝐼 = 9, 𝐽 = 5,𝐾 = 5 8.60 3.73 9.65 3.79 19.84 3.78
𝐼 = 10, 𝐽 = 5, 𝐾 = 5 10.31 3.92 14.05 4.34 24.45 3.81
𝐼 = 5, 𝐽 = 5,𝐾 = 5 4.51 2.96 5.09 2.87 9.50 3.23
𝐼 = 5, 𝐽 = 6,𝐾 = 5 33.78 4.25 49.93 7.26 63.47 3.74
𝐼 = 5, 𝐽 = 7,𝐾 = 5 173.91 9.72 282.09 16.22 340.62 7.37
𝐼 = 5, 𝐽 = 8,𝐾 = 5 838.31 19.06 N/A 50.32 N/A 14.97
𝐼 = 5, 𝐽 = 9,𝐾 = 5 N/A 77.33 N/A 215.81 N/A 35.42
𝐼 = 5, 𝐽 = 10, 𝐾 = 5 N/A 291.77 N/A 951.90 N/A 132
𝐼 = 5, 𝐽 = 5,𝐾 = 5 4.51 2.96 5.09 2.87 9.50 3.23
𝐼 = 5, 𝐽 = 5,𝐾 = 6 13.86 3.38 17.37 3.83 28.52 4.43
𝐼 = 5, 𝐽 = 5,𝐾 = 7 35.14 5.35 43.29 7.10 66.62 5.62
𝐼 = 5, 𝐽 = 5,𝐾 = 8 81.09 6.97 76.66 9.39 129.07 7.13
𝐼 = 5, 𝐽 = 5,𝐾 = 9 146.08 13.86 125.8 11.64 226.33 9.73
𝐼 = 5, 𝐽 = 5,𝐾 = 10 244.59 20.61 189.3 16.69 354.34 14.85
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Figure 1: Comparison of Models A and B when 𝐼 is changed.

and the efficiency of the transformed model increases with
the scale of the problem.

It must be noted that for large-scale problems, the com-
putation time of the transformed linear model is still too long
due to the integer variables, and a metaheuristic algorithm

such as evolutionary computation is probably a better choice.
However, exact approaches can achieve the global optimal
solutions and thus are attractive to small-scale practical
problems (e.g., service products, some products of SME). In
addition, global optimal solutions can also be used to evaluate



6 Mathematical Problems in Engineering

0
200
400
600
800

C
om

pu
ta

tio
n 

tim
e (

s)

5 6 7 8 9 10 11
Number of products

Model A
Model B
Difference

(a) Random

0
200
400
600
800

1000

C
om

pu
ta

tio
n 

tim
e (

s)

5 6 7 8 9 10 11

Model A
Model B
Difference

Number of products

(b) Rich-poor

0

100

200

300

400

C
om

pu
ta

tio
n 

tim
e (

s)

5 6 7 8 9 10 11

Model A
Model B
Difference

Number of products

(c) quality

Figure 2: Comparison of Models A and B when 𝐽 is changed.
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Figure 3: Comparison of Models A and B when 𝐾 is changed.
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the performance of heuristic or metaheuristic algorithms
because they can provide a base line for comparison.

Appendix

Proof of Theorem 1

Let 𝑧
deno
𝑖

= 1/∑
𝐽

𝑗
󸀠
=1
[(𝑈
𝑖𝑗
󸀠 − ∑

𝐾
𝑗󸀠

𝑘=1
𝑥
𝑗
󸀠
𝑘
𝑝
𝑗
󸀠
𝑘
)𝑦
𝑖𝑗
󸀠], replace

∑
𝐽

𝑗
󸀠
=1
[(𝑈
𝑖𝑗
󸀠 − ∑

𝐾
𝑗󸀠

𝑘=1
𝑥
𝑗
󸀠
𝑘
𝑝
𝑗
󸀠
𝑘
)𝑦
𝑖𝑗
󸀠] in the objective function

with 𝑧
deno
𝑖

, and transform 𝑧
deno
𝑖

= 1/∑
𝐽

𝑗
󸀠
=1
[(𝑈
𝑖𝑗
󸀠 −

∑
𝐾
𝑗󸀠

𝑘=1
𝑥
𝑗
󸀠
𝑘
𝑝
𝑗
󸀠
𝑘
)𝑦
𝑖𝑗
󸀠] into a constraint ∑

𝐽

𝑗
󸀠
=1
(𝑈
𝑖𝑗
󸀠𝑦
𝑖𝑗
󸀠𝑧

deno
𝑖

−

∑
𝐾
𝑗󸀠

𝑘=1
𝑝
𝑗
󸀠
𝑘
𝑥
𝑗
󸀠
𝑘
𝑦
𝑖𝑗
󸀠𝑧

deno
𝑖

) = 1. Model A can be reformulated as
the following model (Model C):

Max
𝐼

∑

𝑖=1

𝐽

∑

𝑗=1

𝐷
𝑖
[

[

(𝑈
𝑖𝑗
+ 𝑐
𝑗
)

𝐾𝑗

∑

𝑘=1

𝑝
𝑗𝑘
𝑥
𝑗𝑘
𝑦
𝑖𝑗
𝑧
deno
𝑖

− 𝑈
𝑖𝑗
𝑐
𝑗
𝑦
𝑖𝑗
𝑧
deno
𝑖

−

𝐾𝑗

∑

𝑘=1

𝐾𝑗

∑

𝑘
󸀠
=1

𝑝
𝑗𝑘
𝑝
𝑗𝑘
󸀠𝑥
𝑗𝑘
𝑥
𝑗𝑘
󸀠𝑦
𝑖𝑗
𝑧
deno
𝑖

]

]

(A.1)

s.t.
𝐽

∑

𝑗
󸀠
=1

(𝑈
𝑖𝑗
󸀠𝑦
𝑖𝑗
󸀠𝑧

deno
𝑖

−

𝐾
𝑗󸀠

∑

𝑘=1

𝑝
𝑗
󸀠
𝑘
𝑥
𝑗
󸀠
𝑘
𝑦
𝑖𝑗
󸀠𝑧

deno
𝑖

) = 1,

𝑖 = 1, 2, . . . , 𝐼

(A.2)

𝐽

∑

𝑗
󸀠
=1

(𝑈
𝑖𝑗
󸀠𝑦
𝑖𝑗
󸀠 −

𝐾
𝑗󸀠

∑

𝑘=1

𝑝
𝑗
󸀠
𝑘
𝑥
𝑗
󸀠
𝑘
𝑦
𝑖𝑗
󸀠) > 0, 𝑖 = 1, 2, . . . , 𝐼

(A.3)

(𝑈
𝑖𝑗
𝑦
𝑖𝑗
−

𝐾𝑗

∑

𝑘=1

𝑝
𝑗𝑘
𝑥
𝑗𝑘
𝑦
𝑖𝑗
) ≥ 0, 𝑖 = 1, 2, . . . , 𝐼;

𝑗 = 1, 2, . . . , 𝐽

(A.4)

𝑈
𝑖𝑗
−

𝐾𝑗

∑

𝑘=1

𝑝
𝑗𝑘
𝑥
𝑗𝑘
− 𝑈
𝑖𝑗
𝑦
𝑖𝑗
+

𝐾𝑗

∑

𝑘=1

𝑝
𝑗𝑘
𝑥
𝑗𝑘
𝑦
𝑖𝑗
≤ 0,

𝑖 = 1, 2, . . . , 𝐼; 𝑗 = 1, 2, . . . , 𝐽

(A.5)

𝐾𝑗

∑

𝑘=1

𝑥
𝑗𝑘
= 1, 𝑗 = 1, 2, . . . , 𝐽 (A.6)

𝑦
𝑖𝑗
, 𝑥
𝑗𝑘
∈ {0, 1} , 𝑖 = 1, 2, . . . , 𝐼;

𝑗 = 1, 2, . . . , 𝐽; 𝑘 = 1, 2, . . . , 𝐾
𝑗

(A.7)

𝑧
𝑖

deno
≥ 0, 𝑖 = 1, 2, . . . , 𝐼. (A.8)

In Model B, there are three constraints, (9), (10), and (11),
which directly relate to the continuous intermediate variable
𝑧1
𝑖𝑗
. If the binary decision variable 𝑦

𝑖𝑗
= 0, then constraints

(9) and (24) force 𝑧1
𝑖𝑗
= 0; if 𝑦

𝑖𝑗
= 1, then constraints (10) and

(11) force 𝑧1
𝑖𝑗
= 𝑧

deno
𝑖

. Therefore, if 𝑧1
𝑖𝑗
is replaced by 𝑦

𝑖𝑗
𝑧
deno
𝑖

and constraints (9), (10), and (11) are removed in Model B,
the modified model has the same optimisation result as that
of Model B.

Similarly, 𝑧2
𝑖𝑗𝑘

can be replaced by 𝑧4
𝑖𝑗𝑘
𝑧
deno
𝑖

, and 𝑧4
𝑖𝑗𝑘

can
be replaced by 𝑥

𝑗𝑘
𝑦
𝑖𝑗
.

Note that 𝑧3
𝑖𝑗𝑘𝑘
󸀠 appears only in the objective function

besides constraint (18) ofModel B, and the nonlinear element
containing 𝑧3

𝑖𝑗𝑘𝑘
󸀠 is negative, and hence the maximisation

objective function minimises 𝑧3
𝑖𝑗𝑘𝑘
󸀠 . If 𝑥

𝑗𝑘
, 𝑥
𝑗𝑘
󸀠 , 𝑦
𝑖𝑗

= 1,
the effect of constraint (18) and the objective function forces
𝑧3
𝑖𝑗𝑘𝑘
󸀠 = 𝑧

deno
𝑖

; if one of 𝑥
𝑗𝑘
, 𝑥
𝑗𝑘
󸀠 , 𝑦
𝑖𝑗

= 0, the effect of
constraint (24) and the objective function forces 𝑧3

𝑖𝑗𝑘𝑘
󸀠 = 0.

Therefore, 𝑧3
𝑖𝑗𝑘𝑘
󸀠 can be replaced by 𝑥

𝑗𝑘
𝑥
𝑗𝑘
󸀠𝑦
𝑖𝑗
𝑧
deno
𝑖

.
ForModel B, if 𝑧1

𝑖𝑗
is replaced by𝑦

𝑖𝑗
𝑧
deno
𝑖

, 𝑧2
𝑖𝑗𝑘

is replaced
by 𝑧4

𝑖𝑗𝑘
𝑧
deno
𝑖

, 𝑧4
𝑖𝑗𝑘

is replaced by 𝑥
𝑗𝑘
𝑦
𝑖𝑗
, 𝑧3
𝑖𝑗𝑘𝑘
󸀠 is replaced

by 𝑥
𝑗𝑘
𝑥
𝑗𝑘
󸀠𝑦
𝑖𝑗
𝑧
deno
𝑖

, and constraints (9)–(18) are removed,
then the optimal solutions of the modified model remain
unchanged from the original model (Model B). However, the
modifiedmodel actually is exactlyModel C.Therefore,Model
B has the same optimisation result as that of Model C or
Model A.
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