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Abstract: In the medical field, many outcome variables are dichotomized, and the two 

possible values of a dichotomized variable are referred to as classes. A dichotomized 

dataset is class-imbalanced if it consists mostly of one class, and performance of common 

classification models on this type of dataset tends to be suboptimal. To tackle such  

a problem, resampling methods, including oversampling and undersampling can be used. 

This paper aims at illustrating the effect of resampling methods using the National Health 

and Nutrition Examination Survey (NHANES) wave 2009–2010 dataset. A total of  

4677 participants aged ≥20 without self-reported diabetes and with valid blood test results 

were analyzed. The Classification and Regression Tree (CART) procedure was used to 

build a classification model on undiagnosed diabetes. A participant demonstrated evidence 

of diabetes according to WHO diabetes criteria. Exposure variables included demographics 

and socio-economic status. CART models were fitted using a randomly selected 70% of 

the data (training dataset), and area under the receiver operating characteristic curve (AUC) 

was computed using the remaining 30% of the sample for evaluation (testing dataset). 

CART models were fitted using the training dataset, the oversampled training dataset, the 

weighted training dataset, and the undersampled training dataset. In addition, resampling 

case-to-control ratio of 1:1, 1:2, and 1:4 were examined. Resampling methods on the 

performance of other extensions of CART (random forests and generalized boosted trees) 

were also examined. CARTs fitted on the oversampled (AUC = 0.70) and undersampled 

training data (AUC = 0.74) yielded a better classification power than that on the training 

data (AUC = 0.65). Resampling could also improve the classification power of random 

forests and generalized boosted trees. To conclude, applying resampling methods in a 

class-imbalanced dataset improved the classification power of CART, random forests, and 

generalized boosted trees. 
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1. Introduction 

In the medical field, many outcome variables are dichotomized (or binary), for example survival 

status, indicator of a particular disease, and adequacy of a particular nutrient. The two possible values 

of a dichotomized variable are referred to as classes. A dataset with dichotomized outcome is  

class-imbalanced if it consists mostly of one class. Class-imbalance is a common phenomenon in the 

medical context; analysis of rare diseases or mortality within a short period of follow-up usually suffers from 

class-imbalance problems. Class-imbalanced datasets are challenging to analyze, as the performance of 

common classification models (for example decision trees) on class-imbalanced datasets tends to be 

suboptimal [1] since these models target to improve the overall accuracy, hence these models focus on 

classifying correctly the large class at the cost of ignoring the misclassification of the small class. 

However, the actual cost of misclassifying the small class (false negative) maybe much higher than 

misclassification of the large class (false positive). 

To tackle such a problem arising from class-imbalance, a classic solution is to use a case-control 

study design [2,3]. In adopting a case-control study design, researchers first draw samples of the cases 

(supposing that the case is a rare event), then samples of the controls are drawn according to the 

collected samples of the cases. The advantage of a case-control study over a cohort study is that  

the case-control study does not require a large sample size and long follow-up period to accumulate a 

reasonable number of rare disease patients. 

However, a dataset obtained using case-control study design is only suitable for estimating the 

relative risk or odds ratio of several exposures on the particular disease. If the study objective is to 

estimate the risk factor of more than one disease, cohort or cross-sectional study designs appear to be 

more appropriate. In studies using cohort and cross-sectional designs, problem arising from  

class-imbalance can be tackled at the stage of statistical analysis using resampling methods [4]. 

Resampling methods include oversampling, i.e., oversample the small class to a sample size comparable 

to the large class, and undersampling, i.e., randomly draw samples from the large class with sample 

size comparable to the small class. A lot of work had been done in the data mining literature on 

developing resampling methods [5], yet these techniques are rarely applied in the medical literature. 

This paper aims at illustrating the effect of resampling methods in medical research, using the 

public-available National Health and Nutrition Examination Survey (NHANES) wave 2009–2010 data. 

Using these data, we built several decision tree models to predict undiagnosed diabetes among adult 

participants. According to the Centers for Disease Control and Prevention, the prevalence of diagnosed 

and undiagnosed diabetes are 6.0% and 2.3%, respectively [6], and given its large burden to   

society [7], a huge effort was dedicated to identify undiagnosed diabetes for better decision-making of 

health care providers. A recent systematic review showed that from 1997 to 2010 there were 15 

published papers about developing prediction models to identify undiagnosed diabetes [8], but none of 

these addressed the problem of class imbalance. In the NHANES 2009–2010 data, the prevalence of 
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undiagnosed diabetes among adults age ≥20 without self-report diabetes was 3.0% (shown below). 

Here, using the NHANES 2009–2010 data, we compare the predictive power of the decision tree 

models on the full dataset and on the resampled datasets and it was hypothesized that using the 

resampled dataset the predictive power will be improved. Here we also consider unbalanced 

resampling, that is, resampling to a pre-determined ratio of both classes. Resampling to different rates 

had been studied and these sometimes yield better predictive power than balanced resampling [4]. 

2. Methods  

2.1. Ethics Statement 

The NHANES study was approved by the Centers for Disease Control and Prevention ethics review 

board (Continuation of Protocol #2005-06). The NHANES also obtained consent from all participants. 

2.2. Participants 

This study utilized data collected from participants in the National Health and Nutrition 

Examination Survey (NHANES) wave 2009–2010. The NHANES, conducted by the National Center 

for Health Statistics, Centers for Disease Control and Prevention, was designed to assess the health and 

nutrition status in the United States [9]. The sample was representative of the United States population, 

and was selected using a multi-stage probability cluster design. Participants were invited to complete a 

survey and a health examination; the details can be obtained from the NHANES website [10]. A total 

of 10,537 participants completed the survey, and those with aged 19 and below, with  

self-reported diabetes (that is, having a positive response in the question “Have you ever been told by a 

doctor or health professional that you have diabetes or sugar diabetes?”), and/or without blood test 

results were excluded in this study, leaving a final sample of 4677. 

2.3. Measurement 

A blood test was conducted in a morning examination after a 9-hour fast to obtain fasting glucose 

and hemoglobin A1c levels of the participants. In addition, a two-hour oral glucose tolerance test was 

conducted to obtain non-fasting glucose level. A participant demonstrated evidence of diabetes if any 

of the following is met: (a) fasting glucose ≥ 126 mg/dL, (b) non-fasting glucose ≥ 200 mg/dL,  

(c) hemoglobin A1c ≥ 6.5% (or 47.5 mmol/mol). BMI was calculated as weight (kg) divided by the 

square of height (m2). Family Poverty Index, determined by the eligibility of certain federal financial 

assistance programs, was computed according to the Department of Health and Human Services 

guidelines. The Family Poverty Income Ratio was computed by dividing the Family income by the 

Family Poverty Index. Other exposure variables included age, race, marital status, and education level. 

To facilitate the use of decision tree models in non-clinical setting, relevant biomarkers, e.g., blood 

pressure or high-density lipoprotein, were not included as exposure variables. 
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2.4. Statistical Analysis 

The Classification and Regression Tree (CART) procedure [11] was used to build a classification 

model on undiagnosed diabetes. CART is a recursive partitioning procedure aim at splitting the data 

into distinct partitions base on the most important exposure variables determined by the procedure. A 

split on a partition is carried out to maximize the purity, that is, the dominance of one class, of its 

descendant partitions. In this study, the purity of a partition is measured by the Gini impurity, which 

equals 2

2

2

11 pp   where p1 and p2 are the proportions of classes 1 and 2 respectively. The model is 

named as a tree model as the partitions can be arranged in a tree-like structure, as shown in  

Figures 1–8. The CART was fitted using package rpart of R, with a complexity parameter and 

minimum number of partition size of 0.01 and 20, respectively. We also fitted CART model with 

complexity parameter determined by the 1-SE rule (a standard, accepted method for complexity 

parameter determination) [9], the random forest model using package randomForest of R with 500 

trees, and the generalized boosted trees using package gbm of R with 100 trees. Random forests and 

generalized boosted trees are extension of CART models by constructing multiple decision trees to 

improve prediction accuracy. 

Decision tree models were built with demographic characteristics as predictors including age, sex, 

education, race, BMI, and Family Poverty Ratio. Demographic characteristics were found predictive 

for undiagnosed diabetes [8]. To assess the classification power of the decision tree models, the models 

are fitted using a randomly selected 70% of the data (n = 3264, named as training dataset), and the area 

under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive 

value (PPV), negative predictive value (NPV), and classification rate were computed using the 

remaining 30% (n = 1413, 40 of them had undiagnosed diabetes) of the sample for evaluation (named 

as testing dataset). AUC is the most commonly used indicator for model comparison [12] and a value 

of 0.70 or above was considered as good fit [13]. 

Among the 3264 participants in the training dataset, 3165 did not have any evidences of diabetes 

and the remaining 99 had diabetes. The CART was fitted using eight datasets: (a1) the training dataset 

(n = 3264), (a2) the weighted training dataset with diabetes to non-diabetes participants ratio of 1:1  

(n = 3264), (b1) the oversampled dataset sample that combined randomly oversampled 3165 diabetes 

participants from the original 99 diabetes participants with the 3165 participants without diabetes  

(n = 6330), (b2) the oversampled training dataset with case-to-control ratio of 1:2 (n = 4,748), (b3) the 

oversampled training dataset with case-to-control ratio of 1:4 (n = 3957), (c1) the undersampled 

training dataset that combined randomly selected 99 participants without diabetes out of the 3165 with 

the 99 diabetes participants (n = 198), (c2) the undersampled training dataset with case-to-control ratio 

of 1:2 (n = 297), and (c3) the undersampled training dataset with case-to-control ratio of 1:4 (n = 495). 

Method of modifying the loss matrix of CART that adjusts the weightings on false positive rate and 

false negative rate was not adopted here as it had no effect on the tree built. 

3. Results 

Table 1 shows the descriptive statistics of the training and testing datasets. There were no 

differences between training and testing datasets for all exposure variables (all p > 0.05). There was no 
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difference (χ2 = 0.14, p = 0.71) in the incidence rates of diabetes in the training dataset (n = 99, 3.0%) 

and the testing dataset (n = 40, 2.8%). Among participants in the training dataset, those with undiagnosed 

diabetes consisted of more of aged 50 or above and Mexican American, had less than nine years of 

education, had lower Family Poverty Income Ratio, and had higher BMI. 

Table 1. Characteristics of the training and testing datasets. 

Variable (categorical) 

Training dataset 

(n = 3264) Testing dataset 

(n = 1413) 

Total 

(n = 4677) No diabetes 

(n = 3165) 

Diabetes 

(n = 99) 

Frequency (%) Frequency (%) Frequency (%) Frequency (%) 

Gender 

Male 1523 (48.1%) 47 (47.5%) 669 (47.3%) 2239 (47.9%) 

Female 1642 (51.9%) 52 (52.5%) 744 (52.7%) 2438 (52.1%) 

Age *** 

20–29 656 (20.7%) 5 (5.1%) 300 (21.2%) 961 (20.5%) 

30–39 631 (19.9%) 9 (9.1%) 273 (19.3%) 913 (19.5%) 

40–49 650 (20.5%) 16 (16.2%) 285 (20.2%) 951 (20.3%) 

50–59 515 (16.3%) 19 (19.2%) 201 (14.2%) 735 (15.7%) 

60–69 431 (13.6%) 35 (35.4%) 195 (13.8%) 661 (14.1%) 

70 or above 282 (8.9%) 15 (15.2%) 159 (11.3%) 456 (9.7%) 

Race *** 

Mexican American 557 (17.6%) 34 (34.3%) 287 (20.3%) 878 (18.8%) 

Other Hispanic 346 (10.9%) 11 (11.1%) 129 (9.1%) 486 (10.4%) 

Non-Hispanic White 1549 (48.9%) 27 (27.3%) 674 (47.7%) 2250 (48.1%) 

Non-Hispanic Black 527 (16.7%) 22 (22.2%) 256 (18.1%) 805 (17.2%) 

Other race including multi-racial 186 (5.9%) 5 (5.1%) 67 (4.7%) 258 (5.5%) 

Education level * 

Less than 9th grade 331 (10.5%) 17 (17.2%) 169 (12.0%) 517 (11.1%) 

9th–11th grade 506 (16.0%) 21 (21.2%) 209 (14.8%) 736 (15.8%) 

High school 743 (23.5%) 27 (27.3%) 321 (22.8%) 1091 (23.4%) 

Some college 890 (28.2%) 24 (24.2%) 406 (28.8%) 1320 (28.3%) 

College graduate or above 689 (21.8%) 10 (10.1%) 305 (21.6%) 1004 (21.5%) 

Missing 6 0 3 9 

Marital status 

Married 1620 (51.2%) 52 (52.5%) 751 (53.2%) 2423 (51.8%) 

Widowed 151 (4.8%) 9 (9.1%) 76 (5.4%) 236 (5.0%) 

Divorced 368 (11.6%) 9 (9.1%) 125 (8.9%) 502 (10.7%) 

Separated 106 (3.4%) 6 (6.1%) 53 (3.8%) 165 (3.5%) 

Never married 621 (19.6%) 12 (12.1%) 281 (19.9%) 914 (19.6%) 

Living with partner 298 (9.4%) 11 (11.1%) 126 (8.9%) 435 (9.3%) 

Missing 1 0 1 2 

Variable (continuous) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Family Poverty Income Ratio * 2.46 (1.66) 2.07 (1.50) 2.47 (1.63) 2.46 (1.65) 

Body Mass Index *** 28.67 (6.61) 33.74 (6.50) 28.65 (6.68) 28.77 (6.67) 

*/**/*** χ2 test between no diabetes and diabetes in training dataset significant at 5%/1%/0.1% level. All χ2 

tests between training dataset and testing dataset were insignificant at 5% level. 

Figures 1 to 8 show the decision tree model fitted using the CART algorithm on the full, weighted, 

oversampled (case-to-control ratio 1:1, 1:2, and 1:4), and undersampled (case-to-control ratio 1:1, 1:2, 

and 1:4) training dataset respectively. They have 3, 13, 12, 14, 15, 15, 9, and 12 partitions respectively. 
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Tree on full training data included two (BMI and age) exposure variables and other trees included four 

to six exposure variables. It was obvious that the tree model fitted on the full training dataset was an 

underfit. In fact, the tree model fitted on the oversampled training dataset was an extension of that on 

the full training dataset, with the partitions “BMI < 30.96” and “BMI ≥ 30.96 and Age < 50” further 

split into nine and five partitions respectively. The decision trees across different case-to-control ratios 

were similar. In decision trees fitted on the oversampled and undersampled training dataset  

with case-to-control ratio of 1:1, the partition having the highest incidence of diabetes had similar 

characteristics (oversampled: BMI ≥ 35.47 and Age < 50 and Race = others, undersampled:  

30.96 > BMI ≥ 27.29 and Age < 60 and Race = other and Family Poverty Income Ratio < 0.5). The 

decision trees fitted on the weighted training dataset was nearly the same with that on the oversampled 

training dataset with case-to-control ratio of 1:1. 

Figure 1. Decision tree model fitted using the full training dataset (number in 

bold/italic/underline: sample size of the node/percentage of undiagnosed diabetes in the 

training dataset/percentage of undiagnosed diabetes in the testing dataset respectively). 

 

Figure 2. Decision tree model fitted using the weighted training dataset (number in 

bold/italic/underline: sample size of the node/percentage of undiagnosed diabetes in the 

training dataset/percentage of undiagnosed diabetes in the testing dataset respectively). 
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Figure 3. Decision tree model fitted using the oversampled (case-to-control ratio = 1:1) 

training dataset (number in bold/italic/underline: sample size of the node/percentage of 

undiagnosed diabetes in the training dataset/percentage of undiagnosed diabetes in the 

testing dataset respectively). 

 

Figure 4. Decision tree model fitted using the oversampled (case-to-control ratio = 1:2) 

training dataset (number in bold/italic/underline: sample size of the node/percentage of 

undiagnosed diabetes in the training dataset/percentage of undiagnosed diabetes in the 

testing dataset respectively). 

 

Table 2 shows the classification performance of all decision trees. While NPV were similar across 

all decision trees, the classification rate of trees on the full training data and the weighted datasets were 

substantially smaller than those with resampled training datasets. Both the trees fitted on the 

oversampled and undersampled training data with case-to-control ratio of 1:1 yielded a good fit with 

AUC above 0.70, however the tree on the full training data, the weighted training data and the 

resampled training data with case-to-control ratios of 1:2 and 1:4 did not yield a good fit with an AUC 

of 0.63 to 0.69. There is a clear trend that the AUC reduce with case-to-control ratio for both 

oversampled and undersampled training dataset. Figure 9 shows the receiver operating characteristic 

curves of all tree models. 
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Figure 5. Decision tree model fitted using the oversampled (case-to-control ratio = 1:4) 

training dataset (number in bold/italic/underline: sample size of the node/percentage of 

undiagnosed diabetes in the training dataset/percentage of undiagnosed diabetes in the 

testing dataset respectively). 

 

Figure 6. Decision tree model fitted using the undersampled (case-to-control ratio = 1:1) 

training dataset (number in bold/italic/underline: sample size of the node/percentage of 

undiagnosed diabetes in the training dataset/percentage of undiagnosed diabetes in the 

testing dataset respectively). 
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Figure 7. Decision tree model fitted using the undersampled (case-to-control ratio = 1:2) 

training dataset (number in bold/italic/underline: sample size of the node/percentage of 

undiagnosed diabetes in the training dataset/percentage of undiagnosed diabetes in the 

testing dataset respectively). 

 

Figure 8. Decision tree model fitted using the undersampled (case-to-control ratio = 1:4) 

training dataset (number in bold/italic/underline: sample size of the node/percentage of 

undiagnosed diabetes in the training dataset/percentage of undiagnosed diabetes in the 

testing dataset respectively). 

 

Table 2. Classification power of the Classification and Regression Tree (CART) Models in 

the testing dataset. 

Performance 

indicator 

Full 

dataset 

Weighted 

dataset 

Oversampled dataset Undersampled dataset 

Case-to-control ratio Case-to-control ratio 

1:1 1:2 1:4 1:1 1:2 1:4 

AUC 0.65 0.65 0.70 0.69 0.63 0.74 0.68 0.67 

Sensitivity 55.0% 67.5% 48.7% 46.2% 30.4% 55.0% 63.2% 48.5% 

Specificity 71.1% 66.7% 77.7% 83.4% 87.2% 78.0% 67.0% 79.6% 

PPV 5.3% 5.6% 6.0% 7.5% 4.8% 6.8% 5.1% 5.6% 

NPV 98.2% 98.6% 98.1% 98.2% 98.3% 98.3% 98.5% 98.4% 

Classification rate 70.6% 66.7% 76.9% 82.4% 86.0% 77.4% 66.9% 78.8% 

AUC: area under the receiver operating characteristic curve; PPV: positive predictive value; NPV: negative 

predictive value. 
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Figure 9. Receiver operating characteristic (ROC) curve for the decision tree models 

fitting using the full, weighted, oversampled, and undersampled training dataset. 

 

The classification performance of the decision trees with complexity parameter determined by 1-SE 

rule, the random forest models, and the generalized boosted trees, can be found in Tables 3–5 

respectively. The decision tree model fitted on the full training dataset showed poor AUC as it had no 

splitting at all. Only the tree on the weighted training dataset and the undersampled training datasets 

demonstrated good fit. Not limited in CART models, resampling methods could also improve 

classification power for random forest models and generalized boosted trees. For random forest 

models, only those fitted on undersampled training datasets demonstrated good fit (Table 4). For 

generalized boosted trees, those fitted on full training dataset, weighted training dataset, and 

undersampled training datasets demonstrated good fit, and the undersampled dataset with case-to-control 

ratio 1:1 yielded the best classification power, although the specificity is zero (Table 5). 

By comparing the classification performance of different types of models (Tables 2–5), we can see 

that undersampling could improve the classification power of all models. Most of the models fitted 

using the undersampled dataset could achieve an AUC of above 0.7 and in general the case-to-control 

ratio of 1:1 performed the best. 
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Table 3. Classification power of the Classification and Regression Tree (CART) Models 

(complexity parameter determined by 1-SE rule) in the testing dataset. 

Performance 

indicator 

Full 

dataset 

Weighted 

dataset 

Oversampled dataset Undersampled dataset 

Case-to-control ratio Case-to-control ratio 

1:1 1:2 1:4 1:1 1:2 1:4 

AUC 0.50 0.71 0.54 0.58 0.61 0.73 0.71 0.73 

Sensitivity 0% 15.0% 15.0% 22.5% 25.0% 67.5% 55.0% 62.5% 

Specificity 100% 92.1% 92.1% 92.3% 88.5% 73.0% 75.2% 74.2% 

PPV N/A 5.3% 5.3% 7.8% 6.0% 6.8% 6.1% 6.6% 

NPV 97.2% 97.4% 97.4% 97.6% 97.6% 98.7% 98.3% 98.5% 

Classification rate 97.2% 90.0% 90.0% 90.3% 86.7% 72.8% 74.7% 73.9% 

AUC: area under the receiver operating characteristic curve; PPV: positive predictive value; NPV: negative 

predictive value. 

Table 4. Classification power of the random forest models in the testing dataset. 

Performance 

indicator 

Full 

dataset 

Weighted 

dataset 

Oversampled dataset Undersampled dataset 

Case-to-control ratio Case-to-control ratio 

1:1 1:2 1:4 1:1 1:2 1:4 

AUC 0.68 0.69 0.69 0.68 0.68 0.76 0.76 0.75 

Sensitivity 54.3% 51.4% 11.4% 14.3% 22.9% 82.9% 68.6% 71.4% 

Specificity 75.1% 75.2% 97.6% 96.0% 90.7% 59.6% 70.5% 70.0% 

PPV 5.7% 5.5% 11.8% 9.1% 6.4% 5.4% 6.1% 6.2% 

NPV 98.3% 98.2% 97.5% 97.6% 97.7% 99.2% 98.8% 98.9% 

Classification rate 74.5% 74.5% 95.3% 93.8% 88.8% 60.2% 70.4% 70.0% 

AUC: area under the receiver operating characteristic curve; PPV: positive predictive value; NPV: negative 

predictive value. 

Table 5. Classification power of the generalized boosted tree models in the testing dataset. 

Performance 

indicator 

Full 

dataset 

Weighted 

dataset 

Oversampled dataset Undersampled dataset 

Case-to-control ratio Case-to-control ratio 

1:1 1:2 1:4 1:1 1:2 1:4 

AUC 0.74 0.73 0.64 0.68 0.65 0.79 0.72 0.72 

Sensitivity 55.0% 55.0% 55.0% 55.0% 55.0% 100% 60.0% 52.5% 

Specificity 70.6% 70.6% 70.6% 70.6% 70.6% 0% 66.1% 71.9% 

PPV 5.2% 5.2% 5.2% 5.2% 5.2% 2.8% 4.9% 5.2% 

NPV 98.2% 98.2% 98.2% 98.2% 98.2% N/A 98.3% 98.1% 

Classification rate 70.2% 70.2% 70.2% 70.2% 70.2% 2.8% 66.0% 71.3% 

AUC: area under the receiver operating characteristic curve; PPV: positive predictive value; NPV: negative 

predictive value. 
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4. Discussion  

Illustrated with a dataset with only 3.0% of the participants classified as undiagnosed diabetes, our 

results showed that applying resampling methods in a class-imbalanced dataset clearly improved the 

explanatory power of the decision tree models, random forests, and generalized boosted trees. With an 

illustration from a public health perspective, a systematic comparison between standard method of 

analysis and those based on resampled data showed that resampling could improve the overall 

classification rate and positive predictive value. Besides CART, the performance of other extended tree 

models including random forests and generalized boosted trees could also be improved using 

resampling. The decision tree fitted on the full training dataset clearly underfitted the data and this 

could be explained as follows. By comparing the trees on the full training dataset and the overersampled 

dataset with case-to-control ratio of 1:1, we can see that the split for the partition “BMI < 30.96” 

stopped in the former model but continued to split in the latter model. It is because the reduction of 

Gini impurity for the split “Age < 60 vs. Age 60” is minimal (from 1 – (31/2259)2 − (2228/2259)2 = 

0.0271 to (1731/2259) × (1 – (13/1731)2 − (1718/1731)2) + (528/2259) × (1 – (18/528)2 − (510/528)2 = 

0.0268), while using the oversampled training data this reduction can be amplified (from 1 – (997/3225)2 − 

(2228/3225)2 = 0.4272 to (2149/3225) × (1 – (431/2149)2 − (1718/2149)2) + (1076/3225) × (1 – 

(566/1076)2 − (510/1076)2 = 0.3801). 

As the use of automated classifiers like decision trees, support vector machines (see [14] for 

example) and artificial neural networks (see [15] for example) are becoming much more popular in the 

medical literature, the use of resampling methods should be promoted as it apply on all these statistical 

models that targeting at maximizing accuracy [16]. (Re)Analysis of previously published data using 

resampling methods is warranted given the potential suboptimal results of existing analyses. 

The most commonly applied statistical model for predicting undiagnosed diabetes was the logistic 

regression [8]. Although there was no evidence that resampling methods improve the predictive power 

of logistic regression or even any class of generalized linear models, applying logistic regression on a 

class-imbalanced dataset may sometimes be inappropriate, especially when there are a large number of 

exposure variables. Generalized linear models require as much as 10 to 20 cases of both classes per 

exposure variable [17,18], and if such models were applied on our example, only 5 to 10 exposures 

variables were allowed. This is obviously too strict a criterion for predictive models for undiagnosed 

diabetes given its multi-factorial nature [8]. Therefore, given such an imbalanced dataset, modeling 

using automated classifiers appears to be the only appropriate choice and the dataset should be resampled. 

In this study, we consider both balanced and unbalanced resampling. However, resampling methods 

combining both oversampled and undersampled datasets [4], have not been examined. Besides these 

extensions on resampling methods, researchers had also developed non-random resampling methods to 

reduce the potential bias and overfitting caused by random resampling [19,20]. However, these 

advanced resampling methods had been rarely applied in the medical literature. Given the 

effectiveness of the balanced resampling methods that have been shown in this study, the effectiveness 

of these advanced resampling methods is worth exploring. 

Our study was not without limitations. First, biomarkers that were found associated with 

undiagnosed diabetes, for example blood pressure, high-density lipoprotein, C-reactive protein, 

triaglyceride, and white blood cell count [8] were not included in the decision tree model for 
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facilitating the use of decision tree models in non-clinical setting. Improvement of resampling methods 

on models including these biomarkers was unknown; however we believe that resampling should be 

effective as well. Second, only decision tree models and their extensions, but not other automatic 

classifiers, were employed, as decision tree models, but not other automatic classifiers, are feasible to 

be administered in a clinical setting to predict undiagnosed diabetes patients, albeit their 

underperformance compared with other classifiers such as ensemble methods [21]. Further research on 

the effectiveness of resampling methods with support vector machines and artificial neural networks is 

warranted. Note that oversampling will introduce dependence to the data, therefore using traditional 

regression models, which assume data independence, on oversampled data may not be appropriate. 

5. Conclusions 

Our results showed that applying resampling methods in a class-imbalanced dataset clearly 

improved the classification power of the CART model, random forests, and generalized boosted tree. 

Data analysis targeting at maximizing accuracy should apply resampling methods. 
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