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Nomenclature  
 
A, B  Events 
AC  Air-conditioned 
APD  Actual Percentage Dissatisfied 
abs  of absolute 
C0  y – intercept of Predicted Mean Vote (PMV) – Thermal Sensation Vote (TSV) plot 
C1  Slope of PMV–TSV plot 
CL  Clothing value (clo) 
F  Distribution function 
k  Dissatisfaction cases reported for each vote 
n  Number of cases surveyed for each vote 
n2  Target sample size 
Me  Occupant metabolic rate (Met) 
NV  Naturally ventilated 
P  Probability function 
PMV Predicted mean vote 
p  p-value of a statistical test 
Rh  Relative humidity (%) 
SD  Standard deviation 
Ta  Air temperature (oC) 
Tr  Mean radiant temperature (oC) 
TSV  Thermal sensation vote 
va  Air velocity (ms-1) 
x  Dummy variable 
φ  Predicted percentage dissatisfied (PPD) 
σ  Shape factor 
ε  Error 
Σn  Total sample size 
Σk  Total dissatisfied sample 
 
Superscript 
–  of mean value 
’  of posterior estimate 
 
Subscript 
1, 2  of conditions 1, 2 
i  of the ith item 
max  of maximum 
rms  of root-mean-square 
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Abstract 

Thermal comfort assessment is a prime measure in indoor environment design to evaluate occupant 

satisfaction. Fanger’s thermal comfort model using heat balance theory conducted by chamber test 

has been widely adopted for thermal environment design criteria. However, rising numbers of 

thermal comfort field studies show that Fanger’s model is not a good predictor of actual thermal 

sensation and many field measurements were statistically insignificant. This study proposes a 

Bayesian approach to update our current beliefs about thermal comfort and shows that the 

maximum likelihood of posterior estimates is close to the actual percentage dissatisfied (APD) 

obtained from large sample field surveys. For small sample sizes, the Bayesian estimation is close 

to Fanger’s prediction and gives a solution for the discrepancy of Fanger’s model. Congruence 

between Fanger’s model prediction and contemporary field survey data is quantified. This 

quantitative assessment on the belief in newly yielded thermal comfort data can be a solution to 

the choice of thermal comfort criteria in future thermal environment designs. 

1. Introduction 

Thermal comfort, a key indoor environmental quality concern for homes, offices and classrooms, 

is closely related to energy use, occupant productivity and student learning performance [1–3]. 

Thermal comfort models for predicting occupant satisfaction and for designing an acceptable 

thermal environment can be found in literature; the 225-node finite element model [4], predicted 

mean vote (PMV) model [5], 25-node basic heat flow model [6], 2-node basic heat flow model [7] 

and 2-node with transient response model [8] are a few examples.  

Developed by Fanger using chamber test results under steady state conditions, the PMV model 

uses six key parameters, namely, air temperature (Ta), mean radiant temperature (Tr), air velocity 
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(va), relative humidity (Rh), occupant metabolic rate (Me) and clothing value (CL), to get the 

predicted percentage dissatisfied (PPD) under given thermal conditions. Despite the fact that it is 

widely used for designing indoor thermal environments [9], a number of discrepancies between 

actual percentage dissatisfied (APD) related to thermal sensation vote (TSV) and predicted 

percentage dissatisfied (PPD) determined from predicted mean vote (PMV) have been revealed 

[10, 11]. These discrepancies can be grouped into two major categories: (i) PMV against TSV as 

presented in Table 1; and (ii) PPD against APD as presented in Table 2. Moreover, the usefulness 

of extrapolated PMV-TSV regressions has received criticism as extreme thermal conditions are rare 

in many field studies (Table 1). 

Using the values of intercept (C0) and slope (C1) reported in the literature (Table 1), linear 

regressions for category (i) are described by the following equation:  

TSV = C1 × PMV + C0 …(1) 

Two phenomena were observed in this category. First, a steep slope (C1>1) was generally found 

in air-conditioned (AC) buildings and a flat slope (C1<1) in naturally ventilated (NV) buildings 

during summer. In other words, occupants in AC buildings, especially in offices and classrooms 

where they have limited control over the thermal environmental settings, were more sensitive to 

the perception of thermal comfort than occupants in NV buildings and had higher expectations in 

a narrow thermal comfort range [28, 29]. Fanger and Tofum confirmed this phenomenon and 

extended the PMV model to minimize the discrepancies [30]. Although occupants in the studies 

by Fato et al. and Han et al. might have higher expectations for heating during winter in NV 

buildings [16, 22], rural residents (i.e. with lower socioeconomic status) in different climate zones 

were reported to have high levels of tolerance to climatic conditions [28]. Second, occupants in 
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NV buildings were found to be adapting to a cooler environment (+C0) in winter and a warmer 

environment (−C0) in summer for thermal neutrality (TSV = 0). This can be explained by the 

adaptive approach to outdoor environment [31]. Occupants in AC or mixed-mode buildings, 

however, were found having thermal comfort responses influenced by the past thermal history in 

the buildings and differences in levels of perceived control [29].  

Occupants’ satisfaction to the thermal environment by field survey was also reported differently 

from Fanger’s model. Using the ASHRAE database, Humphreys and Nicol reported the 

differences between Fanger’s predicted percentage of dissatisfied (φ) and actual percentage of 

dissatisfaction (APD) in a number of small sampled surveys. Some examples of category (ii) are 

summarized in Table 2. A study conducted in two inter-tropical sub-Saharan African cities showed 

that occupants preferred a cooler environment in the hotter climate zone during the Harmattan 

season [10]. In Taiwan, Cheng et al. found dissatisfaction rates higher in NV campus dormitories 

than in AC ones during the summer period [25] and a chamber test by Hwang et al. suggested 

people in hot-humid climates would prefer a slightly cooler environment (TSV = −0.4) [26]. In 

Harbin, a winter field study indicated that the thermal neutrality of occupants in a slightly cool 

environment was biased on the warm side (a minimum APD of 7.5% at TSV = 0.5) [27]. For 

resolving the discrepancies in this category, Humphreys and Nicol discussed the need for caution 

when using a large scale model in small sample tests [11] while Becker and Paciuk introduced the 

non-symmetrical dissatisfaction rates for hot and cold sensations [24].  

Although the adequacy of Fanger’s model for evaluating thermal comfort is questioned, another 

model as an accurate predictor of actual thermal sensation is yet to be proposed. As thermal 

comfort in a thermal environment is never conclusive, similar discrepancies and questions will 
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undoubtedly keep taking place in future sustainable environmental designs. One may ask, “Which 

reference, Fanger’s model or field survey outcome, shall be the design criterion for built thermal 

environment?” This is a fundamental problem of judgmental decision making based on the best 

information available and an epistemic approach is required for estimating the acceptance of a 

thermal environment [32].  

To update our current beliefs about thermal comfort, this study presents a Bayesian approach and 

demonstrates the usefulness of the approach through contemporary field survey data and Fanger’s 

PMV-PPD model. The findings provide a solution to the choice of thermal comfort criteria in 

future thermal environment designs. 
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Table 1. Occupants’ thermal sensation votes (TSV) in various studies 
 

 
‘-’ indicates the TSV values are not available in the corresponding studies 
 
 
 
 
 
 
 
 
 

Ref. Location Building Type of 
Ventilation Season 

Total 
Sample  
Size, Σn 

C1 C0 

TSV 

-3 -2 -1 0 1 2 3 

[12] Italy Classroom Mixed Mixed 959 0.76 -0.51 - - - - - - - 
[13] Taiwan Classroom Mixed Winter 1294 0.50 0.13 18 95 282 623 188 44 44 
[14] China Residential Mixed Summer 110 1.69 -2.60 1 3 4 54 30 13 5 
[15] Australia Office AC Mixed 1234 3.10 -0.49 - - - - - - - 
[2] Hong Kong Office AC Mixed 1273 3.08 2.97 48 100 307 606 174 28 10 
[2] Hong Kong Classroom AC Winter/Spring 312 5.76 2.54 5 19 92 146 36 10 4 

[16] Bari (Italy) - AC Winter 133 1.93 0.51 0 1 5 47 56 22 2 
[16] Bari (Italy) - AC Summer 250 2.04 -0.97 0 0 9 96 98 41 6 
[17] Brazil - NV Mixed 1150 0.56 -0.01 - - - - - - - 
[16] Bari (Italy) - NV Summer 423 0.99 -0.30 0 0 16 119 128 118 42 
[18] Ilam (Iran) Residential NV Summer 513 0.69 -0.74 - - - - - - - 
[19] India Residential NV Summer 294 0.70 -1.04 0 0 11 107 100 50 26 
[20] Singapore Residential NV Mixed 538 0.81 -0.48 - - - - - - - 
[21] Indonesia Residential NV Mixed 525 1.33 -1.61 28 83 78 82 97 26 131 
[16] Bari (Italy) - NV Winter 1034 1.61 0.70 37 93 324 367 162 43 8 
[22] Hunan (China) Residential (Urban) NV Winter 53 1.24 0.06 1 9 12 30 1 0 0 
[22] Hunan (China) Residential (Rural) NV Winter 50 0.48 -0.54 3 5 16 24 1 1 0 
[23] Hunan (China) Classroom NV Spring 1273 0.39 0.15 5 8 122 993 120 21 4 
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Table 2. Review of actual percentage dissatisfied (APD; %) in various studies 

2. Methodology 

A Bayes’ theorem can be applied in such a way that even for a sample size not large enough for 

making a managerial decision to supersede existing understandings of thermal sensation, the 

importance of relevant survey data is not ignored. The general formulation of Bayes’ theorem 

for various applications is available in open literature [33] while the specific elements for the 

formulation of prior and posterior probabilities are described below.  

In this study, the Bayesian approach is used to predict the occupant thermal responses to an 

environment using the already available model predictions (event A) and the responses 

surveyed (event B). Bayes’ theorem relates the conditional and marginal probabilities of events 

A and B, where B has a non-vanishing probability. Its key idea is that the probability of an event 

A given an event B depends not only on the relationship between events A and B but also on the 

marginal probability of occurrence of each event.  

For example, if the dissatisfaction rate of a thermal environment determined by a sample survey 

is known to be 90% accurate, it could be due to the 10% incorrectly identified survey cases 

Ref. Location Ventilation Season 
Total 

Sample 
Size, Σn 

   TSV    

-3 -2 -1 0 1 2 3 

[24] Israel Heating Winter 189 100 64 50 9 19 14 14 
[24] Israel NV Summer 205 - 33 36 18 86 83 100 
[25] Taiwan AC Summer 600 - 5 5 6 10 18 57 
[25] Taiwan NV Summer 619 28 32 6 7 21 54 65 
[10] Ngaoundere NV Harmattan 119 100 20 22 13 25 50 100 
[10] Kousseri NV Harmattan 95 100 84 20 20 18 - 100 
[26] Taiwan AC N/A 27 90 49 22 20 41 80 95 
[27] Harbin NV Winter 120 100 100 43 12 27 25 50 
        PMV    
     -3 -2 -1 0 1 2 3 

Predicted percentage dissatisfied (PPD) in Fanger’s model 
[5] 99 75 25 05 25 75 99 
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(false positives), 10% missed cases (false negatives), or a mix of both. Application of Bayes’ 

theorem, given an observed dissatisfaction rate, allows the calculation of conditional 

probabilities for any of the above cases.  

Hence, for Ai, a set of mutually exclusive and exhaustive events A describing the existing 

understanding of dissatisfaction rates (for i=1,2,…) of a specific thermal environment, given 

event B, a new dissatisfaction observed in that environment (denoted as B=k/n), the posterior 

probability P(Ai |B) is defined as,  

( ) ( ) ( )
( ) ( )∑

=
ii

ii
i

A|BPAP

A|BPAP
B|AP  … (2) 

( )iA|BP  can be worked out by the likelihood function as follows, where n and k are the number 

of cases surveyed and the dissatisfaction cases reported respectively for each vote, 

( ) ( ) ( )( ) kn
i

k
ii APAP

k
n

A|BP −
−








= 1  … (3) 

The prior estimate is a distribution function F of Fanger’s predicted percentage of dissatisfied 

occupants ϕ,  

( ) ( )σϕ ,FAP i =  … (4) 

where ϕ   is a function of PMV as expressed below [5], given the clothing value CL (clo), 

occupant metabolic rate Me (Met), relative humidity Rh (%), mean radiant temperature Tr (ºC), 

air temperature Ta (ºC) and air velocity va (ms-1), 

( )24 2179.003353.0exp95.01 PMVPMV −−−=ϕ ; −3 ≤ PMV ≤ 3 … (5) 
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( )Leahra C,M,v,R,T,TPMVPMV =  … (6) 

2.1 Prior estimates and prior distribution functions 

Normal distribution (or its transformation such as lognormal distribution) is an appealing and 

good model for explaining many forms of natural continuous variation and is generally adopted 

in many biological sciences and engineering applications. The prior predicted percentage of 

dissatisfied occupants is assumed to be a normal (or lognormal) distribution; two simple 

distribution functions, namely normal distribution function F1=F(σ1) and lognormal normal 

prior distribution function F2=F(σ2), with x  and σ as the mean and standard deviation of 

variable x respectively, are considered as priors, 

( )

∫
−−

= dxeF
xx

πσ

σ

2

22 2
 ; 




=
ϕ

ϕ
ln

x ; 




=
2

1 10
σ

σ
σ

ln
; 10 ≤≤ x ; 1=F  … (7) 

Figure 1 illustrates some examples of prior estimates for the predicted percentage of dissatisfied 

occupants in a thermal environment when: (i) PMV=0; and (ii) PMV=±1.5.  

In Figure 2 are examples of distributions for the predicted percentage of dissatisfied occupants 

in 8 university teaching rooms from a previous study [2]. As shown in the figure, the average 

TSV is from −1.1 to 0.4 with a standard deviation (SD) from 0.7 to 1.1, indicating that the 

distribution of predicted percentage of dissatisfied occupants can be reasonably approximated 

using F1 (except cases (f) & (g)) and F2 (except case (a)) (p≥0.1, Chi-square). The two prior 

functions are thus adopted in the model development described below.  
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Figure 1. (a) Normal prior distribution function F1, (b) lognormal normal prior 

distribution function F2; (i) PMV=0, (ii) PMV=±1.5 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  
 
 
 
 
 

Figure 2. Distribution functions F1, F2 for predicted percentage dissatisfied in 8 

university teaching rooms 
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F1  F2    Survey data 

TSV= −0.6; SD=0.7 TSV= 0; SD=0.9 

TSV= −0.1; SD=0.9 TSV= −1.1; SD=0.9 

TSV= 0.4; SD=1.1 TSV= −1.1; SD=0.9 

TSV= −0.4; SD=0.7 TSV= 0.2; SD=1.1 
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Application of thermal comfort models to predict the percentage dissatisfied in indoor 

environment becomes a dilemma because adaptation has been shown to be required for various 

spaces. Although the survey data of percentage dissatisfied determined from the occupant 

thermal votes (k/n) deviate from the predictions, these cases are limited in sample size and lack 

generality. Moreover, thermal responses in a general indoor environment of thermal extremes 

(e.g. PMV=±3) are rare and few relevant studies are available. As no conclusive evidence is 

available, many field model predictions were rejected. However, the deviations observed should 

not be overlooked. 

The question is when to use the percentage dissatisfied k/n or the acceptable error ε, particularly 

in the cases where significant differences are found between ϕ  and k/n. The target sample size 

n2 can be a parameter that determines the prior distribution function, such that n=n2. With the 

choice of the prior F, the Bayesian approach gives a posterior median estimate ϕ' and its error 

from the observed percentage dissatisfied k/n is given by the following expression, 

    εϕ ≤−∀
n
kAP ':)(           … (8) 

Figure 3 shows the posterior median estimates ϕ' and the maximum likelihoods for k/n=0.75, 

where the two prior functions F1,2 are with distribution shape factors σ1,2=2,8 for ϕ  =0.05. 

When n=4,8,12, the corresponding errors for F1 are −0.39,−0.30,−0.24 with σ1=2 and 

−0.10,−0.06,−0.04 with σ1=8, while those for F2 are −0.57,−0.36,−0.23 with σ2=2 and 

−0.19,−0.10,−0.06 with σ2=8, respectively. The distribution shape factor σ indicates the 

reliance of the prior estimate and hence how much the posterior estimate is relying on the prior 

estimate. A smaller σ assumes that a more reliable prior estimate is given, and vice versa.  
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Figure 3. Posterior ϕ’ with k/n=0.75 and PMV=0. Priors (a) F1, (b) F2; (i) PMV=0, (ii) 

PMV=±1.5 

Figure 4 exhibits the median posterior estimates ϕ' when using all k/n∈[0,1] with the two priors 

for n≤60 and PMV∈[0,3]. The posterior ϕ' approaches k/n as n increases and that reflects the 

repeating survey results with large sample sizes may supersede the existing understandings of 

thermal sensation. A rapid trend of percentage dissatisfied against sample size is reported for 

cases of larger difference between prior and k/n, indicating a faster response for cases of extreme 
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dip trend initially but more ‘flat’ afterwards. The two priors do not present significant difference 

for the posterior estimates for large n.  

As the shape factor σ is a parameter for measuring the reliance on the new knowledge k/n, the 

maximum errors εmax for the prior functions are given by an expression below,
 

 

 













 −=∀∀

n
kabskAP 'max:),( max ϕε         … (9) 

While the root-mean-square errors εrms are expressed by,  

  
2

':),( 





 −=∀∀

n
kkAP rms ϕε          …(10) 

Figure 5 graphs (a) the maximum errors and (b) the root-mean-square errors for all P(A) and k 

values with target sample sizes (n) up to 60. These errors correspond to the choice of σ and a 

target sample size n≥n2. If a target sample size n2=1000, then the maximum errors εmax and the 

root-mean-square errors are 0.009 and 0.004, 0.002 and 0.001, 0.001 and 0.001 for σ=2, 4, 8 

respectively.  

Hence, with an appropriate choice of shape factor, the Bayesian approach can be applied to 

cases where the actual sample size does not hit the target sample size. Figure 6 presents a flow 

diagram illustrating the steps of the Bayesian approach. The procedure was coded in FORTRAN 

and executed on a personal computer. It can be computed using a worksheet.  
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Figure 4(a). Posterior ϕ' with prior function F1   
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Figure 4(b). Posterior ϕ' with prior function F2    

0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60

0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60

0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 20 40 60

k/n=0 k/n=0.25 k/n=0.5 k/n=0.75 k/n=1 

PMV=±3 

0 
±1 

±2 

x-axis: Sample number, n 

σ1=2 

σ1=4 

σ1=8 

y-
ax

is
: P

re
di

ct
ed

 p
er

ce
nt

ag
e 

di
ss

at
is

fie
d 

  



18 
 

  

 

Figure 5. Errors of posterior estimates: (a) maximum, (b) root-mean-square 
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3. Application examples 

Using prior function F1, the proposed thermal comfort model was applied to some studies as 

listed in Table 1. Example predictions from both of the model estimates and field survey data 

are presented in Figure 7. The shape factor was set to 2, corresponding to a target sample size 

of 1000 for each thermal sensation vote and an acceptable error of 0.1%. The posterior estimates 

given by the maximum likelihoods lay between the prior estimates and the observed k/n values 

for surveys of a small sample size n; they are close to the observed values for surveys of a larger 

sample size.  

Figure 8 summarizes the occupant thermal responses against Fanger’s PMV scale for offices, 

classrooms, apartments and elderly centres with total sample sizes 1115, 316, 126 and 421 

respectively [2, 3, 34]. It groups the predicted mean votes with end bins of ±0.25 for each 0.5 

vote. According to the field survey data of occupants’ thermal acceptance via a 7-point semantic 

differential scale (i.e. the full 7-point ASHRAE scale) and a 2-point dichotomous scale (i.e. 

acceptable or unacceptable), all occupant acceptance votes were considered as a neutral 

condition to the respondents, while the unacceptance votes as cold and hot feelings the 

respondents perceived. Very few to no unacceptance votes were recorded in the elderly centres 

(in a wide PMV range); and the vote distribution in apartments was observed different from the 

ones in offices and classrooms. There was insignificant difference in thermal 

acceptance/unacceptance votes between offices and classrooms (p≥0.1, Chi-square test), except 

for PMV = −0.5 and −1 (p≤0.03, Chi-square test).  

The proposed thermal dissatisfaction model with the most demanding settings (a prior function 

F1 and a shape factor σ1=2) was applied to the field tests and the results are graphed in Figure 

9. The posterior estimates of thermal dissatisfaction in the PMV range of −1.5 to 0.5 agreed 

very well with the office and classroom survey data when the sample size was large. Otherwise, 
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the estimates were close to the Fanger’s predictions, not the APD. Even though a number of 

PMV scales with low dissatisfaction rates were observed for apartments, the sample sizes were 

insufficient and the posterior prediction was similar to Fanger’s PPD. On the other hand, the 

large number of thermal acceptances recorded for elderly centres, especially in the PMV range 

of −1.5 to 0.5, gave a flat posterior comparatively. Figure 10 exhibits the values of percentage 

dissatisfied in terms of feeling ‘Cold’ or ‘Hot’ for the locations tested, with a minimum of 5% 

dissatisfaction assumed, respectively, at positive and negative PMV scales. High percentages of 

acceptance of a cold environment were observed in both classrooms and elderly centres.  

Apart from the Fanger’s PMV model, this study also implemented the newly proposed PMV-

PPD relationship evaluated from the RP-884 project by Langevin et al. [32] as a prior 

understanding for the estimation of percentage dissatisfied in air-conditioned offices, air-

conditioned classrooms, naturally ventilated apartments and naturally ventilated elderly centres. 

The results are shown in Figures 11 and 12. As compared with Fanger’s PPD scale, the RP-884 

prior gave smaller values of percentage dissatisfied for extreme votes (i.e. PMV=±3) and higher 

values for a predicted neutral condition (i.e. PMV=0). Besides, a smaller PPD difference was 

observed between the posterior and RP-884 prior estimates as compared with the Fanger’s prior 

estimates, especially in the air-conditioned classroom environment.  

The primary benefit of the proposed Bayesian approach is that it enables a systematic procedure 

to update our current beliefs about occupant dissatisfaction with a thermal environment based 

on the best information available (i.e. predictions made by comfort models and relevant field 

survey data). The approach evaluates the statistical significance of field measurements and 

relates the model parameters to the choice of target sample size and acceptable error. It is also 

useful for making design decisions to build a comfortable thermal environment.  

  

    

Select target sample size n2, and 
acceptable error ε 
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Figure 6. Flow diagram of Bayesian approach 
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Figure 7. Predicted percentage dissatisfied for residential buildings in (a) Israel (winter), (b) Israel (summer), (c) Harbin, China, (d) 
Cameroon (Ngaoundere), (e) Cameroon (Kousseri); (i) median, (ii) maximum likelihood
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Figure 8. Occupant thermal responses in (a) offices, (b) classrooms, (c) apartments, (d) 
elderly centres 
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Figure 9. Predicted percentage dissatisfied for (a) offices, (b) classrooms, (c) apartments, 
(d) elderly centres (Fanger’s prior) 
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Figure 10. Predicted percentage dissatisfied in terms of feeling ‘cold’ or ‘hot’ for (a) 
offices, (b) classrooms, (c) apartments, (d) elderly centres (Fanger’s prior) 
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Figure 11. Predicted percentage dissatisfied for (a) offices, (b) classrooms, (c) 
apartments, (d) elderly centres; (RP-884 prior) 
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Figure 12. Predicted percentage dissatisfied in terms of feeling ‘cold’ or ‘hot’ for (a) 
offices, (b) classrooms, (c) apartments, (d) elderly centres; (RP-884 prior)  
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4. Conclusions 

Rising numbers of thermal comfort field studies show that Fanger’s model is not a good 

predictor of actual thermal sensation. In addition, statistical significance of field measurements 

has been questioned and generalized survey results have been ignored in many circumstances. 

This study proposed a Bayesian approach to update our current beliefs about thermal comfort. 

Usefulness of the proposed approach was demonstrated through some studies reported in the 

literature, with a free choice of target sample size. Congruence between Fanger’s model 

prediction and contemporary field survey data was quantified. It showed that the maximum 

likelihood of posterior estimates was close to the actual percentage dissatisfied (APD) obtained 

from large sample field surveys. For small sample sizes, the Bayesian estimation was close to 

Fanger’s prediction. These findings provide a solution to the choice of thermal comfort criteria 

in future thermal environment designs. 
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