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Abstract—A challenge in modeling type-2 fuzzy logic systems is 

the development of efficient learning algorithms to cope with the 

ever increasing size of real-world datasets. In this study, the 

extreme learning strategy is introduced to develop a fast training 

algorithm for interval type-2 Takagi-Sugeno-Kang fuzzy logic 

systems (IT2 TSK FLSs). The proposed algorithm, called Type-2 

Fuzzy Extreme Learning Algorithm (T2FELA), has two 

distinctive characteristics. First, the parameters of the 

antecedents are randomly generated and the parameters of the 

consequents are obtained by a fast learning method according to 

the extreme learning mechanism. Moreover, since the obtained 

parameters are optimal in the sense of minimizing the norm, the 

resulting fuzzy systems exhibit better generalization performance. 

The experimental results clearly demonstrate that the training 

speed of the proposed T2FELA algorithm is superior to that of the 

existing state-of-the-art algorithms. The proposed algorithm also 

shows competitive performance in generalization abilities. 

 
Index Terms—Type-2 Fuzzy Logic System, Extreme Learning, 

Parameter optimization, Fast training. 

I. INTRODUCTION 

Uzzy logic systems (FLSs) have been extensively applied 

for approximate reasoning and learning in system 

modeling, intelligent control, signal processing and prediction. 

FLSs have experienced two important stages of development 

since 1970: the classical type-1 (T1) FLSs using the T1 fuzzy 

set and the advanced type-2 (T2) FLSs using the T2 fuzzy set. 

While T1 FLSs have been comprehensively studied from both 

the theoretical and application aspects [1-3, 52, 53], T2 FLSs 

have been attracting more attention in the last decade [4-6, 

56-64] due to its superior performance in modeling uncertainty 

frequently encountered in real-world modeling tasks. In 

addition, the interpretation and learning abilities of T2 FLSs 

remain as strong as that of T1 FLSs. 

The Interval T2 FLSs (IT2 FLSs) are the most extensively 

used T2 FLSs because of their efficiency and simplicity. 
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However, IT2 FLSs are facing a challenge that hampers further 

extensive applications: the training efficiency cannot cope with 

the increasing size of datasets. For example, if IT2 FLSs are 

used for biochemical process modeling that involves large 

datasets, the classical learning algorithms may be inefficient 

due to high computational cost. This can severely prohibit 

extensive applications of IT2 FLSs since large datasets are 

becoming major information sources for IT2 FLS learning and 

construction in real-world applications, e.g. intelligent control 

of biochemical processes and market trend analysis. While 

data-driven learning [7-13] is the most efficient and common 

method used to deal with rapid and massive accumulation of 

data in real-world applications, the high computational 

complexity of the classical data-driven IT2 FLS learning 

algorithms remain an issue. This brings about a theoretical and 

practical need to train typical IT2 FLS models efficiently on 

large datasets. 

Research on fast-learning intelligent models has been 

conducted to improve the performance of existing machine 

learning methods on handling information sources with large 

datasets. For example, Tseng et al. studied fast and scalable 

leaning approaches for kernel methods such as support vector 

machines (SVMs) [14, 15]. Deng et al. proposed effective 

approaches for scalable learning of kernel density estimation 

and classical T1 FLSs [16-18]. Huang et al. [19-21] 

investigated fast and scalable learning methods for generalized 

single-hidden layer feed-forward neural networks (SLFNs).  

The extreme learning machine (ELM) theory has emerged in 

recent years as one of the most powerful methods for fast 

learning of intelligent models [19-25]. ELM is originally 

proposed for SLFNs [19, 20] and further extended for 

generalized SLFNs where the hidden layer nodes are not 

necessarily neuron alike [26, 27]. In ELM, all the hidden node 

parameters are randomly generated. Huang et al. [19, 20] have 

proved that SLFNs exhibit universal approximation capability 

with a wide variety of random computational hidden nodes. 

Examples of the computational hidden nodes include 

additive/radial basis function (RBF) hidden nodes, fuzzy rules 

[28] and wavelets [29].  

Training methods based on the ELM strategy in general have 

the following distinctive advantages [19-30]. 

First, different from common learning strategies, tuning of 

the nodes in the hidden layer of SLFNs is not required. 

Typically, ELM is implemented by employing random 

computational nodes in the hidden layer, which may be 

independent of the training data.  

Second, unlike the traditional learning algorithms for neural 

networks (NNs), ELM not only targets to achieve the smallest 

training error but also the smallest norm of the output weights. 
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Attributed to this feature, feedforward neural networks trained 

by ELM, according to neural network theory [30], are expected 

to exhibit better generalization performance.  

Third, with ELM, it is not required to tune the nodes in the 

hidden layer of SLFNs and thus the hidden layer parameters 

can be fixed. The output weights can then be obtained by only 

solving the corresponding linear equations, which is very 

efficient compared to classical methods such as 

gradient-descent learning based methods (e.g. 

back-propagation algorithm) and standard optimization 

methods such as the quadratic programming (QP) based 

algorithm. 

The relationships between FLSs and NNs have been studied 

extensively [31-35]. It is revealed that under some constraints, 

many FLSs can be interpreted as specific NNs and trained by 

using NN learning algorithms. The NNs can also be interpreted 

with special fuzzy inference rules. For example, several typical 

type-2 fuzzy NNs (T2 FNNs) [11-12] have been used to 

develop the learning methods for different T2 FLS models.  

Inspired by the distinctive advantages of ELM and the 

important relationships between T2 FLSs and fuzzy NNs 

(FNNs) as discussed above, we propose to develop a fast 

training algorithm for IT2 TSK FLSs by leveraging the learning 

mechanism of ELM. The proposed training algorithm inherits 

the characteristics of ELM and has the following advantages for 

IT2 TSK FLSs training: (1) the parameters of the antecedents 

can be randomly generated and the parameters of the 

consequents can be learned quickly; (2) the fuzzy systems 

obtained have better generalization performance since the 

parameters of the consequents are optimal in the sense of 

minimizing the norm.  

The contributions of our work are highlighted as follows.  

(1) We show that the ELM strategy can be adopted for 

training IT2 TSK FLSs by revealing that the training of IT2 

TSK FLSs can be taken as a special case of the training of the 

generalized SLFNs. 

(2) With the ELM strategy, we propose a novel algorithm 

T2FELA for training IT2 TSK FLSs from the viewpoint of NN 

learning.  

(3) The proposed algorithm is shown to outperform the 

existing state-of-the-art algorithms through extensive 

experiments conducted on synthetic and real-world datasets. 

The rest of this paper is organized as follows. Section II 

discusses the IT2 TSK FLS and the classical ELM. In Section 

III, the T2FELA algorithm is proposed for fast training of IT2 

TSK FLS. The algorithm is evaluated experimentally in Section 

IV. Finally, a conclusion is made in Section V. 

II. RELATED WORK 

In this section, we first introduce the typical IT2 TSK FLS. 

The classical ELM is then briefly described, which will be 

adopted to develop the proposed T2FELA algorithm for fast 

learning of IT2 TSK FLSs. 

A.  IT2 TSK FLS 

1) Fuzzy Inference Rules and Inference Mechanism: For 

traditional T1 TSK FLSs, the most commonly used fuzzy 

inference rules are defined as follows [1, 2].  

Rules of  T1 TSK  FLS  :kR  

1 1 2 2If  is   is   is  k k k
d dx A x A x A     

0 1 1Then  ( )k k k k
d dw p p x p x   x , 1, ,k K , 

where k
iA  is a T1 fuzzy subset subscribed by the input variable 

ix  for the k-th rule; K is the number of fuzzy rules and   is a 

fuzzy conjunction operator; 0 1[ , , ,, ]k k k k T
dp p pp  denotes the 

consequent parameters of the k-th fuzzy rule. Each rule is 

premised on the input vector 1 2[ , , , ]Tdx x xx , and maps the 

fuzzy sets in the input space k dA R  to a varying singleton 

denoted by kw .  

Since IT2 TSK FLS is easy to design and implement, it is 

widely used for T2 FLSs. In IT2 TSK FLSs, the IT2 fuzzy sets 

are adopted to replace the T1 fuzzy sets in the traditional T1 

TSK FLSs. One type of commonly used fuzzy inference rules 

for IT2 TSK FLSs can be expressed as follows [11],  

Rules of  IT2 TSK FLS  :kR  

1 1 2 2If  is   is   is  k k k
d dx A x A x A     

0 1 1Then  k k k k
d dw p p x p x    , 1, ,k K , 

where k
iA  is an IT2 fuzzy subset subscribed by the input 

variable ix  for the k-th rule; K is the number of fuzzy rules and 

  is a fuzzy conjunction operator; 0 1[ , , ,, ]k k k k T
dp p pp  

denotes the consequent parameters of the k-th fuzzy rule. Each 

rule is premised on the input vector 1 2[ , , , ]Tdx x xx , and 

maps the fuzzy sets in the input space k dA R  to a varying 

singleton denoted by kw . For the IT2 fuzzy set k
iA , different 

types of primary membership function (MF) can be defined. A 

Gaussian primary membership function with a fixed standard 

deviation k
i  and an uncertain mean that takes on values 

1 2[ , ]k k
i im m  is expressed as  

2

1 2( ; , ),   [ , ]
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where ,k k
i im   denote the means and width parameters of 

Gaussian membership function, respectively; the value of Eq. 
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Each rule performs a fuzzy meet operation using an algebraic 

product operation. The output of the if-part of a rule is a firing 

strength which is an interval T1 (IT1) fuzzy set as defined by  
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[ , ]k k kF f f , (2.a) 

where 

1
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i
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  (2.b) 

and 

1
k
i

d
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 . (2.c) 

The output of the then-part of the k-th rule can be expressed as 

0 1 1 0

dk k k k k
d d i ii

w p p x p x p x


     . (3) 

By applying a T2 reducer, the IT1 fuzzy set [ ly , ry ] for the 

model output can be computed as follows. 

1
1 1 1
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     (4) 

Since there is no direct theoretical solution for Eq. (4), the 

computation of the reduced set resorts to iterative methods. One 

commonly used method is the Karnik-Mendel (K-M) iterative 

procedure [5, 48], where the consequent values should be 

re-ordered in an ascending order. Denote the original 

rule-ordered consequent values as 1[ , , ]K Tw ww  and the 

re-ordered sequence as 1[ , , ]K Tw ww , where 

1 2 Kw w w   , the relationship between w  and w , 

according to [7, 11], is given by 

w Qw , (5) 

where Q  is a K K  permutation matrix. The elementary 

vectors in Q  are used as the columns, and they are arranged so 

that the elements in w  are moved to new locations and 

arranged in an ascending order in the transformed vector w . 

For the elementary vectors, all of the elements are zero except 

one unity element in a specified position. Details about the 

construction of Q can be found in [7]. Accordingly, the rule 

orders kf  and kf  can be rearranged to yield the re-ordered 

sequence kf  and kf  respectively. The outputs ly  and ry  in 

Eq. (4) can then be computed as follows: 

1 1
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, (6.b) 

where L and R are the switch points obtained by the K-M 

algorithm [5, 48] or its modified versions [49, 50]. With the IT1 

fuzzy set [ ly , ry ], the final output can be computed by 

averaging ly  and ry , i.e., 

  2l ry y y   (7) 

Some modified K-M algorithms have also been proposed to 

obtain the switch points with reduced computational time [49, 

50], e.g. the enhanced K-M algorithm [49]. However, in this 

study, the basic K-M method [5, 48] is used since it is simple to 

implement for all the related learning algorithms and sufficient 

for performance comparison in our experiments. 

2) Data-driven Training Algorithms: Data-driven learning 

has become the most important method for the construction of 

various IT2 FLSs to model real-world tasks, where the learning 

of model parameters by using the available data is a critical 

task. Some effective learning methods have been proposed for 

IT2 FLSs, including the gradient learning-based method [7], 

Singular Value Decomposition-QR decomposition (SVD-QR) 

method [8], dynamical optimal training method [9], support 

vector learning-based method [11], self-organizing 

evolving-based methods [12, 13], different mechanisms based 

hybrid learning algorithm [10, 54, 64, 65-68], and the 

bio-inspired methods and evolutionary learning based method 

[55, 59-63]. These algorithms have been used for training 

typical IT2 FLS models, such as IT2 Mamdani-Larsen FLSs 

(IT2 ML FLSs) and IT2 TSK FLSs. While several of these 

methods work efficiently with both small and large datasets, 

faster algorithms are always expected to keep up with 

ever-increasing demand in many applications. For example, the 

iteration rules based methods will become very time consuming 

and the efficiency deteriorates with the increasing size of the 

training data. Such situations are indeed commonly 

encountered in FLS-related enterprise applications. Thus, the 

development of fast learning methods for typical IT2 FLS 

models is a very important task.  

B. ELM 

1) Basic ELM : As one of the most powerful methods for fast 

learning of intelligent models, ELM has attracted considerable 

attention in recent years [19-25]. The ELM theory is originally 

proposed for SLFNs [19, 20] and further extended for 

generalized SLFNs, where the hidden layer nodes are not 

necessarily neuron alike [26, 27, 51]. The basic ELM is 

described below. 

First, we begin with a brief description of SLFNs. For a 

given set of training examples 1{( , )}N d m

i i i R R  x t  for a 

multiple-input-multiple-output SLFN, if the outputs of the 

SLFN, ( )l jf x , are equal to the sample targets, i.e. 
,j lt , we 

have 

 , ,1
( ) ( , , ) ,

 1, , ,     1, , ,

M

l j i l i i j li
f G b t

j N l m




 

   

x a x
 (8) 

where ( )l jf x  denotes the l-th output of SLFN with respect to 

the input sample jx ; N  denotes the number of training 

samples; M  denotes the number of the hidden nodes; m  

denotes the number of the output nodes; ( , , )i iG ba x  is an 

active function of hidden nodes with the parameters ,i iba  and 

,i l  are the weights connecting the hidden nodes and the output 

nodes. Then, Eq. (8) can be expressed in the compact form 

 Hβ T , (9) 

where 

1 1 1 1 1

1 1

( , , )  ( , , ) ( )
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M M
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. (10.c) 

Here, T
t  is the transpose of vector t ; H  is called the hidden 

layer output matrix; the i-th column of H  is the output vector 

of the i-th hidden node with respect to inputs 
ix , 1, ,i N ; 

the j-th row of H , i.e. h(xj), is the output vector of the hidden 

layer with respect to input jx ; β  is the weight matrix 

connecting the hidden layer to the output layer; and iβ  is the 

weight vector connecting the hidden layer to the i-th output 

node. 

With the ELM theory, the parameter learning of the SLFNs 

is achieved as follows. In Eq. (9), an exact solution is usually 

not available if the number of training data is larger than the 

number of hidden nodes. However, it has been proved in theory 

[18, 19] that, for SLFNs with random hidden nodes, the neural 

networks exhibit the universal approximation capability where 

the hidden nodes can be randomly generated independent of the 

training data. Once the hidden nodes are generated by random, 

the hidden-layer output matrix H  is readily available given the 

training data, without the need to tune the nodes. Thus, the 

training of SLFN by ELM is simply reduced to the solution of 

the linear system in Eq. (9). Under the constraint of minimum 

norm least square, i.e., 

 min  || ||
β

β  and min  || ||
β

Hβ T , (11) 

the solution of Eq. (9) is given explicitly [19] with the simple 

representation  

 
β H T , (12) 

where β  is the optimal solution of β  and 
H  is the 

Moore–Penrose generalized inverse of H  [36, 37]. Based on 

the principle of ELM, an ELM learning algorithm for SLFNs 

has the following distinctive properties for model training. 

(1) ELM is implemented by employing random 

computational nodes in the hidden layer, which may be 

independent of the training data.  

(2) ELM not only targets to achieve the smallest training 

error but also the smallest norm of the output weights. 

According to the neural network theory [30], ELM is expected 

to exhibit better generalization performance.  

(3) Since it is not required to tune the nodes in the hidden 

layer of SLFNs, the hidden layer parameters can be fixed and 

the output weights can then be solved simply by solving the 

corresponding linear equations using Eqs. (11) and (12), which 

is very efficient when compared to classical methods like 

gradient-descent learning based methods and standard 

optimization based methods. 

2) Advances of ELM: When compared to conventional 

techniques, ELM offers better generalization performance at 

faster learning speed and with minimal human intervention. 

Because of this attractive feature, considerable research efforts 

have been devoted to develop many improved versions and 

variants of ELM. The representative work includes the batch 

learning mode of ELM [19], fully complex ELM [38, 39], 

online sequential ELM [40, 41], incremental ELM [20,26,27], 

the ensemble of ELM [42-44] and the advanced ELM [50]. 

Recently, the bidirectional ELM for regression problem and the 

universal approximation of ELM with adaptive growth of 

hidden nodes were studied in [69] and [70], respectively. Many 

ELM based applications have also been investigated in 

literature. For example, ELM has been used for bioinformatics 

[71] and medical diagnosis [72]. In particular, research has 

been conducted to leverage the ELM learning strategy for fuzzy 

system training. In [28], the classical T1 TSK FLS is employed 

as a special SLFN with the fuzzy inference rules as the hidden 

nodes, and the fuzzy ELM algorithm is then proposed for the 

fast learning of the traditional T1 TSK FLS. Motivated by the 

above advances, the ELM learning strategy is investigated in 

this study to develop the fast learning algorithm T2FELA for 

IT2 TSK FLSs. 

III. T2FELA 

Based on the ELM learning strategy, we present the new fast 

training algorithm T2FELA for IT2 TSK FLS modeling in this 

section. The framework of the proposed T2FELA is first 

described, followed by an overview of the main procedure and 

a detailed description of the key stages.  

A. The Framework of T2FELA 

The proposed training method contains three stages, as 

illustrated in Fig. 1. In Stage 1, according to the ELM learning 

strategy, the parameters of the antecedents are randomly 

assigned and then fixed in the subsequent stages. In Stage 2, the 

parameters of the consequents are initialized by solving the 

linear system in Eq. (9), where the K-M algorithm is not used 

here to compute the switch points since the initial parameters 

are not available. In Stage 3, the consequents are further refined 

by using the K-M algorithm to obtain the switch points and the 

corresponding linear system in Eq. (9) is solved again to obtain 

the refined parameters. 

 
Fig.1 The framework of the proposed ELM strategy based T2FELA. 

B. Three Stages of T2FELA 

1) Generation of Antecedents: In this stage, Eqs. (1.a)-(1.c) 

are used to model the fuzzy set of antecedents. The parameters 

to be determined are the fixed standard deviations 
k
i  and the 

bounds of the uncertain mean, i.e., 1 2[ , ]k k
i im m . With reference 

to the related work on the ELM-based methods, these 

parameters can be randomly assigned within a certain range. In 

our experiments, all the attributes of the data are normalized 

into the interval [0, 1]. With the preprocessed data, we 
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randomly generate the standard deviations 
k
i  within the range 

[0, 5] and the center 
k
im of  

1 2[ , ]k k
i im m  within the range [0, 1]. 

Further, we use 
k
im  and a fixed minor deviation 

k
im  to obtain 

1k k k
i i im m m   and 

2k k k
i i im m m   . Note that the above 

settings cannot assure optimal configuration. While they can be 

further optimized by some strategies, e.g. the cross-validation 

strategy, our experimental studies show that the settings are 

good enough for most situations. 

2) Initialization of Consequents: In this stage, the outputs ly  

and ry  in Eqs. (6.a) and (6.b) are approximated by the 

following two equations without using the K-M iterative 

procedure: 

 1

1

1

K k
Kk kk

l kK k

kk

f w
y f w

f
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1
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k K

kk

f
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 (13.a) 
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 1

1

1

K k
Kk kk

r kK k
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f w
y f w
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1

k

k K

kk

f
f
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. (13.b) 

With Eqs. (13.a) and (13.b), Eq. (7) becomes 

  1 1

1

2 2

K Kk kl r

k kk k

y y
y f w f w

 


     . (14) 

Since 0 1 1  k k k k
d dw p p x p x    , we have 

  0 1 11
 

K k k k

l k d dk
y f p p x p x


     (15.a) 

and 

  0 1 11
 

K k k k

r k d dk
y f p p x p x


    , (15.b) 

let  

1 1 1 1 1( ) , , , , , , , ,
T

l d K K K df f x f x f f x f x         x (16.a)

1 1 1 1 1( ) , , , , , , , ,
T

r d K K K df f x f x f f x f x          x  (16.b) 

 

     

     

1 1 1 1 1 1 1
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       , , ,

l r

d

d K

K K K K d

f f f f x f f x

f f f f x f f x R

  



 

         


        


x x x

 (16.c) 

and 

1 1 ( 1)

0 0 , , , , , ,
T

K K d K

d dp p p p R    p , (17) 

Eq. (14) can then be expressed by the linear system 

( )Ty  x p . (18) 

For a given training dataset  ,  i iD y x of a regression task, 

when the antecedents of the IT2 TSK FLS are fixed, we can 

construct the dataset  ( ),  i iD y x to train the linear system 

in Eq. (18), where ( )i x  is generated using Eq. (16.c). 

Let   

( 1)

1

( )

( )

T

i

N K d

T

N

R





 

 
 

  
 
 

x

Φ

x

 (19.a) 

and  

1[ , , ]T

Ny yy , (19.b) 

the linear system in Eq. (18) can then be formulated as 

1 Φ p y . (20) 

The solution of this system can be obtained in a way similar to 

the approach used in the basic ELM, as shown in Eqs. (11) and 

(12). That is, by optimizing the following objective 

min || ||
p

p  and 
1min || ||

p
Φp y , (21.a) 

we have 

1
p Φ y , (21.b) 

where p  is the optimal solution of p  and 1


Φ  is the 

Moore–Penrose generalized inverse of 1Φ  [19, 36, 37]. 

3) Refinement of Consequents: With the initial values 

obtained in Stage 2, the final consequent parameters k

ip are 

determined in this stage. Since the values of k

ip  are now 

available for computing the consequent values   kw  for all the 

rules, the K-M iterative procedure can be used to obtain the 

output of the IT2 TSK FLS accurately. Let 
1  [ , , ]K Tw ww , 

1=[ , , ]TKf ff , 1=[ , , ]TKf ff , where the firing strengths are 

expressed according to the original rule order. According to  

Eq.(5), the relationship between the original rule-ordered 

consequent values w  and the re-ordered sequence 

w ( 1 2 Kw w w   ) can be expressed as w Qw , where 

Q  is a K K  permutation matrix. Then, f  and f  are 

rearranged to yield the re-ordered sequence 1[ ,  , ]TKf ff  

and 1[ ,  ,  ]TKf ff , with f Qf  and f Qf . Therefore, 

in Eq. 6(a), 
1 1 1

,  ,  
L K Lk k

k kk k L k
f w f w f

       and 
1

K

kk L
f

   can 

be written in a compact matrix form as 1 1

T T T T
f Q E E Qw , 

2 2

T T T T
f Q E E Qw , 

1
( )

L

kk Qf  and 
1
( )

K

kk L  Qf  respectively. 

Finally, Eq. (6.a) can be re-expressed in the rule-ordered form 

1 1 2 2

1 1
( ) ( )

T T T T T T T T

T

l lL K

k kk k L

y

  


 

 

f Q E E Qw f Q E E Qw
ψ w

Qf Qf
, (22.a) 

where  

1 1 2 2
,1 ,

1 1

[ , , ]
( ) ( )

T T T T T T T T
T K

l l l K L K

k kk k L

R 

  


  

 

f Q E E Q f Q E E Q
ψ

Qf Qf
, (22.b) 

 1 1, , , , , L K

L R  E e e 0 0 , (22.c) 

  ( )

2 1, , , , , K L K

K L R  

 E 0 0 ε ε , (22.d) 

with  ( 1, , )L

i R i L e and ( )  ( 1, , )K L

i R i K L  ε as 

the elementary vectors, i.e., all the elements are equal to 0 

except for the unity i-th element.  

Similarly, Eq. (6.b) can be re-expressed in the rule-ordered 

form 

3 3 4 4

1 1
( ) ( )

T T T T T T T T

T

r rL K

k kk k L

y

  


 

 

f Q E E Qw f Q E E Qw
ψ w

Qf Qf
, (23.a) 

where  

3 3 4 4
,1 ,

1 1

[ , , ]
( ) ( )

T T T T T T T T
T K

r r r K L K

k kk k L

R 

  


  

 

f Q E E Q f Q E E Q
ψ

Qf Qf
, (23.b) 
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 3 1, , , , , R K

R R  E e e 0 0 , (23.c) 

  ( )

4 1, , , , , K R K

K R R  

 E 0 0 ε ε , (23.d) 

with  ( 1, , )R

i R i R e and ( )  ( 1, , )K R

i R i K R  ε as 

the elementary vectors. Based on Eqs. (22.a) and (23.a), Eq. (7) 

becomes 

 
1

0

1 0

1 1
( ) ( )

2 2 2

1
  ( ) ,  1.

2

K
T T kl r

l r l r k

k

K d
k

l r k j j

k j

y y
y w

x p x



 


    

 
   

 



 

ψ ψ w ψ ψ

ψ ψ

 (24) 

Furthermore, let  

,1 ,1 0 ,1 ,1

( 1)

, , 0 , ,

1
( ) ( ) , , ( ) , ,

2
   ( ) , , ( )

l r l r d

T
K d

l K r K l K r K d

x x

x x R 

  

  

x    

   
 (25) 

and with p  defined in Eq. (17), Eq. (24) can be expressed as 

the linear system 

( )Ty  x p . (26) 

By denoting ( 1)

2

( )

( )

T

i

N K d

T

N

R  

 
 

  
 
 

x

Φ

x





, Eq. (26) is rewritten 

as  

2 Φ p y . (27) 

where y  is defined in Eq. (19.b). The solution of the linear 

system in Eq. (27) can be obtained by optimizing the following 

objective 

min || ||
p

p  and 
2min || ||

p
Φ p y . (28.a) 

We then have 

2
p Φ y , (28.b) 

where p  is the optimal solution of p and 2


Φ  is the 

Moore–Penrose generalized inverse of 2Φ  [19, 36, 37]. The 

result is also similar to that in Eqs. (11) and (12) in the basic 

ELM.  

C. The T2FELA Algorithm 

Based on the three-stage training method discussed above, 

the corresponding T2FELA algorithm is given as follows. 
 

Algorithm: T2FELA 

Stage 1: Randomly assign the parameters of the 

antecedents according to the ELM 

mechanism. 

Stage 2: Initialize the parameters of the consequents 

using Eqs. (13)-(21). 

Stage 3: Refine the parameters of the consequents 

using Eqs. (22)- (28). 
 
Remark 1: Different from some classical algorithms, the 

proposed algorithm is not an iterative procedure between 

antecedent learning and consequent learning. The parameters in 

the antecedents are randomly generated only once according to 

the extreme learning theory. Then by optimizing the parameters 

of the consequents, the obtained IT2 TSK FLS can still be a 

universal approximator as proved in [19,20] from the viewpoint 

of SLFN learning. In particular, similar learning procedure is 

also used in the existing interval type-2 fuzzy neural network 

with support-vector regression (IT2FNN-SVR) algorithm [11], 

which first generates the antecedents by a self-evolving 

strategy and then learns the consequents using a the two-stage 

SVR with the antecedents fixed. However, the computational 

time of IT2FNN-SVR remains high since it is usually necessary 

to solve the QP problem in SVR. 

Remark 2: The proposed T2FELA algorithm can be regarded 

as a special case of ELM learning where the hidden nodes of the 

SLFN involved are a set of T2 fuzzy inference rules. Thus, the 

proposed algorithm inherits the virtues of ELM learning 

strategy as described below. 

(1) The learning speed is expected to be much faster since no 

iterations are involved. This is a characteristic that has been 

demonstrated by most existing ELM based algorithms [19-25, 

51]. 

(2) The IT2 TSK FLSs obtained by using the proposed 

algorithm is expected to have better generalization ability since 

the parameters of the consequents are optimal in the sense of 

minimizing the norm, as shown in Eqs. (21.a) and (28.a), which 

can be easily solved by using the Moore–Penrose generalized 

inverse as in other ELM based algorithms [19-25, 51]. 

Remark 3: Although the proposed T2FELA algorithm has 

distinctive advantages in computational complexity, it has an 

inherent drawback due to the learning mechanism. Since the 

parameters of the antecedents are generated randomly in the 

ELM strategy, the ability to interpret the rules may be reduced. 

Although the input space of the antecedents is partitioned more 

randomly, we can still give an interpretation with the induced 

inference rules. Of course, we can improve the interpretation by 

using other partition strategies to replace the random generation 

approach, e.g. clustering techniques, but it will inevitably 

increase the computational cost. Nevertheless, as the classical 

T1 FLSs using the ELM strategy [28], the IT2 TSK FLS 

obtained with random generation of the parameters in the 

antecedents remains a universal approximator. Thus the IT2 

TSK FLSs trained by the proposed T2FELA algorithm is 

expected to possess good approximation ability. 

IV. EVALUATION 

The performance of the proposed T2FELA algorithm is 

evaluated by comparing with that of the three existing IT2 

FLS/FNN training algorithms on synthetic and real-world 

datasets. 

A. Experimental Settings 

1) Baseline Algorithms for Performance Comparison: Three 

algorithms are used for comparison with the proposed T2FELA 

algorithm, namely, (a) gradient-learning based algorithm 

(GL-IT2FLS) [7], (b) IT2FNN-SVR [11], and (c) self-evolving 

interval type-2 fuzzy neural network (SEIT2FNN) [12]. The 

implementation of these algorithms and our algorithm T2FELA 

are described below. 

GL-IT2FLS: All the parameters of both the antecedents and 

consequents of the IT2 FLSs are adjusted iteratively by the 

gradient-descent learning rules.  

SEIT2FNN: The parameters of the antecedents of the IT2 

FNNs are initialized by the self-evolving strategy. The 
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parameters of the antecedents and consequents are then 

adjusted iteratively by the gradient-descent learning rules and 

the rule-ordered Kalman filtering algorithm respectively.  

IT2FNN-SVR: The parameters of the antecedents of the IT2 

FNNs are determined by the self-evolving strategy, while the 

parameters of the consequents are determined by the two-phase 

SVR learning strategy.  

T2FELA:  the parameters of antecedents of the IT2 TSK 

FLSs are randomly generated according to the extreme learning 

theory, while the parameters of the consequents are determined 

by the two-phase extreme learning strategy. 

2) Parameter Setting: For all the algorithms, the hyper 

parameters are determined by applying the cross-validation 

strategy on the training sets. For the proposed T2FELA 

algorithm and GL-IT2FLS [7], the hyper parameter is the 

number of fuzzy rules and the optimal value is determined by 

the cross-validation strategy within the parameter set 

{4,9,16,25,36,49,64,81,100,121} . For the algorithms 

IT2FNN-SVR [11] and SEIT2FNN [12], the hyper parameter is 

the threshold of the firing-strength, which directly influences 

the final number of fuzzy rules of the generated T2 FLSs. It is 

determined by the cross-validation strategy within the 

parameter set {0.1,0.2,0.3 0.4,0.5,0.6,0.7,0.8}， . For the 

algorithm IT2FNN-SVR [11], the hyper parameter C, i.e, the 

regularization parameter in SVR, is determined by the 

cross-validation strategy within the parameter set 
5 4 4 5{2 ,2 , ,2 ,2 } 

. For the iteration based algorithms, i.e., 

GL-IT2FLS [7] and SEIT2FNN [12], the maximum iteration 

number is set to be 10. 

3) Evaluation Indices: In all the experiments, the main 

performance index is the training time T of the algorithms. 

Furthermore, the performance index J as defined in Eq. (29) 

is also adopted [2, 17, 18, 35] to evaluate the generalization 

abilities of the algorithms on the testing datasets: 

 
2

1

2

1

( )

( )

N

i i
i
N

i
i

y y
J

y y





 







, (29) 

where N is the number of test data; iy  is the output for the i-th 

test input; iy   is the fuzzy model output for the i-th test input 

and 
1

N

i
i

y y N


 . The smaller the value of J, the better the 

generalization performance. 

4) Other Settings: For all the algorithms, the classical K-M 

algorithm [5, 48] is adopted for the computation of the switch  

points in Eqs. (6.a) and (6.b) for simplicity. Although other 

faster algorithms can also be adopted [49, 50], it is considered a 

fair approach to use the same K-M algorithm for performance 

comparison for all the training algorithms in our experiments. 

All the algorithms in the experiments are implemented using 

Matlab. For the IT2FNN-SVR algorithm, the LibSVM code is 

used to solve the corresponding SVR [47]. The experiments are 

conducted on a computer with an Intel Core 2 Duo 2.00 GHz 

CPU and 2GB RAM. The experimental settings are 

summarized in Table I. 

B. Datasets 

Three types of datasets are adopted for performance 

evaluation, including synthetic datasets, benchmarking 

real-world datasets, and biochemical process modeling 

datasets. For all the datasets, the data attributes are normalized 

into the range [0, 1]. The details of these datasets and the 

corresponding experiment results are discussed in Sections 

IV-C-1 through IV-C-3. 

C. Results and Discussions 

1) Synthetic Datasets: The experiments conducted with the 

synthetic Friedman datasets [45] are reported in this section. 

For these datasets, the input attributes 1 2 5( , , , )Tx x xx  are 

generated independently, each of which is uniformly 

distributed over [0, 1]. The target is defined by  

    
2

1 2 3 4 510sin 20 0.5 10 5 (0,1)y x x x x x       , (30) 

where (0,1)  is a noise term which is normally distributed 

with mean 0 and variance 1. 

 
TABLE I  

THE EXPERIMENTAL SETTINGS 

Settings Algorithms 

SEIT2FNN [12] IT2FNN-SVR [11] GL-IT2FLS [7] T2FELA 
Hyper 

parameters 

The number of fuzzy rules:  its optimal value is determined within the parameter set 

{4,9,16,25,36,49,64,81,100,121}  by the cross-validation strategy. 

The firing-strength: its optimal value is determined within 

the parameter set {0.1,0.2,0.3 0.4,0.5,0.6,0.7,0.8}，  by 

the cross-validation strategy.  The regularization parameter in SVR:  it is determined 

within the parameter set 
5 4 4 5{2 ,2 , ,2 ,2 } 

 by the 

cross-validation strategy. 

Evaluation 

indices 

1)  T: training time on the training dataset 

2)  J: generalization performance on the testing dataset 

Others 1)  The classical K-M algorithm [5, 48] is adopted for the computation of the switch points in Eqs. (6.a) and (6.b). 

2)  The LibSVM code [47] is adopted to solve the corresponding SVR in the algorithm IT2FNN-SVR.  
3)  For the iteration based algorithms, i.e., the GL-IT2FLS and SET2FNN, the maximum iteration number is set to be 10. 

 

In the experiments, datasets of different sizes are generated 

and used for the training. The size of the generated training sets 

is in the range of 100 to 5104. Meanwhile, a noise-free dataset 

of size 103 is generated for testing. The performance of each of 

the four IT2 FLS/FNN training algorithms is then evaluated 

using these datasets. Each experiment is repeated 20 times for 

datasets at each size to obtain the average evaluation indices 

and the corresponding standard deviations. 

The training time T and the generalization performance 

index J of the four training algorithms are shown in Tables II 

and III respectively. The average values are also compared in 

Fig. 2. 

The number of fuzzy rules given in Table II is determined by 

performing the cross-validation strategy on the training sets. 
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Note that for IT2FNN-SVR [11] and SEIT2FNN [12], the 

parameter determined by the cross-validation strategy is the 

threshold of firing-strength, which has important influence on 

the number of fuzzy rules generated by these two algorithms. 

The smaller the threshold of firing-strength, the smaller the 

number of the generated fuzzy rules. The following 

observations can be made from the experimental results: 

(1) The efficiency of the proposed T2FELA algorithm is 

better than that of the other three algorithms. In these 

algorithms, the training time depends on the learning strategy, 

the size of training set, and the number of fuzzy rules. For the 

proposed T2FELA algorithm, while the optimal number of 

fuzzy rules obtained by the cross-validation strategy is 

equivalent to those obtained in the other three algorithms, the 

training time is obviously the smallest. 

(2) The generalization ability of the proposed T2FELA 

algorithm on the Friedman datasets is highly competitive 

among the training algorithms. Although the IT2FNN-SVR 

algorithm has shown better generalization performance for 

small datasets, the T2FELA is a more promising algorithm for 

handling large training sets. 
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(b) 

Fig.2 Performance of the four IT2 FLS/FNN training algorithms on Friedman 

synthetic datasets: (a) training time (seconds) T; (b) generalization performance 
index J. 

Table II 
TRAINING TIME (SECONDS) OF THE FOUR IT2 FLS/FNN TRAINING ALGORITHMS 

ON FRIEDMAN SYNTHETIC DATASETS 

Indices N T2FELA IT2FNN-SVR GL-IT2FLS SEIT2FNN 

Mean/std Mean/std Mean/std Mean/std 

T 

1e2 0.05 0.62 32.64 4.00 

 0.01 0.12 2.09 0.31 

 (16)  (29) (49) (5) 

5e2 0.25 3.40 56.74 55.50 
 0.032 0.62 1.31 0.87 

 (16) (21) (16) (20) 

1e3 0.50 17.64 111.26 129.75 
 0.04 1.33 2.77 1.04 

 (25) (48.7) (16) (21.5) 

5e3 6.89 269.39 561.60 1395 

 0.22 16.10 7.8 2.32 
 (25) (68.33) (16) (46.5) 

1e4 22.99 721.22 1148 2716 

 0.12 26.31 54.78 2.09 
 (36) (53.67) (16) (47.5) 

3e4 240.86 7469 5038 7667 

 1.58 24.20 86 198 

 (36) (35.5) (25) (44.5) 

5e4 643.22 14304 8553 9096 

 1.92 391 138 1.39 

 (49) (17) (25) (33) 

N denotes the size of training sets and the values inside brackets are the average 

number of fuzzy rules determined by applying the cross-validation strategy on 
the training sets for 20 times. 

TABLE III  
GENERALIZATION PERFORMANCE OF THE FOUR IT2 FLS/FNN TRAINING 

ALGORITHMS ON FRIEDMAN SYNTHETIC DATASETS 

Indices N T2FELA IT2FNN-SVR GL-IT2FLS SEIT2FNN 

Mean/std Mean/std Mean/std Mean/std 

J 

1e2 0.3418 0.2853 0.5471 0.4172 

 0.1255 0.0261 0.0344 0.0727 

5e2 0.1255 0.1592 0.1277 0.1835 

 0.0166 0.0261 0.0014 0.0136 

1e3 0.0743 0.1163 0.0915 0.1502 

 0.0094 0.0068 0.0077 0.0394 

5e3 0.0445 0.0706 0.0703 0.0727 

 0.0013 0.0018 0.0004 0.0079 

1e4 0.0339 0.0519 0.0648 0.0484 

 0.0025 0.0015 0.0038 0.0043 

3e4 0.0219 0.0458 0.0606 0.0442 
 0.0007 0.0099 0.0020 0.0165 

5e4 0.0205 0.0594 0.0584 0.0480 

 0.0048 0.0172 0.0007 0.0225 

N denotes the size of training sets. 

 

2) Real-world Datasets: In this section, the performance of the 

four algorithms is evaluated using five benchmarking 

real-world datasets available from the Laboratory of Artificial 

Intelligence and Computer Science at the University of Porto, 

Portugal [46]. The datasets are described in Table IV. In the 

experiments, each dataset is randomly partitioned with the ratio 

of 4:1 for training and test respectively. This procedure is 

repeated 20 times to obtain the average performance of each 

algorithm on each of the five real-world datasets. 

The experimental results are shown in Tables V, VI and 

Fig.3. Similar to the findings obtained in the synthetic datasets, 

it is noted that the training time of the proposed T2FELA 

algorithm is obviously less than that of the other three 

algorithms and the generalization ability is also highly 

competitive. 

On the other hand, we also find from the results that the 
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training time of the three existing IT2 FLS/FNN training 

algorithms is at least 10 times slower than that of the proposed 

algorithm on the five real-world datasets. Even for the 

CartExample dataset whose size is the largest among the five 

datasets, the training time of T2FELA is only about 480 

seconds. This suggests that the proposed algorithm is promising 

for modeling large real-world data sets. 

3) Biochemical Process Modeling Datasets: Further 

experiments are also conducted to evaluate the performance of 

the four algorithms on the modeling of a biochemical process 

which involves large datasets [18]. A 

multiple-input-multiple-output dataset originated from the 

glutamic acid ferment process is adopted. The input variables 

of the dataset include ferment time k, glucose concentration 

S(k), glutamic acid concentration P(k), thalli concentration 

X(k), stirring speed R(k), and ventilation Q(k) at time k. The 

output variables are glucose concentration S(k+1), glutamic 

acid concentration P(k+1) and thalli concentration X(k+1) at 

time k+1. The IT2 TSK FLS based estimation model is 

illustrated in Fig. 4. In the experiments, the original data is 

collected from 41.1 10 batches of ferment process. Training 

sets of different sizes (from 210 to 45 10 P) are obtained from 

the original dataset to train the systems. A set of data with a size 

of 310  is also obtained for testing purposes. The training 

procedure is repeated 20 times for datasets at each size, and the 

average performance is recorded for comparison. 

 
TABLE IV 

FIVE REAL-WORLD REGRESSION DATASETS 

Dataset Number of samples 
(Ratio between the 

training data and 

testing data) 

Number of attributes 
(Input variables + output variables) 

delta_elevators 9516  (4:1) 6+1 
Census_8 22784 (4:1) 8+1 

CartExample 40768 (4:1) 10+1 

cadata 20640 (4:1) 9+1 
bank32NH 4499 (4:1) 32+1 

 

TABLE V 

TRAINING TIME (SECONDS) OF THE FOUR IT2 FLS/FNN TRAINING ALGORITHMS 

ON REAL-WORLD DATASETS 

Indices Dataset 
T2FELA 

IT2FNN 
-SVR 

GL- 
IT2FLS 

SEIT2FN
N 

Mean/std Mean/std Mean/std Mean/std 

T 

delta_el
evators 

50.37 664.13 1567 1276 

0.10 102.42 58.53 47.24 

(16) (80) (16) (12.5) 

Census_

8 

140.43 1076 4750 2671 

5.48 28.04 40.18 22.64 

(6) (12) (16) (8.5) 

CartExa
mple 

481.87 30994 15945 17156 

24.2 567 237 146 

(16) (25.5) (25) (27.5) 

cadata 448.83 805.41 4265 7831 

10.67 23.90 34.23 13.49 

(25) (14.5) (16) (29.5) 

bank32 

NH 

34.05 242.92 1893 865.62 

1.16 18.75 37.50 16.67 

(9) (22) (16) (4) 

The values inside brackets are the average number of fuzzy rules determined by 

applying the cross-validation strategy on the training set for 20 times. 

TABLE VI 
GENERALIZATION PERFORMANCE OF THE FOUR IT2 FLS/FNN TRAINING 

ALGORITHMS ON REAL-WORLD DATASETS 

Indices Dataset 
T2FELA 

IT2FNN- 

SVR 

GL- 

IT2FLS 

SEIT2FN

N 

Mean/std Mean/std Mean/std Mean/std 

J 

delta_el 

evators 

0.5947 0.6008 0.5919 0.6042 

0.004 0.0002 0.0010 0.0051 

Census_8 0.6769 0.6690 0.6348 0.6983 

0.0307 0.0072 0.0735 0.0383 

CartExa
mple 

0.2276 0.2294 0.2266 0.4563 

0.0001 0.0013 0.0013 0.0617 

cadata 0.5252 0.5510 0.5568 0.6559 

0.0384 0.0084 0.0431 0.0032 

bank32N
H 

0.7185 0.7213 0.7211 0.7053 

0.0340 0.0193 0.0062 0.0124 

 
Tables VII, VIII and Fig. 5 show the performance of the four 

IT2 FLS/FNN training algorithms on glucose concentration 

prediction. Furthermore, Figs. 6 and 7 plot the training time and 

performance of glutamic acid concentration prediction and 

thalli concentration prediction respectively (note that the results 

of glutamic acid and thalli concentration prediction are not 

tabulated here due to space limit). The experimental results on 

the prediction of these three biochemical variables show that 

the training time of the proposed T2FELA algorithm is much 

shorter than that of the other three algorithms. The 

generalization ability of the proposed algorithm is also highly 

competitive. In particular, the T2FELA algorithm demonstrates 

more promising generalization performance for the prediction 

of glutamic acid concentration and glucose concentration. The 

proposed algorithm is therefore effective for the biochemical 

process modelling that involves large datasets. 
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(b) 

Fig.3 Performance of the four IT2 FLS/FNN training algorithms on five 
benchmarking real-world datasets: (a) training time (seconds) T; (b) 

generalization performance index J. 
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TABLE VII 
TRAINING TIME (SECONDS) OF THE FOUR IT2 FLS/FNN TRAINING ALGORITHMS 

ON BIOCHEMICAL DATASETS FOR GLUCOSE CONCENTRATION (S) PREDICTION 

Indices N T2FELA IT2FNN-SVR GL-IT2FLS SEIT2FNN 

Mean/std Mean/std Mean/std Mean/std 

T 

1e2 0.11 0.09 6.08 1.42 
 0.07 0.02 0.39 0.33 

 (4) (3.5) (4) (5) 

5e2 0.35 1.28 20.47 9.03 
 0.02 0.16 3.27 0.49 

 (16) (18) (4) (8.5) 

1e3 0.92 7.95 126.36 24.19 

 0.11 3.00 8.65 0.63 
 (25) (45.5) (16) (12) 

5e3 20.86 91.15 1763 145.99 

 0.31 9.89 31.35 8.03 

 (36) (46.5) (49) (15) 

1e4 74.19 348.73 2502 1040 

 1.43 13.77 77.06 59.28 
 (36) (51.5) (36) (10.5) 

3e4 594.11 1744 7657 3021 

 11.03 46.41 185.64 53.82 

 (36) (20.5) (36) (10) 

5e4 1587 5786 15880 3855 

 67.72 87.68 258.96 45.24 

 (36) (14.5) (36) (7.5) 

N denotes the size of training sets and the values inside brackets are the average 

number of fuzzy rules determined by applying the cross-validation strategy on 
the training sets for 20 times. 

 
TABLE VIII 

GENERALIZATION PERFORMANCE OF THE FOUR IT2 FLS/FNN TRAINING 

ALGORITHMS ON BIOCHEMICAL DATASETS FOR GLUCOSE CONCENTRATION (S) 

PREDICTION 

Indices N T2FELA IT2FNN-SVR GL-IT2FLS SEIT2FNN 

Mean/std Mean/std Mean/std Mean/std 

J 

1e2 0.1197 0.1022 0.1240 0.1025 
 0.0325 0.0036 0.0050 0.0065 

5e2 0.0819 0.0818 0.0898 0.0815 

 0.0053 0.0012 0.0079 0.0045 

1e3 0.0686 0.0748 0.0807 0.0760 
 0.0003 0.0046 0.0087 0.0033 

5e3 0.0561 0.0738 0.0617 0.0707 

 0.0023 0.0011 0.0021 0.0075 

1e4 0.0563 0.0667 0.0673 0.0739 
 0.0014 0.0025 0.0048 0.0009 

3e4 0.0602 0.0717 0.0665 0.0766 

 0.0027 0.0036 0.0045 0.0010 

5e4 0.0562 0.0702 0.0658 0.0789 
 0.1197 0.0019 0.0017 0.0029 

N denotes the size of training sets. 

 

 
Fig.4 Illustration of the glutamic acid ferment process prediction model based 

on the IT2 TSK FLSs. 
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(b) 

Fig.5 Performance of the four IT2 FLS/FNN training algorithms on 
biochemical datasets for glucose concentration (S) prediction: (a) training time 

(seconds) T; (b) generalization performance index J. 

V. CONCLUSIONS 

In this study, an extreme learning strategy-based fast training 

algorithm T2FELA is proposed for the training of IT2 TSK 

FLSs. It aims at developing a training algorithm that enables the 

models to be effectively trained on large datasets. Experimental 

results demonstrate that with the extreme learning mechanism, 

the proposed T2FELA algorithm allows for random generation 

of the parameters of the antecedents and fast learning of the 

parameters of the consequents. Moreover, the resulting IT2 

TSK FLSs demonstrate highly competitive generalization 

performance among several existing algorithms. 

While the proposed T2FELA algorithm has demonstrated 

promising performance for training IT2 TSK FLS on large 

datasets, there are still rooms for further improvement. For 

example, the efficiency of the current version of T2FELA 

algorithm is limited by the demanding memory requirement of 

the basic ELM learning strategy. In this case, online sequential 

ELM learning strategy, where data is read chunk by chunk, can 

be adopted to overcome the difficulties caused by the enormous 

amount of memory required for handling very large datasets. 

This will be our future work. Besides, further investigation will 

be conducted to extend the T2FELA algorithm for other types 

of T2 FLSs, such as the IT2 ML FLSs. 
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(b) 

Fig.6 Performance of the four IT2 FLS/FNN training algorithms on 

biochemical datasets for glutamic acid concentration (P) prediction: (a) training 
time (seconds) T; (b) generalization performance index J. 
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(b) 

Fig.7 Performance of the four IT2 FLS/FNN training algorithms on 

biochemical datasets for thalli concentration (X) prediction: (a) training time 
(seconds) T; (b) generalization performance index J. 
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