

 1

Abstract—A challenge in modeling type-2 fuzzy logic systems is

the development of efficient learning algorithms to cope with the

ever increasing size of real-world datasets. In this study, the

extreme learning strategy is introduced to develop a fast training

algorithm for interval type-2 Takagi-Sugeno-Kang fuzzy logic

systems (IT2 TSK FLSs). The proposed algorithm, called Type-2

Fuzzy Extreme Learning Algorithm (T2FELA), has two

distinctive characteristics. First, the parameters of the

antecedents are randomly generated and the parameters of the

consequents are obtained by a fast learning method according to

the extreme learning mechanism. Moreover, since the obtained

parameters are optimal in the sense of minimizing the norm, the

resulting fuzzy systems exhibit better generalization performance.

The experimental results clearly demonstrate that the training

speed of the proposed T2FELA algorithm is superior to that of the

existing state-of-the-art algorithms. The proposed algorithm also

shows competitive performance in generalization abilities.

Index Terms—Type-2 Fuzzy Logic System, Extreme Learning,

Parameter optimization, Fast training.

I. INTRODUCTION

Uzzy logic systems (FLSs) have been extensively applied

for approximate reasoning and learning in system

modeling, intelligent control, signal processing and prediction.

FLSs have experienced two important stages of development

since 1970: the classical type-1 (T1) FLSs using the T1 fuzzy

set and the advanced type-2 (T2) FLSs using the T2 fuzzy set.

While T1 FLSs have been comprehensively studied from both

the theoretical and application aspects [1-3, 52, 53], T2 FLSs

have been attracting more attention in the last decade [4-6,

56-64] due to its superior performance in modeling uncertainty

frequently encountered in real-world modeling tasks. In

addition, the interpretation and learning abilities of T2 FLSs

remain as strong as that of T1 FLSs.

The Interval T2 FLSs (IT2 FLSs) are the most extensively

used T2 FLSs because of their efficiency and simplicity.

This work was supported in part by the Hong Kong Research Grants Council

(PolyU 5134/12E), and the National Natural Science Foundation of China
under Grant Nos. 60903100, 60975027, 61170122 and Jiangsu Engineering

R&D Center for Information Fusion Software under Grant SR-2011-01.

Z.H. Deng is with the School of Digital Media, Jiangnan University, Wuxi
214122, China and the Centre for Integrative Digital Health, the Hong Kong

Polytechnic University (e-mail: dzh666828@yahoo.com.cn).

K.S. Choi is with the Centre for Integrative Digital Health, the Hong Kong
Polytechnic University(e-mail: kschoi@ieee.org)

L.B. Cao is with the Advanced Analytics Institute, University of

Technology Sydney, Australia (e-mail: longbing.cao@uts.edu.au)
S.T. Wang is with the School of Digital Media, Jiangnan University, Wuxi

214122, China (e-mail: wxwangst@yahoo.com.cn).

However, IT2 FLSs are facing a challenge that hampers further

extensive applications: the training efficiency cannot cope with

the increasing size of datasets. For example, if IT2 FLSs are

used for biochemical process modeling that involves large

datasets, the classical learning algorithms may be inefficient

due to high computational cost. This can severely prohibit

extensive applications of IT2 FLSs since large datasets are

becoming major information sources for IT2 FLS learning and

construction in real-world applications, e.g. intelligent control

of biochemical processes and market trend analysis. While

data-driven learning [7-13] is the most efficient and common

method used to deal with rapid and massive accumulation of

data in real-world applications, the high computational

complexity of the classical data-driven IT2 FLS learning

algorithms remain an issue. This brings about a theoretical and

practical need to train typical IT2 FLS models efficiently on

large datasets.

Research on fast-learning intelligent models has been

conducted to improve the performance of existing machine

learning methods on handling information sources with large

datasets. For example, Tseng et al. studied fast and scalable

leaning approaches for kernel methods such as support vector

machines (SVMs) [14, 15]. Deng et al. proposed effective

approaches for scalable learning of kernel density estimation

and classical T1 FLSs [16-18]. Huang et al. [19-21]

investigated fast and scalable learning methods for generalized

single-hidden layer feed-forward neural networks (SLFNs).

The extreme learning machine (ELM) theory has emerged in

recent years as one of the most powerful methods for fast

learning of intelligent models [19-25]. ELM is originally

proposed for SLFNs [19, 20] and further extended for

generalized SLFNs where the hidden layer nodes are not

necessarily neuron alike [26, 27]. In ELM, all the hidden node

parameters are randomly generated. Huang et al. [19, 20] have

proved that SLFNs exhibit universal approximation capability

with a wide variety of random computational hidden nodes.

Examples of the computational hidden nodes include

additive/radial basis function (RBF) hidden nodes, fuzzy rules

[28] and wavelets [29].

Training methods based on the ELM strategy in general have

the following distinctive advantages [19-30].

First, different from common learning strategies, tuning of

the nodes in the hidden layer of SLFNs is not required.

Typically, ELM is implemented by employing random

computational nodes in the hidden layer, which may be

independent of the training data.

Second, unlike the traditional learning algorithms for neural

networks (NNs), ELM not only targets to achieve the smallest

training error but also the smallest norm of the output weights.

Zhaohong Deng, Kup-Sze Choi, Longbing Cao, Shitong Wang

T2FELA: Type-2 Fuzzy Extreme Learning

Algorithm for Fast Training of Interval Type-2

TSK Fuzzy Logic System

F

The following publication Z. Deng, K. Choi, L. Cao and S. Wang, "T2FELA: Type-2 Fuzzy Extreme Learning Algorithm for Fast Training of Interval
Type-2 TSK Fuzzy Logic System," in IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 4, pp. 664-676, April 2014 is available
at http://dx.doi.org/10.1109/TNNLS.2013.2280171.

This is the Pre-Published Version.

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

mailto:dzh666828@yahoo.com.cn

 2

Attributed to this feature, feedforward neural networks trained

by ELM, according to neural network theory [30], are expected

to exhibit better generalization performance.

Third, with ELM, it is not required to tune the nodes in the

hidden layer of SLFNs and thus the hidden layer parameters

can be fixed. The output weights can then be obtained by only

solving the corresponding linear equations, which is very

efficient compared to classical methods such as

gradient-descent learning based methods (e.g.

back-propagation algorithm) and standard optimization

methods such as the quadratic programming (QP) based

algorithm.

The relationships between FLSs and NNs have been studied

extensively [31-35]. It is revealed that under some constraints,

many FLSs can be interpreted as specific NNs and trained by

using NN learning algorithms. The NNs can also be interpreted

with special fuzzy inference rules. For example, several typical

type-2 fuzzy NNs (T2 FNNs) [11-12] have been used to

develop the learning methods for different T2 FLS models.

Inspired by the distinctive advantages of ELM and the

important relationships between T2 FLSs and fuzzy NNs

(FNNs) as discussed above, we propose to develop a fast

training algorithm for IT2 TSK FLSs by leveraging the learning

mechanism of ELM. The proposed training algorithm inherits

the characteristics of ELM and has the following advantages for

IT2 TSK FLSs training: (1) the parameters of the antecedents

can be randomly generated and the parameters of the

consequents can be learned quickly; (2) the fuzzy systems

obtained have better generalization performance since the

parameters of the consequents are optimal in the sense of

minimizing the norm.

The contributions of our work are highlighted as follows.

(1) We show that the ELM strategy can be adopted for

training IT2 TSK FLSs by revealing that the training of IT2

TSK FLSs can be taken as a special case of the training of the

generalized SLFNs.

(2) With the ELM strategy, we propose a novel algorithm

T2FELA for training IT2 TSK FLSs from the viewpoint of NN

learning.

(3) The proposed algorithm is shown to outperform the

existing state-of-the-art algorithms through extensive

experiments conducted on synthetic and real-world datasets.

The rest of this paper is organized as follows. Section II

discusses the IT2 TSK FLS and the classical ELM. In Section

III, the T2FELA algorithm is proposed for fast training of IT2

TSK FLS. The algorithm is evaluated experimentally in Section

IV. Finally, a conclusion is made in Section V.

II. RELATED WORK

In this section, we first introduce the typical IT2 TSK FLS.

The classical ELM is then briefly described, which will be

adopted to develop the proposed T2FELA algorithm for fast

learning of IT2 TSK FLSs.

A. IT2 TSK FLS

1) Fuzzy Inference Rules and Inference Mechanism: For

traditional T1 TSK FLSs, the most commonly used fuzzy

inference rules are defined as follows [1, 2].

Rules of T1 TSK FLS :kR

1 1 2 2If is is is k k k
d dx A x A x A

0 1 1Then ()k k k k
d dw p p x p x x , 1, ,k K ,

where k
iA is a T1 fuzzy subset subscribed by the input variable

ix for the k-th rule; K is the number of fuzzy rules and is a

fuzzy conjunction operator; 0 1[, , ,,]k k k k T
dp p pp denotes the

consequent parameters of the k-th fuzzy rule. Each rule is

premised on the input vector 1 2[, , ,]Tdx x xx , and maps the

fuzzy sets in the input space k dA R to a varying singleton

denoted by kw .

Since IT2 TSK FLS is easy to design and implement, it is

widely used for T2 FLSs. In IT2 TSK FLSs, the IT2 fuzzy sets

are adopted to replace the T1 fuzzy sets in the traditional T1

TSK FLSs. One type of commonly used fuzzy inference rules

for IT2 TSK FLSs can be expressed as follows [11],

Rules of IT2 TSK FLS :kR

1 1 2 2If is is is k k k
d dx A x A x A

0 1 1Then k k k k
d dw p p x p x , 1, ,k K ,

where k
iA is an IT2 fuzzy subset subscribed by the input

variable ix for the k-th rule; K is the number of fuzzy rules and

 is a fuzzy conjunction operator; 0 1[, , ,,]k k k k T
dp p pp

denotes the consequent parameters of the k-th fuzzy rule. Each

rule is premised on the input vector 1 2[, , ,]Tdx x xx , and

maps the fuzzy sets in the input space k dA R to a varying

singleton denoted by kw . For the IT2 fuzzy set k
iA , different

types of primary membership function (MF) can be defined. A

Gaussian primary membership function with a fixed standard

deviation k
i and an uncertain mean that takes on values

1 2[,]k k
i im m is expressed as

2

1 2(; ,), [,]

k
i

k
i i

iA k
i

k k k k k
i i i i i i

x m
x

N x m m m m

1
()= exp -

2 , (1.a)

where ,k k
i im denote the means and width parameters of

Gaussian membership function, respectively; the value of Eq.

(1.a) is in a bounded interval defined by the lower primary MF

k
i

iA
x () and upper primary MF k

i
iA

x () as follows.

1 2
2

1 2
1

(,)
2

(,)
2

k
i

k k
k k i i

i i i i

iA k k
k k i i

i i i i

m m
N x m x

x
m m

N x m x

；

() =

；

 (1.b)

1 1

1 2

2 2

(,)

1

(,)

k
i

k k k
i i i i i

k k
i i i iA

k k k
i i i i i

N x m x m

x m x m

N x m x m

；

()=

；

 (1.c)

Each rule performs a fuzzy meet operation using an algebraic

product operation. The output of the if-part of a rule is a firing

strength which is an interval T1 (IT1) fuzzy set as defined by

 3

[,]k k kF f f , (2.a)

where

1
k
i

d

k Ai
f

 (2.b)

and

1
k
i

d

k Ai
f

 . (2.c)

The output of the then-part of the k-th rule can be expressed as

0 1 1 0

dk k k k k
d d i ii

w p p x p x p x

 . (3)

By applying a T2 reducer, the IT1 fuzzy set [ly , ry] for the

model output can be computed as follows.

1
1 1 1

1

[,] [,]

[,] 1
K

K K K

K k

kk
l r

kf f f f f fw w

f w
y y

f

 (4)

Since there is no direct theoretical solution for Eq. (4), the

computation of the reduced set resorts to iterative methods. One

commonly used method is the Karnik-Mendel (K-M) iterative

procedure [5, 48], where the consequent values should be

re-ordered in an ascending order. Denote the original

rule-ordered consequent values as 1[, ,]K Tw ww and the

re-ordered sequence as 1[, ,]K Tw ww , where

1 2 Kw w w , the relationship between w and w ,

according to [7, 11], is given by

w Qw , (5)

where Q is a K K permutation matrix. The elementary

vectors in Q are used as the columns, and they are arranged so

that the elements in w are moved to new locations and

arranged in an ascending order in the transformed vector w .

For the elementary vectors, all of the elements are zero except

one unity element in a specified position. Details about the

construction of Q can be found in [7]. Accordingly, the rule

orders kf and kf can be rearranged to yield the re-ordered

sequence kf and kf respectively. The outputs ly and ry in

Eq. (4) can then be computed as follows:

1 1

1 1

L Kk k

k kk k L
l L K

kk k L

f w f w
y

f f

 (6.a)

and

1 1

1 1

R Kk k

k kk k R
r R K

k k R

f w f w
y

f f

, (6.b)

where L and R are the switch points obtained by the K-M

algorithm [5, 48] or its modified versions [49, 50]. With the IT1

fuzzy set [ly , ry], the final output can be computed by

averaging ly and ry , i.e.,

 2l ry y y (7)

Some modified K-M algorithms have also been proposed to

obtain the switch points with reduced computational time [49,

50], e.g. the enhanced K-M algorithm [49]. However, in this

study, the basic K-M method [5, 48] is used since it is simple to

implement for all the related learning algorithms and sufficient

for performance comparison in our experiments.

2) Data-driven Training Algorithms: Data-driven learning

has become the most important method for the construction of

various IT2 FLSs to model real-world tasks, where the learning

of model parameters by using the available data is a critical

task. Some effective learning methods have been proposed for

IT2 FLSs, including the gradient learning-based method [7],

Singular Value Decomposition-QR decomposition (SVD-QR)

method [8], dynamical optimal training method [9], support

vector learning-based method [11], self-organizing

evolving-based methods [12, 13], different mechanisms based

hybrid learning algorithm [10, 54, 64, 65-68], and the

bio-inspired methods and evolutionary learning based method

[55, 59-63]. These algorithms have been used for training

typical IT2 FLS models, such as IT2 Mamdani-Larsen FLSs

(IT2 ML FLSs) and IT2 TSK FLSs. While several of these

methods work efficiently with both small and large datasets,

faster algorithms are always expected to keep up with

ever-increasing demand in many applications. For example, the

iteration rules based methods will become very time consuming

and the efficiency deteriorates with the increasing size of the

training data. Such situations are indeed commonly

encountered in FLS-related enterprise applications. Thus, the

development of fast learning methods for typical IT2 FLS

models is a very important task.

B. ELM

1) Basic ELM : As one of the most powerful methods for fast

learning of intelligent models, ELM has attracted considerable

attention in recent years [19-25]. The ELM theory is originally

proposed for SLFNs [19, 20] and further extended for

generalized SLFNs, where the hidden layer nodes are not

necessarily neuron alike [26, 27, 51]. The basic ELM is

described below.

First, we begin with a brief description of SLFNs. For a

given set of training examples 1{(,)}N d m

i i i R R x t for a

multiple-input-multiple-output SLFN, if the outputs of the

SLFN, ()l jf x , are equal to the sample targets, i.e.
,j lt , we

have

 , ,1
() (, ,) ,

 1, , , 1, , ,

M

l j i l i i j li
f G b t

j N l m

x a x
 (8)

where ()l jf x denotes the l-th output of SLFN with respect to

the input sample jx ; N denotes the number of training

samples; M denotes the number of the hidden nodes; m

denotes the number of the output nodes; (, ,)i iG ba x is an

active function of hidden nodes with the parameters ,i iba and

,i l are the weights connecting the hidden nodes and the output

nodes. Then, Eq. (8) can be expressed in the compact form

 Hβ T , (9)

where

1 1 1 1 1

1 1

(, ,) (, ,) ()

 (, ,) (, ,) ()

M M

N M M N NN M N M

G b G b

G b G b

a x a x h x

H

a x a x h x

,

 (10.a)

 4

1,1 1,

,1 ,

m

M M m
M m

β , (10.b)

1,1 1,1

,1 ,

T
m

T
N N mN N m

t t

t t

t

T

t

. (10.c)

Here, T
t is the transpose of vector t ; H is called the hidden

layer output matrix; the i-th column of H is the output vector

of the i-th hidden node with respect to inputs
ix , 1, ,i N ;

the j-th row of H , i.e. h(xj), is the output vector of the hidden

layer with respect to input jx ; β is the weight matrix

connecting the hidden layer to the output layer; and iβ is the

weight vector connecting the hidden layer to the i-th output

node.

With the ELM theory, the parameter learning of the SLFNs

is achieved as follows. In Eq. (9), an exact solution is usually

not available if the number of training data is larger than the

number of hidden nodes. However, it has been proved in theory

[18, 19] that, for SLFNs with random hidden nodes, the neural

networks exhibit the universal approximation capability where

the hidden nodes can be randomly generated independent of the

training data. Once the hidden nodes are generated by random,

the hidden-layer output matrix H is readily available given the

training data, without the need to tune the nodes. Thus, the

training of SLFN by ELM is simply reduced to the solution of

the linear system in Eq. (9). Under the constraint of minimum

norm least square, i.e.,

 min || ||
β

β and min || ||
β

Hβ T , (11)

the solution of Eq. (9) is given explicitly [19] with the simple

representation

β H T , (12)

where β is the optimal solution of β and
H is the

Moore–Penrose generalized inverse of H [36, 37]. Based on

the principle of ELM, an ELM learning algorithm for SLFNs

has the following distinctive properties for model training.

(1) ELM is implemented by employing random

computational nodes in the hidden layer, which may be

independent of the training data.

(2) ELM not only targets to achieve the smallest training

error but also the smallest norm of the output weights.

According to the neural network theory [30], ELM is expected

to exhibit better generalization performance.

(3) Since it is not required to tune the nodes in the hidden

layer of SLFNs, the hidden layer parameters can be fixed and

the output weights can then be solved simply by solving the

corresponding linear equations using Eqs. (11) and (12), which

is very efficient when compared to classical methods like

gradient-descent learning based methods and standard

optimization based methods.

2) Advances of ELM: When compared to conventional

techniques, ELM offers better generalization performance at

faster learning speed and with minimal human intervention.

Because of this attractive feature, considerable research efforts

have been devoted to develop many improved versions and

variants of ELM. The representative work includes the batch

learning mode of ELM [19], fully complex ELM [38, 39],

online sequential ELM [40, 41], incremental ELM [20,26,27],

the ensemble of ELM [42-44] and the advanced ELM [50].

Recently, the bidirectional ELM for regression problem and the

universal approximation of ELM with adaptive growth of

hidden nodes were studied in [69] and [70], respectively. Many

ELM based applications have also been investigated in

literature. For example, ELM has been used for bioinformatics

[71] and medical diagnosis [72]. In particular, research has

been conducted to leverage the ELM learning strategy for fuzzy

system training. In [28], the classical T1 TSK FLS is employed

as a special SLFN with the fuzzy inference rules as the hidden

nodes, and the fuzzy ELM algorithm is then proposed for the

fast learning of the traditional T1 TSK FLS. Motivated by the

above advances, the ELM learning strategy is investigated in

this study to develop the fast learning algorithm T2FELA for

IT2 TSK FLSs.

III. T2FELA

Based on the ELM learning strategy, we present the new fast

training algorithm T2FELA for IT2 TSK FLS modeling in this

section. The framework of the proposed T2FELA is first

described, followed by an overview of the main procedure and

a detailed description of the key stages.

A. The Framework of T2FELA

The proposed training method contains three stages, as

illustrated in Fig. 1. In Stage 1, according to the ELM learning

strategy, the parameters of the antecedents are randomly

assigned and then fixed in the subsequent stages. In Stage 2, the

parameters of the consequents are initialized by solving the

linear system in Eq. (9), where the K-M algorithm is not used

here to compute the switch points since the initial parameters

are not available. In Stage 3, the consequents are further refined

by using the K-M algorithm to obtain the switch points and the

corresponding linear system in Eq. (9) is solved again to obtain

the refined parameters.

Fig.1 The framework of the proposed ELM strategy based T2FELA.

B. Three Stages of T2FELA

1) Generation of Antecedents: In this stage, Eqs. (1.a)-(1.c)

are used to model the fuzzy set of antecedents. The parameters

to be determined are the fixed standard deviations
k
i and the

bounds of the uncertain mean, i.e., 1 2[,]k k
i im m . With reference

to the related work on the ELM-based methods, these

parameters can be randomly assigned within a certain range. In

our experiments, all the attributes of the data are normalized

into the interval [0, 1]. With the preprocessed data, we

 5

randomly generate the standard deviations
k
i within the range

[0, 5] and the center
k
im of

1 2[,]k k
i im m within the range [0, 1].

Further, we use
k
im and a fixed minor deviation

k
im to obtain

1k k k
i i im m m and

2k k k
i i im m m . Note that the above

settings cannot assure optimal configuration. While they can be

further optimized by some strategies, e.g. the cross-validation

strategy, our experimental studies show that the settings are

good enough for most situations.

2) Initialization of Consequents: In this stage, the outputs ly

and ry in Eqs. (6.a) and (6.b) are approximated by the

following two equations without using the K-M iterative

procedure:

 1

1

1

K k
Kk kk

l kK k

kk

f w
y f w

f

,

1

k

k K

kk

f
f

f

 (13.a)

and

 1

1

1

K k
Kk kk

r kK k

kk

f w
y f w

f

,

1

k

k K

kk

f
f

f

. (13.b)

With Eqs. (13.a) and (13.b), Eq. (7) becomes

 1 1

1

2 2

K Kk kl r

k kk k

y y
y f w f w

 . (14)

Since 0 1 1 k k k k
d dw p p x p x , we have

 0 1 11

K k k k

l k d dk
y f p p x p x

 (15.a)

and

 0 1 11

K k k k

r k d dk
y f p p x p x

 , (15.b)

let

1 1 1 1 1() , , , , , , , ,
T

l d K K K df f x f x f f x f x x (16.a)

1 1 1 1 1() , , , , , , , ,
T

r d K K K df f x f x f f x f x x (16.b)

1 1 1 1 1 1 1
1

(1)

1

1
() () ()

2

1
, , , , ,

2

 , , ,

l r

d

d K

K K K K d

f f f f x f f x

f f f f x f f x R

x x x

 (16.c)

and

1 1 (1)

0 0 , , , , , ,
T

K K d K

d dp p p p R p , (17)

Eq. (14) can then be expressed by the linear system

()Ty x p . (18)

For a given training dataset , i iD y x of a regression task,

when the antecedents of the IT2 TSK FLS are fixed, we can

construct the dataset (), i iD y x to train the linear system

in Eq. (18), where ()i x is generated using Eq. (16.c).

Let

(1)

1

()

()

T

i

N K d

T

N

R

x

Φ

x

 (19.a)

and

1[, ,]T

Ny yy , (19.b)

the linear system in Eq. (18) can then be formulated as

1 Φ p y . (20)

The solution of this system can be obtained in a way similar to

the approach used in the basic ELM, as shown in Eqs. (11) and

(12). That is, by optimizing the following objective

min || ||
p

p and
1min || ||

p
Φp y , (21.a)

we have

1
p Φ y , (21.b)

where p is the optimal solution of p and 1

Φ is the

Moore–Penrose generalized inverse of 1Φ [19, 36, 37].

3) Refinement of Consequents: With the initial values

obtained in Stage 2, the final consequent parameters k

ip are

determined in this stage. Since the values of k

ip are now

available for computing the consequent values kw for all the

rules, the K-M iterative procedure can be used to obtain the

output of the IT2 TSK FLS accurately. Let
1 [, ,]K Tw ww ,

1=[, ,]TKf ff , 1=[, ,]TKf ff , where the firing strengths are

expressed according to the original rule order. According to

Eq.(5), the relationship between the original rule-ordered

consequent values w and the re-ordered sequence

w (1 2 Kw w w) can be expressed as w Qw , where

Q is a K K permutation matrix. Then, f and f are

rearranged to yield the re-ordered sequence 1[, ,]TKf ff

and 1[, ,]TKf ff , with f Qf and f Qf . Therefore,

in Eq. 6(a),
1 1 1

, ,
L K Lk k

k kk k L k
f w f w f

 and
1

K

kk L
f

 can

be written in a compact matrix form as 1 1

T T T T
f Q E E Qw ,

2 2

T T T T
f Q E E Qw ,

1
()

L

kk Qf and
1
()

K

kk L Qf respectively.

Finally, Eq. (6.a) can be re-expressed in the rule-ordered form

1 1 2 2

1 1
() ()

T T T T T T T T

T

l lL K

k kk k L

y

f Q E E Qw f Q E E Qw
ψ w

Qf Qf
, (22.a)

where

1 1 2 2
,1 ,

1 1

[, ,]
() ()

T T T T T T T T
T K

l l l K L K

k kk k L

R

f Q E E Q f Q E E Q
ψ

Qf Qf
, (22.b)

 1 1, , , , , L K

L R E e e 0 0 , (22.c)

 ()

2 1, , , , , K L K

K L R

 E 0 0 ε ε , (22.d)

with (1, ,)L

i R i L e and () (1, ,)K L

i R i K L ε as

the elementary vectors, i.e., all the elements are equal to 0

except for the unity i-th element.

Similarly, Eq. (6.b) can be re-expressed in the rule-ordered

form

3 3 4 4

1 1
() ()

T T T T T T T T

T

r rL K

k kk k L

y

f Q E E Qw f Q E E Qw
ψ w

Qf Qf
, (23.a)

where

3 3 4 4
,1 ,

1 1

[, ,]
() ()

T T T T T T T T
T K

r r r K L K

k kk k L

R

f Q E E Q f Q E E Q
ψ

Qf Qf
, (23.b)

 6

 3 1, , , , , R K

R R E e e 0 0 , (23.c)

 ()

4 1, , , , , K R K

K R R

 E 0 0 ε ε , (23.d)

with (1, ,)R

i R i R e and () (1, ,)K R

i R i K R ε as

the elementary vectors. Based on Eqs. (22.a) and (23.a), Eq. (7)

becomes

1

0

1 0

1 1
() ()

2 2 2

1
 () , 1.

2

K
T T kl r

l r l r k

k

K d
k

l r k j j

k j

y y
y w

x p x

ψ ψ w ψ ψ

ψ ψ

 (24)

Furthermore, let

,1 ,1 0 ,1 ,1

(1)

, , 0 , ,

1
() () , , () , ,

2
 () , , ()

l r l r d

T
K d

l K r K l K r K d

x x

x x R

x

 (25)

and with p defined in Eq. (17), Eq. (24) can be expressed as

the linear system

()Ty x p . (26)

By denoting (1)

2

()

()

T

i

N K d

T

N

R

x

Φ

x

, Eq. (26) is rewritten

as

2 Φ p y . (27)

where y is defined in Eq. (19.b). The solution of the linear

system in Eq. (27) can be obtained by optimizing the following

objective

min || ||
p

p and
2min || ||

p
Φ p y . (28.a)

We then have

2
p Φ y , (28.b)

where p is the optimal solution of p and 2

Φ is the

Moore–Penrose generalized inverse of 2Φ [19, 36, 37]. The

result is also similar to that in Eqs. (11) and (12) in the basic

ELM.

C. The T2FELA Algorithm

Based on the three-stage training method discussed above,

the corresponding T2FELA algorithm is given as follows.

Algorithm: T2FELA

Stage 1: Randomly assign the parameters of the

antecedents according to the ELM

mechanism.

Stage 2: Initialize the parameters of the consequents

using Eqs. (13)-(21).

Stage 3: Refine the parameters of the consequents

using Eqs. (22)- (28).

Remark 1: Different from some classical algorithms, the

proposed algorithm is not an iterative procedure between

antecedent learning and consequent learning. The parameters in

the antecedents are randomly generated only once according to

the extreme learning theory. Then by optimizing the parameters

of the consequents, the obtained IT2 TSK FLS can still be a

universal approximator as proved in [19,20] from the viewpoint

of SLFN learning. In particular, similar learning procedure is

also used in the existing interval type-2 fuzzy neural network

with support-vector regression (IT2FNN-SVR) algorithm [11],

which first generates the antecedents by a self-evolving

strategy and then learns the consequents using a the two-stage

SVR with the antecedents fixed. However, the computational

time of IT2FNN-SVR remains high since it is usually necessary

to solve the QP problem in SVR.

Remark 2: The proposed T2FELA algorithm can be regarded

as a special case of ELM learning where the hidden nodes of the

SLFN involved are a set of T2 fuzzy inference rules. Thus, the

proposed algorithm inherits the virtues of ELM learning

strategy as described below.

(1) The learning speed is expected to be much faster since no

iterations are involved. This is a characteristic that has been

demonstrated by most existing ELM based algorithms [19-25,

51].

(2) The IT2 TSK FLSs obtained by using the proposed

algorithm is expected to have better generalization ability since

the parameters of the consequents are optimal in the sense of

minimizing the norm, as shown in Eqs. (21.a) and (28.a), which

can be easily solved by using the Moore–Penrose generalized

inverse as in other ELM based algorithms [19-25, 51].

Remark 3: Although the proposed T2FELA algorithm has

distinctive advantages in computational complexity, it has an

inherent drawback due to the learning mechanism. Since the

parameters of the antecedents are generated randomly in the

ELM strategy, the ability to interpret the rules may be reduced.

Although the input space of the antecedents is partitioned more

randomly, we can still give an interpretation with the induced

inference rules. Of course, we can improve the interpretation by

using other partition strategies to replace the random generation

approach, e.g. clustering techniques, but it will inevitably

increase the computational cost. Nevertheless, as the classical

T1 FLSs using the ELM strategy [28], the IT2 TSK FLS

obtained with random generation of the parameters in the

antecedents remains a universal approximator. Thus the IT2

TSK FLSs trained by the proposed T2FELA algorithm is

expected to possess good approximation ability.

IV. EVALUATION

The performance of the proposed T2FELA algorithm is

evaluated by comparing with that of the three existing IT2

FLS/FNN training algorithms on synthetic and real-world

datasets.

A. Experimental Settings

1) Baseline Algorithms for Performance Comparison: Three

algorithms are used for comparison with the proposed T2FELA

algorithm, namely, (a) gradient-learning based algorithm

(GL-IT2FLS) [7], (b) IT2FNN-SVR [11], and (c) self-evolving

interval type-2 fuzzy neural network (SEIT2FNN) [12]. The

implementation of these algorithms and our algorithm T2FELA

are described below.

GL-IT2FLS: All the parameters of both the antecedents and

consequents of the IT2 FLSs are adjusted iteratively by the

gradient-descent learning rules.

SEIT2FNN: The parameters of the antecedents of the IT2

FNNs are initialized by the self-evolving strategy. The

 7

parameters of the antecedents and consequents are then

adjusted iteratively by the gradient-descent learning rules and

the rule-ordered Kalman filtering algorithm respectively.

IT2FNN-SVR: The parameters of the antecedents of the IT2

FNNs are determined by the self-evolving strategy, while the

parameters of the consequents are determined by the two-phase

SVR learning strategy.

T2FELA: the parameters of antecedents of the IT2 TSK

FLSs are randomly generated according to the extreme learning

theory, while the parameters of the consequents are determined

by the two-phase extreme learning strategy.

2) Parameter Setting: For all the algorithms, the hyper

parameters are determined by applying the cross-validation

strategy on the training sets. For the proposed T2FELA

algorithm and GL-IT2FLS [7], the hyper parameter is the

number of fuzzy rules and the optimal value is determined by

the cross-validation strategy within the parameter set

{4,9,16,25,36,49,64,81,100,121} . For the algorithms

IT2FNN-SVR [11] and SEIT2FNN [12], the hyper parameter is

the threshold of the firing-strength, which directly influences

the final number of fuzzy rules of the generated T2 FLSs. It is

determined by the cross-validation strategy within the

parameter set {0.1,0.2,0.3 0.4,0.5,0.6,0.7,0.8}， . For the

algorithm IT2FNN-SVR [11], the hyper parameter C, i.e, the

regularization parameter in SVR, is determined by the

cross-validation strategy within the parameter set
5 4 4 5{2 ,2 , ,2 ,2 }

. For the iteration based algorithms, i.e.,

GL-IT2FLS [7] and SEIT2FNN [12], the maximum iteration

number is set to be 10.

3) Evaluation Indices: In all the experiments, the main

performance index is the training time T of the algorithms.

Furthermore, the performance index J as defined in Eq. (29)

is also adopted [2, 17, 18, 35] to evaluate the generalization

abilities of the algorithms on the testing datasets:

2

1

2

1

()

()

N

i i
i
N

i
i

y y
J

y y

, (29)

where N is the number of test data; iy is the output for the i-th

test input; iy is the fuzzy model output for the i-th test input

and
1

N

i
i

y y N

 . The smaller the value of J, the better the

generalization performance.

4) Other Settings: For all the algorithms, the classical K-M

algorithm [5, 48] is adopted for the computation of the switch

points in Eqs. (6.a) and (6.b) for simplicity. Although other

faster algorithms can also be adopted [49, 50], it is considered a

fair approach to use the same K-M algorithm for performance

comparison for all the training algorithms in our experiments.

All the algorithms in the experiments are implemented using

Matlab. For the IT2FNN-SVR algorithm, the LibSVM code is

used to solve the corresponding SVR [47]. The experiments are

conducted on a computer with an Intel Core 2 Duo 2.00 GHz

CPU and 2GB RAM. The experimental settings are

summarized in Table I.

B. Datasets

Three types of datasets are adopted for performance

evaluation, including synthetic datasets, benchmarking

real-world datasets, and biochemical process modeling

datasets. For all the datasets, the data attributes are normalized

into the range [0, 1]. The details of these datasets and the

corresponding experiment results are discussed in Sections

IV-C-1 through IV-C-3.

C. Results and Discussions

1) Synthetic Datasets: The experiments conducted with the

synthetic Friedman datasets [45] are reported in this section.

For these datasets, the input attributes 1 2 5(, , ,)Tx x xx are

generated independently, each of which is uniformly

distributed over [0, 1]. The target is defined by

2

1 2 3 4 510sin 20 0.5 10 5 (0,1)y x x x x x , (30)

where (0,1) is a noise term which is normally distributed

with mean 0 and variance 1.

TABLE I

THE EXPERIMENTAL SETTINGS

Settings Algorithms

SEIT2FNN [12] IT2FNN-SVR [11] GL-IT2FLS [7] T2FELA
Hyper

parameters

The number of fuzzy rules: its optimal value is determined within the parameter set

{4,9,16,25,36,49,64,81,100,121} by the cross-validation strategy.

The firing-strength: its optimal value is determined within

the parameter set {0.1,0.2,0.3 0.4,0.5,0.6,0.7,0.8}， by

the cross-validation strategy. The regularization parameter in SVR: it is determined

within the parameter set
5 4 4 5{2 ,2 , ,2 ,2 }

 by the

cross-validation strategy.

Evaluation

indices

1) T: training time on the training dataset

2) J: generalization performance on the testing dataset

Others 1) The classical K-M algorithm [5, 48] is adopted for the computation of the switch points in Eqs. (6.a) and (6.b).

2) The LibSVM code [47] is adopted to solve the corresponding SVR in the algorithm IT2FNN-SVR.
3) For the iteration based algorithms, i.e., the GL-IT2FLS and SET2FNN, the maximum iteration number is set to be 10.

In the experiments, datasets of different sizes are generated

and used for the training. The size of the generated training sets

is in the range of 100 to 5104. Meanwhile, a noise-free dataset

of size 103 is generated for testing. The performance of each of

the four IT2 FLS/FNN training algorithms is then evaluated

using these datasets. Each experiment is repeated 20 times for

datasets at each size to obtain the average evaluation indices

and the corresponding standard deviations.

The training time T and the generalization performance

index J of the four training algorithms are shown in Tables II

and III respectively. The average values are also compared in

Fig. 2.

The number of fuzzy rules given in Table II is determined by

performing the cross-validation strategy on the training sets.

 8

Note that for IT2FNN-SVR [11] and SEIT2FNN [12], the

parameter determined by the cross-validation strategy is the

threshold of firing-strength, which has important influence on

the number of fuzzy rules generated by these two algorithms.

The smaller the threshold of firing-strength, the smaller the

number of the generated fuzzy rules. The following

observations can be made from the experimental results:

(1) The efficiency of the proposed T2FELA algorithm is

better than that of the other three algorithms. In these

algorithms, the training time depends on the learning strategy,

the size of training set, and the number of fuzzy rules. For the

proposed T2FELA algorithm, while the optimal number of

fuzzy rules obtained by the cross-validation strategy is

equivalent to those obtained in the other three algorithms, the

training time is obviously the smallest.

(2) The generalization ability of the proposed T2FELA

algorithm on the Friedman datasets is highly competitive

among the training algorithms. Although the IT2FNN-SVR

algorithm has shown better generalization performance for

small datasets, the T2FELA is a more promising algorithm for

handling large training sets.

1e2 5e2 1e3 5e3 1e4 3e4 5e4

0

5000

10000

15000

Size of training sets

T
ra

in
in

g
 t
im

e
 T

T2FELA

IT2FNN-SVR

GL-IT2FLS

SEIT2FNN

(a)

1e2 5e2 1e3 5e3 1e4 3e4 5e4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Size of training sets

G
e

n
e

ra
liz

a
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 J

T2FELA

IT2FNN-SVR

GL-IT2FLS

SEIT2FNN

(b)

Fig.2 Performance of the four IT2 FLS/FNN training algorithms on Friedman

synthetic datasets: (a) training time (seconds) T; (b) generalization performance
index J.

Table II
TRAINING TIME (SECONDS) OF THE FOUR IT2 FLS/FNN TRAINING ALGORITHMS

ON FRIEDMAN SYNTHETIC DATASETS

Indices N T2FELA IT2FNN-SVR GL-IT2FLS SEIT2FNN

Mean/std Mean/std Mean/std Mean/std

T

1e2 0.05 0.62 32.64 4.00

 0.01 0.12 2.09 0.31

 (16) (29) (49) (5)

5e2 0.25 3.40 56.74 55.50
 0.032 0.62 1.31 0.87

 (16) (21) (16) (20)

1e3 0.50 17.64 111.26 129.75
 0.04 1.33 2.77 1.04

 (25) (48.7) (16) (21.5)

5e3 6.89 269.39 561.60 1395

 0.22 16.10 7.8 2.32
 (25) (68.33) (16) (46.5)

1e4 22.99 721.22 1148 2716

 0.12 26.31 54.78 2.09
 (36) (53.67) (16) (47.5)

3e4 240.86 7469 5038 7667

 1.58 24.20 86 198

 (36) (35.5) (25) (44.5)

5e4 643.22 14304 8553 9096

 1.92 391 138 1.39

 (49) (17) (25) (33)

N denotes the size of training sets and the values inside brackets are the average

number of fuzzy rules determined by applying the cross-validation strategy on
the training sets for 20 times.

TABLE III
GENERALIZATION PERFORMANCE OF THE FOUR IT2 FLS/FNN TRAINING

ALGORITHMS ON FRIEDMAN SYNTHETIC DATASETS

Indices N T2FELA IT2FNN-SVR GL-IT2FLS SEIT2FNN

Mean/std Mean/std Mean/std Mean/std

J

1e2 0.3418 0.2853 0.5471 0.4172

 0.1255 0.0261 0.0344 0.0727

5e2 0.1255 0.1592 0.1277 0.1835

 0.0166 0.0261 0.0014 0.0136

1e3 0.0743 0.1163 0.0915 0.1502

 0.0094 0.0068 0.0077 0.0394

5e3 0.0445 0.0706 0.0703 0.0727

 0.0013 0.0018 0.0004 0.0079

1e4 0.0339 0.0519 0.0648 0.0484

 0.0025 0.0015 0.0038 0.0043

3e4 0.0219 0.0458 0.0606 0.0442
 0.0007 0.0099 0.0020 0.0165

5e4 0.0205 0.0594 0.0584 0.0480

 0.0048 0.0172 0.0007 0.0225

N denotes the size of training sets.

2) Real-world Datasets: In this section, the performance of the

four algorithms is evaluated using five benchmarking

real-world datasets available from the Laboratory of Artificial

Intelligence and Computer Science at the University of Porto,

Portugal [46]. The datasets are described in Table IV. In the

experiments, each dataset is randomly partitioned with the ratio

of 4:1 for training and test respectively. This procedure is

repeated 20 times to obtain the average performance of each

algorithm on each of the five real-world datasets.

The experimental results are shown in Tables V, VI and

Fig.3. Similar to the findings obtained in the synthetic datasets,

it is noted that the training time of the proposed T2FELA

algorithm is obviously less than that of the other three

algorithms and the generalization ability is also highly

competitive.

On the other hand, we also find from the results that the

 9

training time of the three existing IT2 FLS/FNN training

algorithms is at least 10 times slower than that of the proposed

algorithm on the five real-world datasets. Even for the

CartExample dataset whose size is the largest among the five

datasets, the training time of T2FELA is only about 480

seconds. This suggests that the proposed algorithm is promising

for modeling large real-world data sets.

3) Biochemical Process Modeling Datasets: Further

experiments are also conducted to evaluate the performance of

the four algorithms on the modeling of a biochemical process

which involves large datasets [18]. A

multiple-input-multiple-output dataset originated from the

glutamic acid ferment process is adopted. The input variables

of the dataset include ferment time k, glucose concentration

S(k), glutamic acid concentration P(k), thalli concentration

X(k), stirring speed R(k), and ventilation Q(k) at time k. The

output variables are glucose concentration S(k+1), glutamic

acid concentration P(k+1) and thalli concentration X(k+1) at

time k+1. The IT2 TSK FLS based estimation model is

illustrated in Fig. 4. In the experiments, the original data is

collected from 41.1 10 batches of ferment process. Training

sets of different sizes (from 210 to 45 10 P) are obtained from

the original dataset to train the systems. A set of data with a size

of 310 is also obtained for testing purposes. The training

procedure is repeated 20 times for datasets at each size, and the

average performance is recorded for comparison.

TABLE IV

FIVE REAL-WORLD REGRESSION DATASETS

Dataset Number of samples
(Ratio between the

training data and

testing data)

Number of attributes
(Input variables + output variables)

delta_elevators 9516 (4:1) 6+1
Census_8 22784 (4:1) 8+1

CartExample 40768 (4:1) 10+1

cadata 20640 (4:1) 9+1
bank32NH 4499 (4:1) 32+1

TABLE V

TRAINING TIME (SECONDS) OF THE FOUR IT2 FLS/FNN TRAINING ALGORITHMS

ON REAL-WORLD DATASETS

Indices Dataset
T2FELA

IT2FNN
-SVR

GL-
IT2FLS

SEIT2FN
N

Mean/std Mean/std Mean/std Mean/std

T

delta_el
evators

50.37 664.13 1567 1276

0.10 102.42 58.53 47.24

(16) (80) (16) (12.5)

Census_

8

140.43 1076 4750 2671

5.48 28.04 40.18 22.64

(6) (12) (16) (8.5)

CartExa
mple

481.87 30994 15945 17156

24.2 567 237 146

(16) (25.5) (25) (27.5)

cadata 448.83 805.41 4265 7831

10.67 23.90 34.23 13.49

(25) (14.5) (16) (29.5)

bank32

NH

34.05 242.92 1893 865.62

1.16 18.75 37.50 16.67

(9) (22) (16) (4)

The values inside brackets are the average number of fuzzy rules determined by

applying the cross-validation strategy on the training set for 20 times.

TABLE VI
GENERALIZATION PERFORMANCE OF THE FOUR IT2 FLS/FNN TRAINING

ALGORITHMS ON REAL-WORLD DATASETS

Indices Dataset
T2FELA

IT2FNN-

SVR

GL-

IT2FLS

SEIT2FN

N

Mean/std Mean/std Mean/std Mean/std

J

delta_el

evators

0.5947 0.6008 0.5919 0.6042

0.004 0.0002 0.0010 0.0051

Census_8 0.6769 0.6690 0.6348 0.6983

0.0307 0.0072 0.0735 0.0383

CartExa
mple

0.2276 0.2294 0.2266 0.4563

0.0001 0.0013 0.0013 0.0617

cadata 0.5252 0.5510 0.5568 0.6559

0.0384 0.0084 0.0431 0.0032

bank32N
H

0.7185 0.7213 0.7211 0.7053

0.0340 0.0193 0.0062 0.0124

Tables VII, VIII and Fig. 5 show the performance of the four

IT2 FLS/FNN training algorithms on glucose concentration

prediction. Furthermore, Figs. 6 and 7 plot the training time and

performance of glutamic acid concentration prediction and

thalli concentration prediction respectively (note that the results

of glutamic acid and thalli concentration prediction are not

tabulated here due to space limit). The experimental results on

the prediction of these three biochemical variables show that

the training time of the proposed T2FELA algorithm is much

shorter than that of the other three algorithms. The

generalization ability of the proposed algorithm is also highly

competitive. In particular, the T2FELA algorithm demonstrates

more promising generalization performance for the prediction

of glutamic acid concentration and glucose concentration. The

proposed algorithm is therefore effective for the biochemical

process modelling that involves large datasets.

1 2 3 4 5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Datasets: delta-elevators(=1),Census-8(=2),

 CartExample(=3),cadata(=4),bank32NH(=5)

T
ra

in
in

g
tim

e
T

T2FELA

IT2FNN-SVR

GL-IT2FLS

SEIT2FNN

(a)

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Datasets: delta-elevators(=1),Census-8(=2),

 CartExample(=3),cadata(=4),bank32NH(=5)

G
e

n
e

ra
li
z
a

ti
o

n
 p

e
rf

o
rm

a
n

c
e

 J

T2FELA

IT2FNN-SVR

GL-IT2FLS

SEIT2FNN

(b)

Fig.3 Performance of the four IT2 FLS/FNN training algorithms on five
benchmarking real-world datasets: (a) training time (seconds) T; (b)

generalization performance index J.

 10

TABLE VII
TRAINING TIME (SECONDS) OF THE FOUR IT2 FLS/FNN TRAINING ALGORITHMS

ON BIOCHEMICAL DATASETS FOR GLUCOSE CONCENTRATION (S) PREDICTION

Indices N T2FELA IT2FNN-SVR GL-IT2FLS SEIT2FNN

Mean/std Mean/std Mean/std Mean/std

T

1e2 0.11 0.09 6.08 1.42
 0.07 0.02 0.39 0.33

 (4) (3.5) (4) (5)

5e2 0.35 1.28 20.47 9.03
 0.02 0.16 3.27 0.49

 (16) (18) (4) (8.5)

1e3 0.92 7.95 126.36 24.19

 0.11 3.00 8.65 0.63
 (25) (45.5) (16) (12)

5e3 20.86 91.15 1763 145.99

 0.31 9.89 31.35 8.03

 (36) (46.5) (49) (15)

1e4 74.19 348.73 2502 1040

 1.43 13.77 77.06 59.28
 (36) (51.5) (36) (10.5)

3e4 594.11 1744 7657 3021

 11.03 46.41 185.64 53.82

 (36) (20.5) (36) (10)

5e4 1587 5786 15880 3855

 67.72 87.68 258.96 45.24

 (36) (14.5) (36) (7.5)

N denotes the size of training sets and the values inside brackets are the average

number of fuzzy rules determined by applying the cross-validation strategy on
the training sets for 20 times.

TABLE VIII

GENERALIZATION PERFORMANCE OF THE FOUR IT2 FLS/FNN TRAINING

ALGORITHMS ON BIOCHEMICAL DATASETS FOR GLUCOSE CONCENTRATION (S)

PREDICTION

Indices N T2FELA IT2FNN-SVR GL-IT2FLS SEIT2FNN

Mean/std Mean/std Mean/std Mean/std

J

1e2 0.1197 0.1022 0.1240 0.1025
 0.0325 0.0036 0.0050 0.0065

5e2 0.0819 0.0818 0.0898 0.0815

 0.0053 0.0012 0.0079 0.0045

1e3 0.0686 0.0748 0.0807 0.0760
 0.0003 0.0046 0.0087 0.0033

5e3 0.0561 0.0738 0.0617 0.0707

 0.0023 0.0011 0.0021 0.0075

1e4 0.0563 0.0667 0.0673 0.0739
 0.0014 0.0025 0.0048 0.0009

3e4 0.0602 0.0717 0.0665 0.0766

 0.0027 0.0036 0.0045 0.0010

5e4 0.0562 0.0702 0.0658 0.0789
 0.1197 0.0019 0.0017 0.0029

N denotes the size of training sets.

Fig.4 Illustration of the glutamic acid ferment process prediction model based

on the IT2 TSK FLSs.

1e2 5e2 1e3 5e3 1e4 3e4 5e4
0

2000

4000

6000

8000

10000

12000

14000

16000

Size of training sets

T
ra

in
in

g
 ti

m
e

 T

T2FELA

IT2FNN-SVR

GL-IT2FLS

SEIT2FNN

(a)

1 2 3 4 5 6 7
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Size of training sets

G
e

n
e

ra
liz

a
tio

n
 p

e
rf

o
rm

a
n

ce
 J

T2FELA

IT2FNN-SVR

GL-IT2FLS

SEIT2FNN

(b)

Fig.5 Performance of the four IT2 FLS/FNN training algorithms on
biochemical datasets for glucose concentration (S) prediction: (a) training time

(seconds) T; (b) generalization performance index J.

V. CONCLUSIONS

In this study, an extreme learning strategy-based fast training

algorithm T2FELA is proposed for the training of IT2 TSK

FLSs. It aims at developing a training algorithm that enables the

models to be effectively trained on large datasets. Experimental

results demonstrate that with the extreme learning mechanism,

the proposed T2FELA algorithm allows for random generation

of the parameters of the antecedents and fast learning of the

parameters of the consequents. Moreover, the resulting IT2

TSK FLSs demonstrate highly competitive generalization

performance among several existing algorithms.

While the proposed T2FELA algorithm has demonstrated

promising performance for training IT2 TSK FLS on large

datasets, there are still rooms for further improvement. For

example, the efficiency of the current version of T2FELA

algorithm is limited by the demanding memory requirement of

the basic ELM learning strategy. In this case, online sequential

ELM learning strategy, where data is read chunk by chunk, can

be adopted to overcome the difficulties caused by the enormous

amount of memory required for handling very large datasets.

This will be our future work. Besides, further investigation will

be conducted to extend the T2FELA algorithm for other types

of T2 FLSs, such as the IT2 ML FLSs.

I(k)

IT2 TSK FLS 1

IT2 TSK FLS 3

IT2 TSK FLS 2

S(k+1)

P(k+1)

X(k+1)

I(k)=[S(k),P(k),X(k),k,Q(k),R(k)]

 11

1e2 5e2 1e3 5e3 1e4 3e4 5e4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Size of training sets

T
ra

in
in

g
 ti

m
e

 T

T2FELA

IT2FNN-SVR

GL-IT2FLS

SEIT2FNN

(a)

1e2 5e2 1e3 5e3 1e4 3e4 5e4
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Size of training sets

G
e

n
e

ra
liz

a
tio

n
 p

e
rf

o
rm

a
n

ce
 J

T2FELA

IT2FNN-SVR

GL-IT2FLS

SEIT2FNN

(b)

Fig.6 Performance of the four IT2 FLS/FNN training algorithms on

biochemical datasets for glutamic acid concentration (P) prediction: (a) training
time (seconds) T; (b) generalization performance index J.

1e2 5e2 1e3 5e3 1e4 3e4 5e4
0

2000

4000

6000

8000

10000

12000

14000

Size of training sets

T
ra

in
in

g
 ti

m
e

 T

T2FELA

IT2FNN-SVR

GL-IT2FLS

SEIT2FNN

(a)

1e2 5e3 1e3 5e3 1e4 3e4 5e4
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Size of training sets

G
e

n
e

ra
liz

a
tio

n
 p

e
rf

o
rm

a
n

ce
 J

T2FELA

IT2FNN-SVR

GL-IT2FLS

SEIT2FNN

(b)

Fig.7 Performance of the four IT2 FLS/FNN training algorithms on

biochemical datasets for thalli concentration (X) prediction: (a) training time
(seconds) T; (b) generalization performance index J.

REFERENCES

[1] L.X. Wang, Adaptive fuzzy systems and control: design and stability

analysis. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994

[2] J.S.R. Jang, C.T. Sun, and E. Mizutani, Neuro-fuzzy and soft-computing.
Upper Saddle River, NJ: Prentice-Hall, 1997.

[3] J. Leski, “TSK-fuzzy modeling based on ε-insensitive learning,” IEEE
Trans. Fuzzy Systems, vol. 13, no.2, pp: 181-193, 2005

[4] Q. Liang, and J. M. Mendel, “Interval type-2 fuzzy logic systems:

Theory and design,” IEEE Trans. on Fuzzy Systems, vol. 8, pp: 535-550,

2000.

[5] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction

and New Directions, Prentice-Hall, Upper-Saddle River, NJ, 2001
[6] J. M. Mendel, “Type-2 fuzzy sets and systems: An overview,” IEEE

Computational Intelligence Magazine, vol. 2, pp: 20-29, 2007.

[7] J. M. Mendel, “Computing derivatives in interval type-2 fuzzy logic
systems,” IEEE Trans. on Fuzzy Systems, vol.12, no. 1, pp: 84-98, 2004.

[8] Q. L. Liang and J. M. Mendel, “Designing interval type-2 fuzzy logic

systems using an SVD-QR method: Rule reduction,” Int. J. Intell. Syst.
vol.15, no. 10, pp: 939-957, 2000.

[9] C. H. Wang, C. S. Cheng, and T. T. Lee, “Dynamical optimal training

for interval type-2 fuzzy neural network (T2FNN),” IEEE Trans.
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 3, pp:

1462-1477, 2004.

[10] G. M. Mendez, “Orthogonal-back propagation hybrid learning
algorithm for type-2 fuzzy logic systems,” IEEE Proceedings of the

NAFIPS 04 International Conference on Fuzzy Sets, 2: 899-902, 2004.

[11] C. H. Juang, R. B. Huang, and W. Y. Cheng, “An interval type-2

fuzzy-neural network with support-vector regression for noisy

regression problems,” IEEE Trans. on Fuzzy Systems, vol. 18, no. 4,

pp:686-699, 2010.
[12] C. F. Juang and Y. W. Tsao, “A self-evolving interval type-2 fuzzy

neural network with online structure and parameter learning,” IEEE
Trans. on Fuzzy Systems, vol. 6, no. 6, pp: 1411-1424, 2008.

[13] C. F. Juang, Y. W. Tsao, “A Type-2 self-organizing neural fuzzy system

and its FPGA implementation,” IEEE Trans. on Syst., Man, and Cybern.,
Part B, vol. 38, no. 6, pp: 1537-1548, 2008.

[14] I. W. Tsang, J. T. Kwok and P. M. Cheung, “Core vector machines: fast

SVM training on large data sets,” Journal of Machine Learning
Research, 6: 363-392, 2005.

[15] I. W. Tsang, A. Kocsor, and J. T. Kwok, “Large-scale maximum margin

discriminant analysis using core vector machines,” IEEE Trans. on
Neural Networks, vol. 19, no. 4, pp: 610-624, 2008.

[16] Z. H. Deng, F. L. Chung and S. T. Wang, “FRSDE: fast reduced set

density estimator using minimal enclosing ball approximation,” Pattern
Recognition, vol.41, no.4, pp: 1363-1372, 2008.

[17] F. L. Chung, Z. H. Deng, and S. T. Wang, “From minimum enclosing

ball to fast fuzzy inference system training on large datasets,” IEEE
Trans. on Fuzzy Systems, vol. 17, no. 1, pp:173-184, 2009.

[18] Z. H. Deng, K. S.Choi, F. L. Chung, S.T. Wang, “Scalable TSK fuzzy

modeling for very large datasets using minimal enclosing ball
approximation,” IEEE. Trans. Fuzzy systems, vol.19, no.2, pp: 210-226,

2011,

[19] G. B. Huang, Zhu Q. Y., and C. K. SiewK, “Extreme learning
machine:Theory and applications,” Neurocomputing, vol. 70, no. 1–3,

pp. 489–501, 2006.

[20] G. B. Huang, L. Chen and C. K. Siew, “Universal approximation using
incremental constructive feedforward networks with random hidden

nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892, 2006.

[21] H. J. Rong, G. B. Huang, N. Sundararajan, and P. Saratchandran,
“Online sequential fuzzy extreme learning machine for function

approximation and classification problems,” IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 39, no. 4, pp. 1067–1072, Aug. 2009.
[22] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse,

“OP-ELM: Optimally pruned extreme learning machine,” IEEE Trans.

Neural Netw., vol. 21, no. 1, pp. 158–162, Jan. 2010.

[23] G. Feng, G. B. Huang, Q. Lin, and R. Gay, “Error minimized extreme

learning machine with growth of hidden nodes and incremental

learning,” IEEE Trans. Neural Netw., vol. 20, no. 8, pp. 1352–1357,
2009.

[24] G. B. Huang, X. Ding, and H. Zhou, “Optimization method based

extreme learning machine for classification,” Neurocomputing, vol. 74,
no. 1–3, pp. 155–163, 2010.

[25] G. B. Huang, H. M. Zhou, X. J. Ding, and R. Zhang, “Extreme learning

machine for regression and multiclass classification,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, 2012.

[26] G. B. Huang, L. Chen, “Convex incremental extreme learning

machine,” Neurocomputing, vol. 70, pp: 3056–3062, 2007.
[27] G. B. Huang, L. Chen, “Enhanced random search based incremental

extreme learning machine,” Neurocomputing, vol.71, pp:3460–3468,

2008.

http://www.informatik.uni-trier.de/~ley/db/journals/tsmc/tsmcb42.html#HuangZDZ12

 12

[28] HH. J. RongH, G. B. Huang, “Online sequential fuzzy extreme learning
machine for function approximation and classification problems,” IEEE

Trans. on Syst., Man, and Cybern., Part B, vol. 39, no. 4, pp: 1067-1072,

2009.

[29] J. W. Cao, Z. P. Lin, G. B. Huang, “Composite function wavelet neural

networks with differential evolution and extreme learning machine,”

HNeural Processing Letters, vol. 33H, no. 3, pp: 251-265, 2011.
[30] J, W. Cao, Z. P. Lin, G. B. Huang, “Composite function wavelet neural

networks with extreme learning machine,” Neurocomputing, vol.

73(7-9), pp:1405-1416, 2010.
[31] P. L. Bartlett, “The sample complexity of pattern classification with

neural networks: the size of the weights is more important than the size

of the network,” IEEE Trans Inf. Theory, vol. 44, no. 2, pp:525–536,
1998.

[32] J. M. BenÃtez, A. Blanco, M. Delgado, and I. Requena, “Neural

methods for obtaining fuzzy rules,” Mathw. Soft Comput., vol. 3, no. 3,
pp. 371–382, 1996.

[33] S. Horikawa, T. Furuhashi, S. Okuma, and Y. Uchikawa, “A fuzzy

controller using a neural network and its capability to learn expert’s
control rules,” in Proc. IIZUKA, 1990, pp. 103–106.

[34] J. M. Benitez, J. L. Castro, and I. Requena, “Are artificial neural

networks black boxes,” IEEE Trans. Neural Netw., vol. 8, no. 5, pp.

1156–1164, Sep. 1997.

[35] F. L. Chung, S. T. Wang, Z. H. Deng, and D. W. Hu, “CATSMLP:

towards a tobust and interpretable multilayer perceptron with sigmoid
activation functions,” IEEE Trans. on Syst., Man and Cybern., Part B,

vol.36, no.6, pp.1319-1331, December 2006.
[36] D. Serre, Matrices: Theory and Applications. New York:

Springer-Verlag, 2002.

[37] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its
Applications. New York: Wiley, 1971.

[38] G. B. Huang, M. B. Li, L. Chen, C. K. Siew, “Incremental extreme

learning machine with fully complex hidden nodes,” Neurocomputing,
vol. 71, pp. 576–583, 2008.

[39] M. B. Li, G. B. Huang, P. Saratchandran, N. Sundararajan, “Fully

complex extreme learning machine,” Neurocomputing, vol. 68, pp.
306–314, 2005.

[40] G. B. Huang, P. Saratchandran, N. Sundararajan, “An efficient

sequential learning algorithm for growing and pruning RBF (GAP-RBF)
networks,” IEEE Trans Syst., Man and Cybern., Part B, vol. 34, no.6,

pp. 2284-2292, 2004.

[41] N. Y. Liang, G. B. Huang, P. Saratchandran, N. Sundararajan, “A fast
and accurate on-line sequential learning algorithm for feedforward

networks,” IEEE Trans Neural Netw, vol. 17, no.6, pp. 1411–1423,

2006.
[42] M. van Heeswijk, Y. Miche, E. Oja A. Lendasse, “Gpu accelerated and

parallelized ELM ensembles for large-scale regression,”

Neurocomputing, vol. 74, no. 16, pp. 2430-2437, 2011.
[43] Y. Sun, Y. Yuan, G. Wang, “An OS-ELM based distributed ensemble

classification framework in p2p networks,” Neurocomputing, vol. 74,

no. 16, pp. 2438-2443, 2011.
[44] Y. Lan, Y. C. Soh, G. B Huang, Ensemble of online sequential extreme

learning machine. Neurocomputing, vol. 72, pp: 3391–3395, 2009.

[45] J. Friedman, “Multivariate adaptive regression splines (with
discussion),” Ann. Stat., vol. 19, no. 1, pp. 1–141, 1991.

[46] L. Torgo. (2009). “Regression datasets,” Dep. Comput. Sci., Porto Univ.,

Porto, Portugal. [Online]. Available: http://www.liaad.up.pt/~ltorgo/
Regression/DataSets.html.

[47] C. C. Chang and C. J. Lin, “LIBSVM : a library for support vector

machines,” ACM Trans. on Intel. Syst. and Tech., vol. 2, pp. 27:1--27:27,

2011.

[48] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Inf.

Sci., vol. 132, pp. 195–220, 2001.
[49] D. Wu and J. M. Mendel, "Enhanced Karnik-Mendel Algorithms,"

IEEE Trans. Fuzzy Systems, vol. 17, pp. 923-934, 2009.

[50] D. Wu and M. Nie, “Comparison and Practical Implementation of
Type-Reduction Algorithms for Type-2 Fuzzy Sets and Systems,” IEEE

International Conference on Fuzzy Systems, Taipei, Taiwan, June 2011.

[51] G. B. Huang, H. M. Zhou, X. J. Ding, R. Zhang, “Extreme Learning
Machine for Regression and Multiclass Classification,” IEEE Trans. on

Syst., Man, and Cybern., Part B, vol. 42(2), pp. 513-529, 2012.

[52] L. A. Zadeh, “Fuzzy sets”, Inf. Control, vol. 8, pp. 338-353, 1965.
[53] L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing,”

Commun. ACM, vol. 37, pp. 77–84, 1994.

[54] J. R. Castro, O. Castillo, P. Melin, A. R. Díaz, “A hybrid learning

algorithm for a class of interval type-2 fuzzy neural networks,” Inf. Sci.,
vol. 179(13), pp. 2175-2193, 2009.

[55] O. Castillo, P. Melin, “Optimization of type-2 fuzzy systems based on

bio-inspired methods: A concise review,” Inf. Sci., vol. 205, pp. 1-19,

2012.

[56] O. Castillo, P. Melin, W. Pedrycz, “Design of interval type-2 fuzzy

models through optimal granularity allocation,” Appl. Soft Comput., vol.
11(8), pp. 5590-5601, 2011.

[57] P. Melin, O. Mendoza, O. Castillo, “Face Recognition With an

Improved Interval Type-2 Fuzzy Logic Sugeno Integral and Modular
Neural Networks,” IEEE Trans. on Syst., Man, and Cybern., Part A, vol.

41(5), pp. 1001-1012, 2011.

[58] P. Melin, O. Mendoza, O. Castillo, “An improved method for edge
detection based on interval type-2 fuzzy logic,” Expert Syst. Appl., vol.

37(12), pp. 8527-8535, 2010.

[59] Y. Maldonado, O. Castillo, P. Melin, “Particle swarm optimization of
interval type-2 fuzzy systems for FPGA applications,” Appl. Soft

Comput., vol. 13, no. 1, pp. 496-508, 2013.

[60] D. Hidalgo, P. Melin, O. Castillo, “An optimization method for
designing type-2 fuzzy inference systems based on the footprint of

uncertainty using genetic algorithms,” Expert Syst. Appl., vol. 39, no. 4,

pp. 4590-4598, 2012.

[61] O. Castillo, P. Melin, A. A. Garza, O. Montiel, R. Sepúlveda,

“Optimization of interval type-2 fuzzy logic controllers using

evolutionary algorithms,” Soft Comput., vol. 15, no. 6, pp. 1145-1160,
2011.

[62] R. A. Aliev, W. Pedrycz, B.G. Guirimov, R.R. Aliev, U. Ilhan, M.
Babagil, S. Mammadli, “Type-2 fuzzy neural networks with fuzzy

clustering and differential evolution optimization,” Inf. Sci., vol. 181,

no. 9, pp. 1591–1608, 2011.
[63] R. Martinez, A. Rodriguez, O. Castillo, L.T. Aguilar, “Type-2 fuzzy

logic controllers optimization using genetic algorithms and particle

swarm optimization,” Proc. the IEEE International Conference on
Granular Computing, GrC 2010, 2010, pp. 724–727.

[64] W. H. R. Jeng, C. Y. Yeh, S. J. Lee, “General type-2 fuzzy neural

network with hybrid learning for function approximation,” Proc. the
IEEE Conference on Fuzzy Systems, Jeju, Korea, 2009, pp. 1534–1539.

[65] G.. M. Méndez and M. A. Hernandez, “Hybrid learning mechanism for

interval A2-C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy
logic systems,” Information Sciences, vol. 220, pp. 149-169, 2013

[66] G. M. Méndez, A. Hernandez, A. Cavazos, M. T. Mata, “Type-1

non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems using
the hybrid mechanism composed by a Kalman type filter and back

propagation methods,” Lecture Notes in Artificial Intelligence, HAIS

2010, pp. 429-437, Volume 6076, 23 June 2010.
[67] G. M. Méndez, M. De los Angeles Hernandez, “Hybrid learning for

interval type-2 fuzzy logic systems based on orthogonal least-squares

and back-propagation methods,” Information Sciences, vol. 179, no. 13,
pp. 2146-2157, 2009.

[68] G. M. Méndez, M. De los Angeles Hernandez, “Interval type-2

non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems using
the hybrid learning mechanism recursive-least-square and

back-propagation methods,” In the 11th International Conference on

Control Automation Robotics & Vision (ICARCV), pp. 710-714, 2010.
[69] Y. Yang, Y. Wang, X. Yuan, “Bidirectional extreme learning machine

for regression problem and its learning effectiveness,” IEEE Trans.

Neural Networks and Learning Systems, vol. 23, no. 9, pp. 1498-1505,
2012.

[70] R. Zhang ; Y. Lan ; G. B. Huang ; Z. B. Xu, “Universal approximation of

extreme learning machine with adaptive growth of hidden nodes,”

IEEE Trans. Neural Networks and Learning Systems, vol. 23, no.2, pp.

365-371, 2012.

[71] Z. H. You, Y. K. Lei, L. Zhu, J. Xia, and B. Wang, “Prediction of
protein-protein interactions from amino acid sequences with ensemble

extreme learning machines and principal component analysis,” BMC

Bioinformatics, vol. 14, no. 8, pp. 1-11, 2013.
[72] T. Liu, L. Hu, C. Ma, Z. Y. Wang, and H. L. Chen, H. L, “A fast

approach for detection of erythemato-squamous diseases based on

extreme learning machine with maximum relevance minimum
redundancy feature selection,” International Journal of Systems Science,

(ahead-of-print), pp. 1-13, 2013.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Rong:Hai=Jun.html
http://www.informatik.uni-trier.de/~ley/db/journals/npl/npl33.html#CaoLH11
http://www.informatik.uni-trier.de/~ley/db/journals/ijon/ijon74.html#HeeswijkMOL11
http://www.informatik.uni-trier.de/~ley/db/journals/ijon/ijon74.html#SunYW11
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhou:Hongming.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Ding:Xiaojian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhang:Rui.html
http://www.informatik.uni-trier.de/~ley/db/journals/tsmc/tsmcb42.html#HuangZDZ12
http://www.informatik.uni-trier.de/~ley/db/journals/tsmc/tsmcb42.html#HuangZDZ12

