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We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider

pulled along the surface. Time series of a proxy for granular friction are examined using complex

systems methods to characterize the observed stick-slip dynamics of this laboratory fault.

Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex

than a periodic dynamics description. Phase space embedding methods show that the dynamics can

be locally captured within a four to six dimensional subspace. These slider time series also provide

an experimental test for recent complex network methods. Phase space networks, constructed by

connecting nearby phase space points, proved useful in capturing the key features of the dynamics.

In particular, network communities could be associated to slip events and the ranking of small

network subgraphs exhibited a heretofore unreported ordering. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4868275]

Inferring dynamical structure of a deterministic nonlin-

ear system from bulk time series measurements contami-

nated by noise remains a challenge, despite a number of

available and complementary methods for characteriza-

tion. Here, we demonstrate a variety of complex system

methods to a problem of particular interest to geophysics,

i.e., granular friction. Knowledge of granular friction is

crucial for understanding not only the mechanisms re-

sponsible for earthquake dynamics but also the details of

force transmission in granular-structure/solid interaction

systems (e.g., soil-vehicle interaction, building founda-

tions, etc.). We study a slider experiment introduced to

investigate such behavior. Our analysis indicates that the

dynamics of granular friction within the slider are con-

sistent with short term determinism, possibly quasi-

periodic, but with no long-term memory. The observed

dynamics also induce a complex network representation

possessing a previously unobserved prevalence ranking

of small subgraphs, i.e., a new superfamily. Our charac-

terization suggests that despite models based on periodic-

ity being sufficient for some purposes, new models are

needed to fully capture the complex dynamics responsible

for the observed slider behavior.

I. INTRODUCTION

When two frictional solid objects move relative to each

other, the motion of their surfaces often alternate between

periods of stick contact, when surfaces are locked together,

and periods of sliding contact, when surfaces overcome

“friction” and slip past each other. This phenomenon, known

commonly as stick-slip, arises in many aspects of everyday

life and is often implicated in damage and failure of materi-

als. Stick-slip is by no means limited to the dry contact of

two solid bodies: other examples include articular cartilage

damage,1 vibrations in vehicle suspensions and brake sys-

tems,2,3 erratic motion in industrial machinery and tools,4

and the behavior of active geological faults.5–7 Indeed, stick-

slip motion can arise in the presence of fluids between surfa-

ces8 and in discrete granular materials.9–14 Regardless of the

materials involved, what makes stick-slip one of the most

challenging dynamical phenomenon to characterize and

model is that it is the result of an interaction between many

complex entwined mechanical (and sometimes chemical)

processes.1–17

Our interest here lies in the occurrence of stick-slip in

granular materials, which often manifest in fluctuations of

macroscopic shear stresses—a measure of the strength of a

material. For these highly ubiquitous and technologically

important class of materials, understanding stick-slip is not

only of core importance to the study of granular friction

but of a number of related processes, including: frictional

strength of geological fault gouge, shear bands, the coexis-

tence of stable solid-like and flowing liquid-like regimes,

and the existence and uniqueness of a so-called “critical

state” of a material (e.g., Refs. 9–16, 18, and 19). In many

practical settings, arguably the most valuable piece of in-

formation embodied in stick-slip is the dynamics of energy

storage and dissipation in the system. Understanding

the energetics and recurrence of earthquakes, and the opti-

mal control of energy consumption in many particulate

processes (e.g., comminution, dewatering, etc.), hinges

on our ability to unravel the micromechanical details

underlying stick versus slip for a broad gamut of loading

conditions.18,20–23
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Extant studies of granular materials under shear and com-

pression have uncovered a connection between stick-slip and

the dual nature of force transmission in granular systems (e.g.,

Refs. 11, 16, and 22–25). In particular, studies have shown

that stick-slip dynamics is governed by the continual evolution

of so-called force chains, i.e., self-organized columnar struc-

tures comprising particles, which carry the majority of the

load in the system. These structures, belonging to the so-called

strong network26—the subset of inter-particle contacts that

carry above average contact force relative to all contacts—

continually align in the direction of the most compressive

principal stress, and are thus axially loaded. Surrounding the

force chains are the particles in the complementary weak net-

work, the subset of contacts not in the strong network, which

serve to provide chains the necessary lateral support. Using

photoelastic disk assemblies, experiments9,24,25,27–31 directly

revealed the tie between the creation and collapse of force

chains, and the rises and falls in the macroscopic shear stress.

Observations of these stress fluctuations strongly suggest that

stick events are governed by the formation of force chains,

while slip is due to the collective failure of force chains by

buckling and elastic unloading: see Fig. 1. During stick, stored

elastic strain energy builds up at the contacts between the con-

stituent particles of the force chain. This build up of stored

energy during stick cannot, however, continue indefinitely.

Force chains are highly unstable structures and, like architec-

tural columns, are prone to fail by buckling when overloaded

to some critical value. Thus, when a critical threshold is

reached, force chains buckle and the stored energy accumu-

lated at their constituent contacts is collectively released.

Studies of granular drag11–13 and granular shearing22,23 have

also shed considerable light on the possible role of force

chains and, in particular, the influences of particle surface and

shape (e.g., brass, wood, pasta) on force chain stability and, in

turn, on the dynamical features of the observed fluctuation

(i.e., random versus periodic). More recent studies on photoe-

lastic disk experiments,31–33 supplemented by computer

simulations34–39 further characterize the topology and dynam-

ics of force networks.

In this study, we analyze time series of a proxy for granular

friction for a set of slider experiments. Our objective is to char-

acterize the dynamical structure of stick-slip, specifically: the

number of irreducible degrees of freedom of the system, the

nature of the dynamics (periodic, chaotic, etc.), including

partitions of phase space as identified from community struc-

tures of networks constructed from the time series data. We

note that connecting the macroscopic behavior of this study to

the earlier discussion on the mesoscopic analysis of force chain

evolution is outside the scope of this paper. However, our future

goal is to make this connection, hence points of commonality

(e.g., what network communities tell us about the dynamics of

stick-slip at the macro and mesoscales) are of interest.

The remainder of this paper is organized as follows. In

Sec. II, we describe the slider experiment and the resulting

macroscopic time series. In Sec. III, we characterize the dy-

namics of the time series via a suite of techniques from non-

linear time series analysis. In Sec. IV, we transform the time

series to a complex network and characterize these networks

using a set of network statistics: different aspects of the

stick-slip dynamics are associated with various topological

structures and properties of the networks. Finally, we sum-

marize our results in Sec. V.

II. EXPERIMENT AND DATA SETS

A slider of mass M is pulled over a quasi-two-dimen-

sional granular surface that consists of a vertically oriented

layer of photoelastic disks. A small cart moves horizontally

on a track above the layer. Mounted on the cart is a force

gauge; a spring of force constant ks connects the force gauge

to the front of the slider. The cart is driven by a stepper motor

and lead screw at a constant velocity, v. Note that if the slider

is static, as it is, essentially, during stick events, then

Fp þ Fg ¼ 0, where Fg and Fp are respectively the force on

the slider from the grains, and the force on the slider by the

pulling apparatus. Thus, Fp ¼ �Fg during stick. Since the

cart always moves at a fixed speed, the signature of a stick

event is an Fp that increases linearly in time. The slope of

such an increasing curve Fp(t) is roughly dF=dt ’ vks, where

in fact the slope is somewhat smaller than vks due to the finite

elasticity of the static granular material. During slip events,

when the slider may be accelerating, Fp ¼ Ma� Fg. At the

beginning of a slip event, the cart acceleration, a, is often

large and positive; hence, a slip event is typically signalled by

a precipitous drop in Fp. A typical stick-slip cycle consists of

a steadily increasing Fp, followed by a rapid drop of Fp.

Our granular system consists of photoelastic disks (PSM,

Vishay Measurements, elastic modulus �4 MPa, Poisson ratio

FIG. 1. Underlying evolution of load-bearing force chains during stick and slip. Force chains form and accumulate stored energy at the contacts during a stick

event. Force chains collapse by buckling, with all of the stored energy that was accumulated at the contacts from the preceding stick event released collectively

during the slip event. Boxed areas highlight the failure of a force chain by buckling as shearing progresses over time Tð1Þ < Tð2Þ < Tð3Þ < Tð4Þ.
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�0.4) that are placed in a channel between two vertically ori-

ented Plexiglas sheets. This allows simultaneous measure-

ment of Fp, motion of the slider, and the particle-scale

response within the granular layer. The channel is 1.5 m

long, 15.5 cm tall, and has a gap slightly greater than the

thickness of the disks, which is 3.2 mm. The depth of the

granular layer corresponds to �20 mean grain diameters.

The disks are bidisperse, with diameters 4 mm and 5 mm,

and thickness 3.2 mm. The average particle size is

d¼ 4.37 mm. The sliders are cut from either brass or alumi-

num and are roughened on the bottom surface (which con-

tacts the grains) by a series of half-round cut-outs, of

diameter d. The sliders have lengths of 30d to 60d, and

masses between 50 g and 250 g.

The force gauge cart also carries an imaging system for

determining the photoelastic response of the grains. This

consists of a circularly polarized light source that moves

along one side of the channel and a second crossed circular

polarizer that is placed in front of a high speed video camera

that operates at frame rates from 30 Hz to 500 Hz. Fp data

are acquired synchronously with camera frame grabs.

Stressed photoelastic materials placed between crossed

polarizers show light and dark bands which provide quantita-

tive information on inter-particle forces27,28,31 (see images in

Fig. 1). In this work, however, we concentrate solely on an

analysis of the time series data, leaving the coupled analysis

of images and time series to a future exploration.

A number of time series were recorded with different

experimental test parameters, in particular, duration of

experiment, sampling frequency, cart mass, and cart speed.

We report the results of a combined nonlinear time series

and complex network analysis for a number of these runs to

see if there is consistency across each run, and attempt to

characterize the underlying properties of a dynamical system

capable of explaining the observed data.

In Table I, we provide details of the duration, sampling

time, and speed of the cart. Each run resulted in a different

number of data points. To check for consistency in

observed dynamics across tests, however, we applied the

following down-sampling procedure. Using the cart speed

V and time of experiment, we calculated the expected travel

distance of the cart. Of course, due to the very essence of

the stick-slip behavior, the cart will not have traveled this

distance exactly. We then selected a consistent (expected)

travel distance for all tests, and sampled the data so that

each time series contained 21 000 points across this dis-

tance. After following this procedure, we noted that one of

the tests (TS10) had too much observational noise corrup-

tion, and we dropped this test from our analysis and report-

ing. In Figs. 2(a) and 2(b), we present two of the slider time

series (TS7 and TS13). A calculation of the Fourier Power

spectrum did not show any particularly dominant peak.

This lack of strong evidence of periodicity suggests there

are more complex, perhaps deterministic, dynamics present

in the underlying mechanism responsible for the observed

stick-slip behavior. Previously, similar data from the same

experimental apparatus has demonstrated that the statistics

of the stick-slip events follow scaling laws similar to

Gutenberg-Richter power laws.40
FIG. 2. Two examples of the slider time series (a) TS7 and (b) TS13.

TABLE I. Experimental measurement parameters and basic dynamical data

analysis parameters. Note TS10 contained a significant level of chatter in its

measurements so we do not report the results here. All time series were

down-sampled to have the same number of recordings for the same cart

travel distance (i.e., v�Time). T, dE, and dL refer to time-delay lag, global

embedding dimension, and local dimension, respectively, The checkmarks

and crosses for PPS and ATS indicate evidence for rejecting (�) and failure

to reject (�) the null hypothesis, respectively. Italics indicate the slider time

series selected in figures to display the results of various calculations.

Data Time (s) Freq. (Hz) v (cm/s) T dE dL PPS ATS

TS1 3600 120 0.33 20 8 6 � �

TS2 3600 120 0.33 20 10 5 � �

TS3 3600 120 0.33 20 12 5 � �

TS4 1800 240 0.66 20 9 5 � �

TS5 900 480 0.13 20 9 5 � �

TS6 450 960 0.26 20 8 5 � �

TS7 28 1000 4.22 20 6 4 � �

TS8 225 1920 0.53 20 9 4 � �

TS9 113 3823 1.05 20 6 4 � �
TS10 28 4000 4.22 … … … … …

TS11 28 7714 4.22 20 5 4 � �

TS12 56 7714 2.11 20 5 4 � �

TS13 28 15429 4.22 20 5 4 � �
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III. NONLINEAR TIME SERIES METHODS

We apply tools from nonlinear time series analysis to

gain more knowledge about the slider system and, in turn,

stick-slip dynamics. It is important to first: (i) check whether

the observed data is sufficiently stationary for nonlinear

methods to be usefully applied, and (ii) determine whether a

linear approach does not already tell us everything of practi-

cal interest about the data. A definitive check of stationarity

of a finite length data set is impossible. However, a basic test

is to determine whether the fluctuations of the sample mean

over contiguous segments of the data are within the fluctua-

tions observed in the data of each segment.41 By segmenting

each of the observed slider time series into contiguous data

sets, each of length n, we found the fluctuations of the run-

ning sample mean for n> 500 was within the sample stand-

ard deviation. Thus, over segments of length n> 500, the

slider data can be considered approximately stationary.

A. Linear surrogates

We test whether or not the observed data is fully

explained by simple linear descriptions using the method of

surrogate data. Surrogate data testing is a form of randomiza-

tion testing. Additional data sets are generated which are

consistent with the observed data set and consistent with a

stated hypothesis.42,43 A hypothesis is tested by calculating a

test statistic and comparing the value obtained from the orig-

inal data to the distribution of test statistic values from the

surrogates. We use z-scores to measure the deviation of the

original data test value from the sample mean of the surro-

gate values in terms of the surrogates sample standard devia-

tion. If the z-score is high enough, we can reject the null

hypothesis under consideration. Z-scores rely on a Gaussian

assumption and so other metrics such as the Kolmogorov-

Smirnov test may be more reliable and appropriate.42

The three standard surrogate tests that we use are coined

Algorithm 0, 1, and 2. In Alg. 0, the data set is tested against

the hypothesis that it is independently and identically distrib-

uted noise. This involves generating uncorrelated data with

the same probability distribution of the original data.

Algorithm 1 tests the hypothesis that the data set is linearly

filtered noise; hence, random surrogates with the same power

spectrum and autocorrelation function are generated.

Algorithm 2 tests the hypothesis that the data are a mono-

tonic nonlinear transformation of linearly filtered noise. The

hypotheses of Alg. 0 is a subset of Alg. 1, which is itself a

subset of Alg. 2. However, the realizations obtained from

each algorithm do not necessarily preserve this nesting (see,

e.g., Small42 for a description of surrogate generation meth-

ods for each algorithm).

Here, we reject null hypotheses for a z-score above 2;

however, most runs and surrogate tests return z-score values

above 3. We used the average mutual information (AMI)44,45

at lag one as the test statistic. The average mutual informa-

tion is a nonlinear measure over a range of lags. However, as

in other studies,46 we found checking only lag one provided

sufficient evidence to reject the null hypothesis for each test.

We found we could reject each hypothesis, hence a simple

linear description of the observed slider time series does not

fully explain the observed behavior.

B. Reconstructed state space

The analysis of time series using the methods of nonlin-

ear dynamics is predominantly based around studying the

data in a reconstructed phase space.45 A common method of

finding such a phase space is time-delay embedding, where

the time series fytgN
t¼1 and delayed versions of itself are used

to form the coordinates.47 The state z 2 RdE of the recon-

structed phase space is

zt ¼ ðyt�ðdE�1ÞT ;…; yt�T ; ytÞ; (1)

where the parameters of this reconstruction are the time-

delay (T) and the embedding dimension (dE). There are pre-

scriptions for selecting these parameters. The first minimum

of the AMI determines the time delay lag. AMI can be con-

sidered as a kind of nonlinear autocorrelation function44 and

selecting T as the first minimum helps to identify more inde-

pendent coordinates in the reconstructed space. For a given

T, the value of dE can be selected using the method of false

nearest neighbours45 (FNN). FNN attempts to find the small-

est number of coordinates required to unfold the observed

data and minimize self-crossing of trajectories. That is, coor-

dinates in phase space are close because of the dynamics and

not because of an insufficient projection to a lower dimen-

sional space.

We found the first minimum of average mutual informa-

tion at T¼ 20, although a clearer minimum occurred for

higher values of T in some tests. For the majority of the tests,

however, T¼ 20 was closer to a quarter of the length of a

typical stick-slip event. Fixing T¼ 20, we found a suitable

global embedding dimension dE from false nearest neighbors

to lie in the range 5–12 (see, Table I). However, dE¼ 8

appeared to be adequate for all tests. Thus, for all future cal-

culations, the parameters of the reconstructed phase space

are T¼ 20 and dE¼ 8.

The global embedding dimension dE is based solely on

geometric arguments. Consequently, it will likely return a

value greater than the actual dimension of the system. It is

possible to determine the number of active degrees of free-

dom of the system using the method of local false nearest

neighbors48 (LFNN). LFNN adds to the geometric considera-

tions of FNN by including the predictability of the dynamical

information inherent in the time series. The local dimension

dL provides the number of variables required to accurately

model the evolution of local neighborhoods of phase space.

We can find the number of these variables by examining

Px—the ratio of the number of points poorly predicted by a

local model over T¼ 20 time steps to the number of points—

for different-sized local neighborhoods across dimensions. In

this context, a point is poorly predicted if the L1 prediction

error is larger than 10% of the spread of the data. These dy-

namical variables are the ones which are active for a dynami-

cal description of the physics. They differ from a more

standard interpretation of degrees of freedom, which would

not only include these active variables but also those
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variables deemed inactive with respect to the dynamics due

to, for example, damping.

In Fig. 3 and Table I, we see Px falls to a floor for

dL ¼ 4� 6, i.e., the slider exhibits low dimensional dynam-

ics with four to six dynamical degrees of freedom. Thus,

models capable of capturing the macroscopic stick-slip dy-

namics of granular friction should have no fewer than four-

to-six dynamical variables.

C. Attractor trajectory surrogates (ATS)

Given a reconstructed state space, we can pose more spe-

cific questions about the observed dynamics using pseudo-

periodic surrogates (PPS) or ATS, depending on the specific

null hypothesis.42,49 For oscillatory time series, like the

sequential stick-slip events in the slider (Fig. 2), PPS test for

periodic dynamics driven by uncorrelated noise. ATS test

whether pseudo-cycle (stick-slip events) dynamics is pre-

served with no evidence for long term dynamical correlations

between cycles (cf. the cycle-shuffle surrogates in Ref. 50).

For the slider, PPS are effectively testing whether the slider

dynamics within stick-slip events is consistent with noise-

driven periodic dynamics or, more complicated nonlinear

determinism. In contrast, ATS test whether the dynamics of

stick-slip events is the result of the same underlying dynamics

with no long term correlations between the different events:

that is, whether the granular bed only has short term memory.

PPS and ATS are a local phase space resampling of the

original time series with replacement based on the resolution

of resampling. A prescription for determining a resolution is

based on how many contiguous segments of the original

time series, each of non-trivial length, appear within the sur-

rogate. The length of contiguous segments determines the

level of randomization in the algorithm. The length of

contiguous segments, in turn, is determined by the level of

randomization—or, equivalently, the neighborhood size.

With a large neighborhood, sampling with replacement is

essentially random and irrespective of the phase space struc-

ture: this is equivalent to Alg. 0 surrogates—random re-

sampling (albeit with replacement). At the other end of the

scale, with a very small neighborhood, there is minimal

randomization and long segments of the dynamics are repro-

duced. With a non-trivial level of randomization, this yields

ATS. In the trivial case (no noise), one just recovers the orig-

inal time series. As the noise level (neighborhood size)

increases, the original time series is segmented and the seg-

ments are shuffled at locations where many similar states

occur close to one another in phase space. This is what is

required for the ATS algorithm. Increasing noise level

(neighborhood size) has the effect of increasing dynamical

noise contamination in the surrogate generation process until

only the most basic macroscopic dynamical features are

retained. That is, the pseudo-periodic structure and hence the

PPS algorithm.

We use the nonlinear test statistic of algorithmic com-

plexity to distinguish the observed data from PPS and ATS

data (see, e.g., Small42 for ways to calculate this complexity

measure). In Table I, a “�” indicates that there is sufficient

evidence to reject the null hypothesis (i.e., z-scores above 2)

and a “�” indicates failure to reject. We find mixed results

for the PPS hypothesis: periodic dynamics plus uncorrelated

noise often appears sufficient to describe the observed dy-

namics. In all cases, we fail to reject the ATS null hypothe-

sis. For the length of data, ATS are unable to detect long

term dynamical correlations between stick-slip events with

respect to the test statistic of algorithmic complexity. This

can be explained by the physical fact that disturbed and

undisturbed sets of grains come into play as the slider moves

unidirectionally along the granular bed.

We can view these findings side-by-side with results

from an earlier study on the macroscopic stress response

behavior of dense granular media undergoing deformation in

the presence of a fully developed shear band.19 In that work,

a time series of the macroscopic stress ratio in the large

strain regime was studied using nonlinear methods. The

observed response of this virtual system was “best”

described by nonlinear models exhibiting a complicated non-

periodic dynamics, as is suggested here by PPS for some of

the sliders. Furthermore, local false nearest neighbors analy-

sis of the virtual system similarly suggested 4–6 active

degrees of freedom are needed to describe the dynamics of

stick-slip. This is also consistent with Cosserat constitutive

relations based on force chain evolution developed for the

large strain regime in the presence of a fully developed shear

band.51

IV. COMPLEX NETWORK METHODS

In addition to surrogate testing and phase space recon-

struction methods, the technique of obtaining a complex net-

work from time series can garner useful information from

the data. There are various ways of transforming an observed

time series into a complex network. Zhang and Small52

transformed oscillatory time series to a network by segment-

ing the data into pseudo-cycles—the peak-to-peak segments

of the time series which would correspond to the stick-slip

cycles in the sliders—and calculating the correlation

between pair-wise segments. Network nodes correspond to

the pseudo-cycles, and links are made if the correlations are

above a specified threshold. The visibility graph method of

FIG. 3. TS13: local false nearest neighbors for different number of near

neighbors (NB). Inset: zoomed in showing dL ¼ 4� 6 local dimensions. A

time-delay of T¼ 20 was used to embed the time series data.

013132-5 Walker et al. Chaos 24, 013132 (2014)



Lacasa et al.53 introduced another transformation method,

whereby each scalar value of the time series corresponds to a

network node and the links are drawn according to the rela-

tive magnitude of each value. Both methods produce net-

works whose respective properties help to characterize the

underlying processes that may be responsible for the time se-

ries. Moreover, neither method requires a reconstructed

phase space to be determined.

Xu et al.54 showed how a complex network can be

obtained from a phase space reconstructed using a time-

delay embedding. Network nodes are the individual phase

space points and connectivity is determined by relative

closeness of these points. They coined such a network a

Phase Space Network (PSN), and this is the type of network

we use to study the slider time series. In a similar vein,

Marwan et al.55 recognized the likeness between a network

adjacency matrix and a recurrent plot matrix, and developed

a recurrence-based network representation of a time series.

A review by Donner et al.56 discusses the relationship

between phase space networks and recurrence-based net-

works from a theoretical and practical standpoint.

The formation of a PSN can be seen as a first step in the

dimension reduction process ISOMAP, in particular

k-ISOMAP.57 ISOMAP has been used in dynamical systems

data analysis to find a lower dimensional manifold where the

dynamics evolve.58,59 One constructs this manifold by taking

a PSN and forming a matrix from the shortest path length

distribution between each pair of nodes in a PSN. A multidi-

mensional scaling step is performed on this matrix to form a

new set of (lower dimensional) coordinates to study the

dynamics. Notable success has been achieved when these

coordinates result in a one-dimensional return map.58,59 One

dimensional return maps are appealing because they are

more amenable to examination by global analysis methods

such as Ulam’s method for approximating the Perron-

Frobenius transfer operator.60,61 The spectral properties of

matrices approximating this operator help to identify global

structures in the data, including almost invariant sets as well

as providing a means to estimate dynamical invariants.62,63

More generally, the Perron-Frobenius transfer operator

can be approximated directly from a reconstructed phase

space using the Ulam-Galerkin method.64,65 In this case, the

phase space is covered by regions and the dynamical flow

from region to region is approximated by a Ulam-Galerkin

matrix that can be interpreted as a (weighted) directed graph.

Nodes correspond to the regions and the weighted links

encode the transport mechanism. In contrast, the PSNs we

consider here do not explicitly encode the time evolution as

only closeness in phase space determines the connectivity.

Furthermore, nodes in a PSN correspond to observed data

points and not regions of phase space. A PSN differs from

the Ulam-Galerkin approach by being an unweighted, undir-

ected network although there are clear correspondences wor-

thy of exploration.

For example, in the following, we consider a partition-

ing of the PSNs using modularity-based methods. In

Santitissadeekorn and Bollt,66 the network arising from the

Ulam-Galerkin matrix approximation is also partitioned

using a modularity score to reveal basins and basin barriers

in phase space. It is also intriguing to consider how each

approach would compare with generating partitions,67 as

well as the symbolic dynamics68,69 within a low dimensional

manifold identified via ISOMAP.

Here, we construct PSNs using a fixed connection rule

where each node connects to its k closest phase space neigh-

bors. We discount connections based on close temporal cor-

relation, akin to applying a Theiler window to de-correlate

close neighbors within a correlation integral calculation.41 A

suitable de-correlation interval or size of Theiler window

can be gauged from a space-time separation plot, whereby

the quantiles of the inter-point distance distribution are cal-

culated for data separated by a given time span.41 We find

that the quantiles have started to separate from each other for

a de-correlation interval of 100, so nodes representing recon-

structed phase space points temporally closer than 100 time

steps are barred from connecting to each other. As before,

we use the reconstructed phase space embedding parameters

T¼ 20 and dE¼ 8 resulting in networks with 20860 nodes.

We fix k¼ 4 neighbors to construct each PSN.

The structure of a PSN can be quantified and described

by standard network properties such as average degree (the

average number of links connected to a node), average clus-

tering coefficient (a measure of the closed triples in a net-

work), degree assortativity (a correlation score of how nodes

with the same degree are connected to each other), average

shortest path lengths (the minimum number of links connect-

ing two nodes), node closeness centrality (how closely con-

nected a node is to all other nodes in the network) among

others; see, e.g., Newman70 for more detailed descriptions.

In Table II, these global properties are presented for each

PSN. We observe consistency across tests. Each network

appears disassortative (negative degree assortativity): i.e.,

TABLE II. Global network properties of the PSN constructed from the slider

time series using T ¼ 20; dE ¼ 8, and a Theiler, or de-correlation window

of 100. Each state space point (node) is connected to its 4 closest neighbors.

N.B. this means that some nodes can have degree greater than 4 since they

may be within the 4 closest neighbors to another node but that node may not

be within the 4th closest neighbors of themselves. The clustering coefficient

for a node of degree ki being a part of ni triangles is calculated to be

ni=
ki

2

� �
.

Data Number Average Degree Average Average

of network degree assortativity clustering path

components coefficient length

TS1 1 6.9814 �0.3295 0.0349 16.3294

TS2 2 6.9567 �0.2689 0.0510 16.2198

TS3 1 6.9216 �0.2686 0.0873 21.8721

TS4 1 6.9406 �0.2259 0.0478 18.0717

TS5 1 6.9496 �0.3171 0.0415 17.6985

TS6 1 6.8206 �0.2906 0.0381 20.3626

TS7 1 6.6998 �0.3146 0.0400 38.8677

TS8 1 6.7826 �0.2210 0.0495 20.3710

TS9 1 6.7158 �0.2534 0.0266 28.4885

TS11 1 6.6814 �0.2424 0.0361 39.3600

TS12 1 6.5910 �0.2581 0.0407 36.8730

TS13 1 6.7371 �0.2269 0.0541 44.5371
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nodes of a given degree are typically connected to nodes of

different degrees.

Closeness centrality measures how central a node is

within a network. Centrality is based on how close the node

is topologically to all other nodes. Distance is measured

through the inverse of shortest path length. Nodes with high

closeness centrality are closer to all other nodes. This mea-

sure of centrality suffers from a lack of robustness as the re-

moval or addition of a link can dramatically change its

value; however, we find it useful to highlight a feature of the

slider PSNs. We use the Mathematica71 implementation of

the following formula to calculate closeness centrality for a

node i with degree ki

ccðiÞ ¼ kiX
j
dij

; (2)

where dij is the shortest path distance between nodes i and j.
We can attribute a PSN node’s closeness centrality to its phase

space location. Nodes with low values of closeness centrality

are more remote in phase space. In Fig. 4, we identify the sca-

lar time series with a reconstructed phase space point, and

color it based on its node’s closeness centrality value. Nodes

with lower closeness centrality are more associated with slip

events and, typically, with large slip events. By contrast,

nodes with higher closeness centrality values are more associ-

ated with the slow build up in force-to-mass ratio, indicative

of stick events. In other words, in phase space, trajectories of

the dynamics during the stick phase slowly evolve through

similar areas of phase space, before dramatically separating

during the inception and in the course of slip events.

The set of nodes V of a network can be partitioned into

disjoint communities Vi based on the relative propensity of

intra-community and inter-community connections, such

that V ¼ [Vi. A measure of how well the partition promotes

intra-community over inter-community links is modularity

Q; for K communities, this is given by66

Q ¼
XK

i¼1

ðeii � a2
i Þ; (3)

where eii is the fraction of links which have both end-point

nodes within community Vi, and ai is the fraction of links

with at least one end-point node in community Vi. The goal

is to find a set of communities Vi which maximizes Q. We

use the Mathematica71 implementation, which follows

Clauset72 by using a greedy algorithm to find an approximate

sub-optimal partition. The implementation is initialized by

assigning each node to its own community. Pairs of com-

munities are merged and Q is re-evaluated. The pair of com-

munities whose joining produces the greatest increase in Q
are merged. The implementation stops when no joining of

pairs of communities increases Q. This implementation is

different to Santitissadeekorn and Bollt,66 which allows pairs

that lead to the smallest decrease in Q to merge when no pair

leads to an increase in Q.

The time series can be visualized by coloring its values

according to their associated PSN node community member-

ship. Fig. 5(a) shows that the majority of points, and hence

the phase space dynamical behavior, are confined to a few

communities (similar color indicates the same community

assignment). Comparing with Fig. 4 reveals these points also

correspond to nodes with high closeness centrality. Local

slip events appear to reside in their own communities distinct

from the typical behavior. We can quantify this observation

FIG. 4. TS13: Network node closeness centrality values mapped back to the

original time series. Values have been scaled to lie in Refs. 1 and 64.

FIG. 5. TS13: (a) Community structure assignment of network nodes

mapped back to the original time series. Similar color indicates membership

in the same network community. (b) Community membership of time series

peaks indicating onset of slip events. Communities are ordered according to

the number of slip events they are associated with.
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by identifying each time series peak with the onset of a slip

event, and then examine how these slip events are distributed

amongst the network communities. In Fig. 5(b), we see that

slip events typically lie in a small number of communities

suggesting that the typical underlying dynamical behavior of

slip events is the same. There are also atypical slip events

that lie in their own small communities. These correspond to

the larger slip events or the very small slip events seen

within the time series. Network community structure identifi-

cation of PSNs appears to be able to partition the dynamical

behavior apparent in the time series.

A. Network motifs

The properties in Table II help to characterize the net-

work and the underlying system at a macroscopic scale by

taking global averages of local quantities. The community

structure assignment provides a mesoscopic view of a net-

work. An analysis of small subgraphs of a network is another

way of studying a network at the mesoscopic scale.

Subgraphs with a small number of nodes can be identified as

network motifs.73,74 There are two subgraph structures con-

sisting of three connected nodes, but only one of them is

interesting, i.e., the triangle and its presence within a net-

work is related to the clustering coefficient. The next non-

trivial collection of subgraphs consists of four connected

nodes. The structure and labeling of these subgraphs is

shown in Fig. 6 (see Kashani et al.75 for an algorithm to

identify them). The rank-ordering of their prevalence within

a PSN defines superfamilies directly related to the underly-

ing dynamics.54 In Table III, we show the rank-ordering

of subgraphs with four connected nodes within PSNs when

the underlying dynamical systems are:54 (i) Periodic (e.g.,

Rossler flow operating at parameters producing periodic

orbits), (ii) Periodicþnoise (e.g., a sine wave corrupted with

additive Gaussian noise), (iii) Chaotic (e.g., ordinary differ-

ential equations with one positive Lyapunov exponent such

as the Rossler and Lorenz flows), and (iv) Hyper-chaotic

(e.g., flows with two or more positive Lyapunov exponents

such as Mackey-Glass). It was also shown that these superfa-

milies are robust to additive Gaussian noise corruption, but

as the signal-to-noise ratio goes from 30 dB through to 0 dB

the rank-ordering breaks down and becomes identical to the

“Periodicþnoise” superfamily.76

The difference in the rank-ordering of these subgraphs

for each superfamily can be related to the character of recon-

structed phase space and the trajectories therein. In sparsely

populated regions of phase space, the four nearest neighbors

are less likely to be mutual (i.e., non-transitive such as sub-

graph D) whereas points in a dense region of phase space are

more likely to have mutual network connections (i.e., transi-

tive such as subgraph F). For PSNs arising from periodic

time series, subgraph F should appear higher compared to

chaotic time series, because the trajectories should return to

the same areas of phase space over and over again in peri-

odic systems (even subject to noise). In contrast, for chaotic

time series, which can be viewed as flow signposted by col-

lections of unstable periodic orbits, there will be some return

to the same area as well as some repellence from these same

areas. For time series requiring a high embedding dimension

to unfold their dynamics, e.g., chaotic and noise corrupted

time series, the non-transitive subgraph D will become more

frequent compared to periodic flow PSNs (cf. the superfami-

lies in Table III). This can also be reflected in global macro-

scopic averages. For example, in a PSN arising from a time

series of white Gaussian noise, one observes low path length

together with low clustering coefficient. Clustering coeffi-

cient is an indication of the number of triangle subgraphs in

a network, here present in subgraphs B, C, and F. Thus, the

low prevalence of these subgraphs in PSNs is indicative of

higher dimensional dynamics or significant levels of noise

corruption.

The rank-ordering of the subgraphs of four nodes for the

slider PSNs exhibited the same definitive ordering, i.e.,

ADEBCF. That all sliders returned the same superfamily

suggests the underlying (force chain) dynamics of the granu-

lar bed is consistent across the different tests. The subgraph

structures which contain triangles (BCF) are the lowest

ranked, consistent with the macroscopic clustering coeffi-

cient values reported in Table II. A reason for this may be

attributed to the dL ¼ 4 to 6 local dimension and higher

embedding dimension of dE¼ 8, as well as the imposition of

a large Theiler window.

The superfamily ADEBCF is also different from the

classes for flows shown in Table III. Thus, in terms of motif

network classification, the behavior of the slider laboratory

fault appears to be a new genus of superfamily. The dynam-

ics appear distinct from all others previously observed, and

nontrivially so: i.e., high dimensional deterministic dynamics

with significant noise, and no evidence of fine scale deter-

ministic “mixing.” This new genus warrants further investi-

gation in the future.

Consider the similarities and differences of this new ge-

nus ADEBCF to the superfamily associated with noisy

FIG. 6. The structure of the subgraphs

with four connected nodes.

TABLE III. Superfamily ordering for dynamical system flows as reported in

Ref. 54. The PSNs of all slider time series exhibit a new genus of superfam-

ily ADEBCF.

Flow type Motif ranking

Periodic ABCFDE

Periodicþnoise ADBCEF

Chaotic ABCDFE

Hyper-chaotic ABCDEF
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periodic dynamics, i.e., ADBCEF. The subgraph E, a square

topology, is ranked higher than the subgraphs BCF, all of

which contain triangle topologies. This may be a signature of

dynamical non-stationarity and not just statistical drift, i.e.,

one requires a long chain of connections before returning to

similar states. A possible source of this subtle effect is the

nature of the experiment. The dynamics of stick-slip is

underpinned by the continual formation and failure by buck-

ling of force chains in the bed. However, following each slip

event, the slider moves to an undisturbed part of the bed with

a new set of disks forming force chains that give rise to stick.

It is possible that this leads to dynamical non-stationarity

and the new superfamily. In contrast, superfamilies associ-

ated with chaos were observed in data-based models of

stick-slip behavior within a biaxial compression test.19

There, however, the grains subject to deformation remain the

same, if not the self-organized network of force chains they

facilitate.

V. CONCLUSION

Inspired by past studies which consider the stick-slip of

a laboratory fault as a proxy for stick-slip of a geological

fault gouge, we analyzed the dynamics of stick-slip of a

granular bed under shear from a slider. We complemented

previous statistical analysis focussed on the distribution of

the size of slip events by exploiting the concepts and techni-

ques of complex systems theory, in particular, nonlinear time

series analysis and complex networks. The number of active

degrees of freedom detected from the data suggests that a

real physical evolution law describing stick-slip should con-

sider at least four to six state variables. Network community

structures were able to partition the dynamical behavior

apparent in the time series, which proved to be strongly asso-

ciated with slip events. We also discovered that individual

stick-slip events exhibited dynamics richer than a linear

description and can contain a nonlinear determinism.

However, models capable of exhibiting periodic dynamics

are adequate for some tests. If we preserve the dynamics

within a stick-slip event and effectively only shuffle the indi-

vidual stick-slip cycles (ATS test), then there is insufficient

evidence to reject the possibility that there are no long term

dynamical correlations between the events. This makes phys-

ical sense, as stick-slip events temporally far apart in the

experiment are due to force chain structures in different parts

of the granular bed. That is, the bed has no long term mem-

ory. This class of data whereby we have nonlinear determin-

ism within each stick-slip cycle, but no long term memory

across stick-slip cycles, appears to also present a new stratifi-

cation of systems that the network motif superfamily

approach can detect.
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