Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

COMMUNICATION

Bis-cyclometallated Gold(III) Complexes as Efficient Catalysts for Synthesis of Propargylamines and Alkylated Indoles

Hok-Ming Ko, Karen Ka-Yan Kung, Jian-Fang Cui and Man-Kin Wong*

Received (in XXX, XXX) XthXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Stable bis-cyclometallated gold(III) complexes were developed as efficient catalysts for organic transformation reactions by using two strategies: (1) construction of distorted square planar gold(III) complexes and (2) dual catalysis by gold(III) 10 complexes and silver salts.

Gold catalysis has attracted significant attention in catalysis research due to its superior reactivity, excellent selectivity and high functional group tolerance.¹ Studies on the use of simple gold salts (e.g. AuCl and AuCl₃) as catalysts for organic synthesis

- ¹⁵ have been considerably reported.² However, the instability of simple gold salts in catalytic cycles leading to low product turnovers is an unresolved issue.³ In this connection, gold(I) complexes have been largely developed as efficient catalysts to achieve novel synthetic transformations.^{1,4} However, the ²⁰ development of gold(III) complexes for catalysis remains largely
- unexplored.

Gold(III) complexes have a square planar geometry with four coordination sites, and in principle the reactivity of the gold(III) reaction centre can be easily fine-tuned by diverse ligand design

- ²⁵ in a modular approach.⁵ However, a significant challenge in the development of gold(III) complexes as efficient catalysts is to strike a balance between stability and reactivity. In general, the stability of gold(III) ions significantly increases upon complexation with ligands. However, stable gold(III) complexes
 ³⁰ generally exhibit poor catalytic activity. We envision that novel ligand design and substrate activation strategies are of importance
 - in the pursuit of gold(III) catalysis for organic synthesis.

Over the years, we have been developing gold catalysis for organic transformation reactions.⁶ In particular, we are interested ³⁵ to employ cyclometallated gold(III) complexes⁷ as catalysts for organic synthesis.⁸ Recently, we found that stable biscyclometallated gold(III) catalysts are able to exhibit high catalytic activity in organic synthesis through two novel strategies: (1) formation of coordinatively saturated distorted square planar ⁴⁰ gold(III) complexes using bulky C,N donor ligands and (2) gold-

Fig. 1 Bis-cyclometallated gold(III) complexes 1 and 2.

45 Fig. 2 Crystal structure of 1 in top view (left) and side view (right). Anion was omitted for clarity.

Bis-cyclometallated gold(III) complexes [Au(C^N)2][BF4] 1 $(HC^N = 2\text{-phenylquinoline})$ and 2 $(HC^N = 3\text{-})$ phenylisoquinoline) were synthesized by transmetallation of 50 KAuCl4 with their corresponding organomercury complexes in 75% and 42% yields, respectively (Fig. 1). Notably, a distorted square planar geometry⁹ of 1 was revealed by X-ray crystallography (Fig. 2). The two 2-phenylquinoline ligands in 1 were tilted to give a dihedral angle of 43°. The Au-N bond length 55 is elongated (up to 0.141 Å) when compared with literatureknown square planar cyclometallated gold(III) complexes¹⁰ (Table S2, ESI[†]). Probably due to the steric repulsion between the quinoline rings, the Au-N bond length is elongated and a nonplanar geometry is adopted in order to maintain coordination of 60 ligands to the gold(III) centre. On the basis of NMR spectroscopy and literatures, a typical square planar geometry is expected for complex 2. The gold(III) complexes 1 and 2 were characterized by ¹H NMR, ¹³C NMR, and ESI-MS, and were found to be airand water-stable.

Studies on the catalytic activities of 1 and 2 in the three-component coupling reaction of aldehydes, amines and alkynes for propargylamine synthesis¹¹ are depicted in Table 1. Using 1 mol % of complex 1 with a distorted square planar geometry, propargylamine 6a was obtained in 83% isolated yield at 40 °C in 70 24 h under air (entry 1). As shown in entry 2, 60% isolated yield of 6a was obtained even with 0.1 mol % of 1, which was found to be comparable with our previous works.^{6a,8a,8c} Note that complex 1 (1 mol %) was able to catalyze the reaction at room temperature (entry 3). In contrast, complex 2 exhibited poor catalytic activity. 75 Using 1 mol % of 2 only gave 8% isolated yield (entry 4) while no reaction was observed with 0.1 mol % of 2 (entry 5).

The significantly higher catalytic activity of 1 than that of 2 could be attributed to their difference in geometry. Complex 1 is of a distorted square planar geometry with elongated bond

lengths. Hence, ligand dissociation of **1** to generate a highly reactive gold(III) reaction centre for alkyne activation would be more favorable than complex **2**. It is envisioned that such design of distorted gold(III) complexes would be applicable in catalyzing ⁵ other classes of organic reactions.

 Table 1
 Bis-cyclometallated
 gold(III)
 complex-catalyzed
 threecomponent coupling reaction for propargylamine synthesis.^a

$e_{Ph} H + V_{H} + V_{H} + H$	Ph Catalyst (1 mol H ₂ O, 40 °C, 2	(%) 4 h Ph
3a 4a	5a	6a ^{>Ph}
Entry	Catalyst (mol %)	Isolated Yield (%)
1	1(1)	83
2	1 (0.1)	60
3^b	1 (1)	25
4	2 (5)	8
5	2 (1)	0

 a Reaction conditions: **3a** (0.5 mmol), **4a** (0.55 mmol) and **5a** (0.75 mmol) in H₂O (1 mL). b room temperature.

¹⁰ Next, complex **1** was used in stereoselective synthesis of propargylamines **6b–6h** with 70–90% isolated yields and diastereomeric ratio (*dr*) up to > 99:1 (Fig. 3). In addition, complex **1** was able to promote selective modification of Draffinose aldehyde with 85% aldehyde conversion.^{8b}

15 Fig. 3 (a) Substrate scope of propargylamine synthesis catalyzed by 1. (b) Modification of D-raffinose aldehyde via three-component coupling reaction.

In the next section, a gold-silver cooperative dual catalysis strategy¹² was used in bis-cyclometallated gold(III) complex-²⁰ catalyzed indole alkylation¹³ (Table 2). According to the proposed reaction mechanism,¹⁴ alkylated indole **9a** was formed by metal-catalyzed cyclization of alkynyl alcohol **7a** to generate enol ether *in situ* followed by C–H addition of indole **8a** to the enol ether. Through systematic screening, we found that silver ²⁵ salts are able to work synergistically with bis-cyclometallated gold(III) complexes in the indole alkylation.

Using 1 (2.5 mol %) with AgBF₄ (5 mol %), alkynyl alcohol 7a reacted with indole 8a to give alkylated indole 9a in 80% isolated yield at room temperature in 2 h (entry 1). The reaction

- ³⁰ using complex **2** (2.5 mol %) with AgBF₄ (5 mol %) gave 47% isolated yield (entry 2). Combination of **1** with Zn(OTf)₂ or Yb(OTf)₃ could also catalyze the reaction to afford 76% and 39% isolated yields, respectively (entries 3–4). In the control experiments (entries 5–9), poor yields (10–13%) or no product
- 35 formation were found when only single metal catalyst was used. Catalyst screening using various metal salts was also conducted (see ESI[†]). These findings indicate that proper combination of dual metal catalysts¹⁵ is a feasible approach to render stable bis-

cyclometallated gold(III) complexes as efficient catalysts in 40 organic transformation reactions.

Table 2 Screening of	f catalysts for	synthesis of all	kylated indoles.
----------------------	-----------------	------------------	------------------

	но СН3	+	Catalyst CH ₂ Cl ₂ , r.t., 2h	H ₃ C O
	7a	8a		9a ^{℃H} ₃
Entry		Catalyst (mol %	%) Is	solated Yield (%) ^b
1		1 (2.5) + AgBF	$F_4(5) = 8$	0
2		2 (2.5) + AgBH	$F_4(5) = 4$	7
3		1(2.5) + Zn(O')	$Tf_{2}(5) = 7$	6
4		1(2.5) + Yb(O	$Tf_{3}(5)$ 3	9
5		1 (5)	1	3 ^c
6		2 (5)	0	
7		$AgBF_4(5)$	1	0 ^c
8		$Zn(OTf)_3(5)$	0	
9		$Yb(OTf)_3(5)$	0	

^{*a*} Reaction conditions: **7a** (0.24 mmol) and **8a** (0.2 mmol) in CH₂Cl₂ (2 mL). ^{*b*} Isolated yield. ^{*c*} Determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

⁴⁵ The substrate scope of the dual metal catalysis for indole alkylation was demonstrated by using alkynyl alcohols of different chain lengths 7a–7g and indoles with different substituents 8a–8j to afford alkylated indoles 9a–9p with up to 94% isolated yields (Table 3). The reactivity and regioselectivity ⁵⁰ of the present reaction were found to be consistent with literature reports.^{14,16}

 Table 3 Gold(III) complex-silver catalyzed cyclization-addition reactions of alkynyl alcohols 7a-7g and substituted indoles 8a-8i.^a

но~(-) 7а–7	n ^{R1} + 7g	X 8a–8j	$R^3 - R^3 $	1 (2.5 mol (5 m NgBF4 CH ₂ Cl ₂ , r.t.	%) ol%) <mark>+</mark> X ,2h		9a–9d, _{R³} 9h–9p
					Ph C 9e	C ₅ H ₁ C ₅ H ₁ CH ₃ 9f	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $
Entry	n	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	Х	Product	Isolated Yield (%)
1	1	CH ₃	CH ₃	Н	Н	9a	80
2	1	C ₂ H ₅	CH ₃	Н	Н	9b	74
3	1	C_3H_7	CH ₃	Н	Н	9c	78
4	1	Ph	CH ₃	Н	Η	9d	75
5	2	Ph	CH ₃	Н	Η	9e	74^{b}
6	3	C_4H_9	CH_3	Н	Н	9f	84^c
7	3	Н	CH ₃	Н	Н	9g	94 ^c
8	1	CH ₃	CH ₃	Н	Br	9h	80
9	1	CH ₃	CH ₃	Н	OMe	9i	80
10	1	CH ₃	CH ₃	Н	NO_2	9j	67^{d}
11	1	CH ₃	CH ₃	CH_3	Н	9k	40
12	1	CH_3	Н	Н	Н	91	75
13	1	CH ₃	Н	Н	Br	9m	71 ^e
14	1	CH_3	Н	Н	OMe	9n	53
15	1	CH ₃	Н	Н	NO_2	90	70^d
16	1	CH ₃	Η	CH ₃	Н	9р	58

^{*a*} Reaction conditions: **7a–7g** (0.24 mmol) and **8a–8g** (0.2 mmol) in ⁵⁵ CH₂Cl₂ (2 mL). ^{*b*} 5-exo-dig cyclized product was formed. ^{*c*} 6-exo-dig cyclized products were formed. ^{*d*} 16 h. ^{*e*} 4 h.

An important advantage of using gold(III) complexes over simple gold(III) salts is the recyclability in catalysis. The recyclability experiments of catalyst **1** in propargylamine ⁶⁰ synthesis were conducted (Table 4). Catalyst **1** could be repeatedly used for 7 cycles leading to 638 product turnovers in total. However, the conversion of using KAuCl4 decreased significantly leading to only 29% conversion in the 7th cycle. These findings clearly indicate the recyclability of catalyst **1**.

- Next, we set out to examine the recyclability of catalyst 1 in $_5$ the dual catalysis of indole alkylation (Table 5). Catalyst 1 could be repeatedly used for 11 cycles to give 73–88% conversions with addition of AgBF₄ at the 6th and 11th cycles. At the end of the 10th cycle, complex 1 was found to remain intact by ESI-MS analysis of the reaction mixture. These results suggest that
- ¹⁰ catalyst **1** is stable under the reaction conditions and could be reused with further addition of AgBF₄. Yet, the recyclability experiments conducted using KAuCl₄ or "KAuCl₄ + AgBF₄" as catalysts gave no product formation in the 2nd cycle.
- Table 4 Recyclability experiments of 1 and KAuCl₄ in three-component

 15 reaction.^a

	0 Ph↓ + 3a	⟨N + H + 4a	Ph— <u>—</u> 5a	= =	Catalyst (H ₂ O, 40	(1 mol % [°] C, 24 h) ► Př		Ph		
Cycle				1	2	3	4	5	6	7	
Conver	sion $(\%)^b$	by 1		99	97	93	85	89	86	89	
Conver	sion $(\%)^b$	by KAu	$\mathbb{C}l_4$	99	94	82	65	51	38	29	

^{*a*} Reaction conditions: **3a** (1 mmol), **4a** (1.1 mmol) and **5a** (1.5 mmol) in H_2O (1 mL). ^{*b*} Determined by ¹H NMR.

Table 5 Recyclability experiment of " $1 + AgBF_4$ " in the reaction of 7aand 8a at room temperature in CDCl₃.^a

H0 CH3 +			Q	H ₃ H				c V			
7a	I		8a	0		3,, =		9a	сн	3	
Cycle	1	2	3	4	5	<i>6</i> ^{<i>c</i>}	7	8	9	10	11 ^c
$\overline{\text{Conversion } (\%)^b}$	85	81	81	78	73	88	87	85	81	74	83

20 ^a Reaction conditions: 7a (0.24 mmol) and 8a (0.2 mmol) in CDCl₃ (2 mL). ^b Determined by ¹H NMR. ^c Additional AgBF₄ (5 mol %) was added.

In conclusion, we have developed two novel strategies rendering stable bis-cyclometallated gold(III) complexes as efficient catalysts in organic synthesis by (1) ligand design and (2) ²⁵ dual catalysis.

We thank the financial support of Hong Kong Research Grants Council (PolyU 5031/11p) and The Hong Kong Polytechnic University (SEG PolyU01). We also thank Prof. Chun-Yu Ho of South University of Science & Technology of China for his 30 comments on the bis-cyclometallated gold(III) complexes.

Notes and references

State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China).

35 E-mail: mankin.wong@polyu.edu.hk; Fax: +852 2364-9932

† Electronic Supplementary Information (ESI) available: Experimental details, NMR spectra of new compounds, and crystallographic data of complex 1 (CCDC 946727). See DOI: 10.1039/b000000x/

1. (a) A. S. K. Hashmi, *Chem. Rev.*, 2007, **107**, 3180; (b) D. J. Gorin and F. D. Toste, *Nature*, 2007, **446**, 395; (c) Z. Li, C. Brouwer and C.

He, *Chem. Rev.*, 2008, **108**, 3239; (d) A. Corma, A. Leyva-Pérez and M. J. Sabater, *Chem. Rev.*, 2011, **111**, 1657.

- Reviews: (a) N. Krause and C. Winter, *Chem. Rev.*, 2011, **111**, 1994; Selected examples (b) G. Dyker, E. Muth, A. S. K. Hashmi and L. Ding, *Adv. Synth. Catal.*, 2003, **345**, 1247; (c) G. Dyker, D. Hildebrandt, J. H. Liu and K. Merz, *Angew. Chem., Int. Ed.*, 2003, **42**, 4399; (d) Z. Shi and C. He, *J. Am. Chem. Soc.*, 2004, **126**, 13596;
- (e) M. Georgy, V. Boucard and J. M. Campagne, J. Am. Chem. Soc., 2005, 127, 14180; (f) D. A. Engel and G. B. Dudley, Org. Lett., 2006, 8, 4027.
- Reviews: (a) D. J. Gorin, B. D. Sherry and F. D. Toste, *Chem. Rev.*, 2008, **108**, 3351; (b) H. Schmidbaur and A. Schier, *Arabian J. Sci.*
- Eng., 2012, 37, 1187; Selected examples: (c) A. S. K. Hashmi, M. C. Blanco, D. Fischer and J. W. Bats, *Eur. J. Org. Chem.*, 2006, 6 1387; (d) D. Aguilar, M. Contel, R. Navarro and E. P. Urriolabeitia, *Organometallics*, 2007, 26, 4604; (e) D. Aguilar, M. Contel, R. Navarro, T. Soler and E. P. Urriolabeitia, *J. Organomet. Chem.*, 2009, 694, 486.
- Reviews: (a) N. D. Shapiro and F. D. Toste, *Synlett*, 2010, 21, 675;
 (b) F. D. Toste, *Synlett*, 2012, 23, 46; Selected examples: (c) P. Mauleón, R. M. Zeldin, A. Z. González and F. D. Toste, *J. Am. Chem. Soc.*, 2009, 131, 6348; (d) W. Wang, G. B. Hammond and B. K. Let *C. C. P. Lett.* 2012, 2124, 5(07, C) M. C. P. Lett. C. P. Lett. 2012, 2124, 5(07, C) M. C. P. Lett. 2012, 201
- Xu, J. Am. Chem. Soc., 2012, **134**, 5697; (e) M. C. B. Jaimes, C. R. N. Böhling, J. M. Serrano-Becerra and A. S. K. Hashmi, *Angew. Chem., Int. Ed.*, 2013, DOI: 10.1002/anie.201210351.
- (a) A. S. K. Hashmi, J. P. Weyrauch, M. Rudolph and E. Kurpejović, Angew. Chem., Int. Ed., 2004, 43, 6545; (b) A. S. K. Hashmi, M.
- Rudolph, J. P. Weyrauch, M. Wölfle, W. Frey and J. W. Bats, *Angew. Chem., Int. Ed.*, 2005, 44, 2798; (c) N. Debono, M. Iglesias and F. Sánchez, *Adv. Synth. Catal.*, 2007, 349, 2470; (d) A. S. K. Hashmi, M. Rudolph, H. U. Siehl, M. Tanaka, J. W. Bats and W. Frey, *Chem. Eur. J.*, 2008, 14, 3703; (e) N. D. Shapiro, Y. Shi and F. D. Toste, *J.*
- Am. Chem. Soc., 2009, 131, 11654; (f) Y. Zhang, B. Feng and C.
 Zhu, Org. Biomol. Chem., 2012, 10, 9137; (g) J. A. O'Neill, G. M.
 Rosair and A.-L. Lee, Catal. Sci. Technol., 2012, 2, 1818.
- (a) V. K.-Y. Lo, Y.-G. Liu, M.-K. Wong and C.-M. Che, *Org. Lett.*, 2006, 8, 1529; (b) V. K.-Y. Lo, M.-K. Wong and C.-M. Che, *Org. Lett.*, 2008, 10, 517; (c) M.-Z. Wang, M.-K. Wong and C.-M. Che,
- Chem. Eur. J., 2008, 14, 517, (c) M.-Z. Wang, M.-K. Wong and C.-M. Che, Chem. Eur. J., 2008, 14, 8353.
- 7. W. Henderson, Adv. Organomet. Chem., 2006, 54, 207.

70

75

- (a) V. K.-Y. Lo, K. K.-Y. Kung, M.-K. Wong and C.-M. Che, J. Organomet. Chem., 2009, 694, 583; (b) K. K.-Y. Kung, G.-L. Li, L.
- ⁸⁵ Zou, H.-C. Chong, Y.-C. Leung, K.-H. Wong, V. K.-Y. Lo, C.-M. Che and M.-K. Wong, *Org. Biomol. Chem.*, 2012, **10**, 925; (c) K. K.-Y. Kung, V. K.-Y. Lo, H.-M. Ko, G.-L. Li, P.-Y. Chan, K.-C. Leung, Z. Zhou, M.-Z. Wang, C.-M. Che and M.-K. Wong, *Adv. Synth. Catal.*, 2013, DOI: 10.1002/adsc.201300005.
- 90 9. H.-L. Kwong, H.-L. Yeung, C.-T. Yeung, W.-S. Lee, C.-S. Lee and W.-L. Wong, *Coord. Chem. Rev.*, 2007, **251**, 2188.
- (a) P. A. Bonnardel, R. V. Parish and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1996, 3185; (b) D. Fan, C.-T. Yang, J. D. Ranford, P. F. Lee and J. J. Vittal, Dalton Trans., 2003, 2680; (c) K. J. Kilpin, W. Henderson and B. K. Nicholson, Inorg. Chim. Acta, 2009, 362, 3669.
- 11. C. Wei and C.-J. Li, J. Am. Chem. Soc., 2003, 125, 9584.
- D. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen and X. Shi, *J. Am. Chem. Soc.*, 2012, **134**, 9012.
- 100 13. C. Ferrer, C. H. Amijs and A. M. Echavarren, *Chem. Eur. J.*, 2007, 13, 1358.
 - 14. S. Bhuvaneswari, M. Jeganmohan and C.-H. Cheng, *Chem. Eur. J.*, 2007, **13**, 8285.
- (a) A. S. K. Hashmi, *Chem. Eur. J.*, 2013, **19**, 1058; (b) Y.-Z. Wang,
 L.-Z. Liu and L.-M. Zhang, *Chem. Sci.*, 2013, **4**, 739.
 - 16. A. Zanardi, J. A. Mata and E. Peris, Chem. Eur. J., 2010, 16, 13109.