Effects of a self-management arthritis programme with an added exercise component for osteoarthritic knee: randomized controlled trial

Y. B. Yip, Janet W. H. Sit, Karin K. Y. Fung, Doris Y. S. Wong, Samantha Y. C. Chong, L. H. Chung & T. P. Ng

Accepted for publication 26 February 2007

Abstract

Title. Effects of a self-management arthritis programme with an added exercise component for osteoarthritic knee: randomized controlled trial

Aim. This paper is a report of a study to assess the effect of an adapted arthritis self-management programme with an added focus on exercise practice among osteoarthritic knee sufferers.

Background. Osteoarthritis of the knee is a major source of loss of function in older people. Previous studies have found self-management programmes to be effective in increasing arthritis self-efficacy and in mastery of self-management practice.

Method. A randomized control trial was carried out from December 2002 to May 2003 and 120 participants (65.9%, including 67 in intervention group and 53 in control group) completed the 16-week postintervention assessments. Outcome measures included arthritis self-efficacy, use of self-management techniques, pain intensity and daily activity.

Findings. At 16 weeks, there was a ‘statistically’ significant improvement in the arthritis self-efficacy level ($P \leq 0.001$), in most of the self-management skills, i.e. use of cold and hot compresses, in two of three joint protective practices ($P \leq 0.001$; $P = 0.01$), an increase in the duration of light exercise practice ($P \leq 0.001$), reduction of current arthritis pain ($P \leq 0.001$) and in the ability to perform daily activities ($P \leq 0.001$) among the intervention group but not for the control group ($P$-range from 0.04 to 0.95). One joint protective practice showed a statistically significant increase in both groups ($P \leq 0.001$).

Conclusion. Our findings add to evidence showing short-term beneficial effects of self-efficacy theory in education programmes. Self-efficacy theory has great potential for empowering sufferers of chronic conditions to live with their illness.

Keywords: healthcare professionals, knee, osteoarthritis, pain, randomized controlled trial, self-efficacy, self-management
Introduction

Osteoarthritis (OA) is the most prevalent form of arthritis and its most common site is the knee joint (Creamer & Hochberg 1998, Berman et al. 1999). A local survey (Lau et al. 2000) found that among people aged 50 and over, about 13% of women and 7% of men were diagnosed to have OA of the knee. OA of the knee is common in Hong Kong and responsible for most of the disablement of older people within this population (Cheing & Hui-Chan 2001). Also, it is a major source of morbidity and loss of function especially in older people (Fried & Guralni 1997, Denoeud et al. 2005). Because of a rapid increase in the number of people older than 65 years in Hong Kong, knee OA is a growing public health problem (Hong Kong Government Census and Statistics Department 2001).

Both the American College of Rheumatology (ACR) and the European League Against Rheumatism (EULAR 2000) emphasize the integral roles played by regular patient education and exercise as the first line non-pharmacologic treatment of OA knee (Pendleton et al. 2000). To improve patient education in arthritis, Lorig (1995) suggested utilizing cognitive and behavioural modification, in addition to providing information. It was suggested that self-efficacy was an important mediator of arthritis-related outcomes (Bandura 1977, Lorig & Holman 1993). The construct of perceived self-efficacy was introduced by Bandura (1997), who described in his social-cognitive theory how cognitive and social factors contribute to disease. Self-efficacy was influenced by four sources: mastery experience, vicarious experience, social persuasion and interpretations of somatic state. According to Bandura, perception of high self-efficacy increased the likelihood of consideration, adoption and maintenance of self-management skills. Arthritis self-efficacy affects the sufferer’s perception of, interpretation of, and ways of coping with the arthritis experience.

Lorig and her team (Lorig et al. 1985, Lorig & Holman 1993) developed measures to assess arthritis self-efficacy and arthritis self-management programmes, which focused on the problems experienced by sufferers and their accomplishments in disease-related problem-solving, such as goal-setting, action planning and the effects of feedback. Simeoni et al. (1995), Stephenson et al. (1997) and Solomon et al. (2002) reported no marked effects from self-management programmes in arthritis self-efficacy and pain levels. However, increasing evidence shows that arthritic patients who are confident in their ability to manage arthritis pain and other symptoms are the ones who have the better health outcomes (Taal et al. 1993, McGowan & Green 1995, Chui et al. 1998, Alderson et al. 1999, Barlow et al. 1999, Hammond et al. 1999, Siu & Chui 2004, Wong et al. 2004, Yip et al. 2004). Furthermore, recent evidence showed that integrating the principles of self-efficacy enhancement and strategies in a goal-directed exercise component (either exercise goal-setting or homework to practise exercises) within an education programme resulted in increased physical activities (Heesch et al. 2003, Talbot et al. 2003) and use of pain coping strategies among retirement community residents with chronic pain (Turner et al. 2005). Since exercise was one of the most effective treatments in enhancing functional capacity among OA knee sufferers, Stenstrom (1994) suggested that a specifically focused and regular goal-directed exercise programme for OA knee sufferers was necessary rather than freely determined exercise. Unlike the previous arthritis management programmes (Barlow et al. 1999, Fu et al. 2003), the team not only integrated the principles of self-efficacy enhancement for OA knee sufferers, but also scaled up the focus on goal-directed exercise components relevant to the group’s lifestyle. In this paper, we report the outcome effects of this added focus on exercise practice to an arthritis self-management programmes (ASMP) in enhancing perceived arthritis self-efficacy, and the use of self-management techniques in reducing arthritis pain and increasing daily activity.

The study

Aim

The aim of the study was to assess the effect of an adapted arthritis self-management programme with an added focus on exercise practice among osteoarthritic knee sufferers.

Design

A randomized controlled trial study was carried out between December 2002 and May 2003.

Participants

Patients with OA of the knee were recruited from the specialist outpatient clinic of the Orthopaedic Department of a local hospital, the general outpatient clinic of a local hospital and the Wellness Clinic. Patients were included if they were capable of completing the questionnaire orally and either had OA affecting the knee according to self-report or screening of outpatient medical records. Diagnosis of OA of the knee was confirmed by medical history and a physical examination based on the clinical criteria of the American College of Rheumatology criteria 1991 (Altman et al. 1986, Altman 1991, Hopkins 2002). The clinical criteria for OA of the knee...
consisted of pain in the knee and any three of the following: (1) aged 50 years of age or over; (2) < 30 minutes of morning stiffness; (3) crepitus on active motion; (4) bony tenderness; (5) bony enlargement; or (6) no palpable joint warmth.

The exclusion criteria applied to those who (1) were bed bound, wheelchair bound or who experienced loss of balance while standing; (2) had knee replacement; (3) were currently undergoing active physiotherapy such as hydrotherapy or strengthening exercises; or (4) were currently receiving acupuncture treatments, since they could over-exert efforts for exercise compliance. Moreover, acupuncture, a popular treatment for joint pain among Chinese people, could influence the outcome results masking the results from the intervention itself.

Qualified and consenting participants were randomly assigned to an intervention or control group by reference to a random number table. Details of the sampling criteria have been reported previously (Yip et al. 2007). By assuming an effect size of 0·5 with an alpha level of 0·05 and a beta error tolerance of 20%, a minimum of 64 participants would be needed for each group (Portney & Watkins 1993).

The modified ASMP intervention and added goal-directed exercise component

Lorig and colleagues at Stanford University (Lorig & Fries 2000) developed the ASMP, based on Bandura’s concept of self-efficacy and behaviour change (Bandura 1991). The modified ASMP intervention consisted of six 2-hour classes held once a week, with 10–15 participants, led by Registered Nurses trained in leading small groups and in self-management basic principles. The classes were conducted using a small group approach. The programme focused on teaching participants how to cope with and manage common knee OA consequences, such as arthritis pain, fatigue, daily activity limitations and stress. It was designed to give participants skills they could use to optimize their ability to manage their condition.

An action plan using three types of exercise was promoted and reinforced weekly during the programme. These were stretching exercises, walking, and Tai Chi types of movement – fluid, gentle, relaxed and slow in tempo movements – aimed at enhancing exercise for the affected joints (Yip et al. 2007). A pedometer (OTO model DM-700) was given to intervention group members for 3 days (two weekdays and one weekend) to act as a positive reinforcement in walking. In addition, routine conventional treatment (treatment prescribed by orthopaedic doctor or outpatient clinic) was continued. The control group received routine conventional treatment (same as the intervention group) but no other treatment.

Data collection

Both groups were assessed at baseline, at 1 week postintervention and again at 16-week postintervention. The baseline measurements were taken from 1 to 3 weeks before the programme. The outcome measures included a structured face-to-face interview and physical assessment of the knee joint. A panel of seven experts in the musculo-skeletal field was invited to verify the content validity of the outcome measures by a content validity index. Content validity of the outcome measures was 0·89 (content validity index). Inter-rater reliability was 0·84 (Kappa statistics) for categorical data and 1·00 (correlation coefficient) for continuous data. The 1-week test and re-test reliability results were 0·9 (Pearson coefficient) for continuous data and 0·95 (Spearman correlation) for ordinal data.

Outcome measures

Demographics

Demographics (e.g. age, gender, education and pre-retirement occupation) and arthritis-related information (e.g. type of arthritis, duration of disease and treatment for current arthritis condition) were collected at baseline only.

Arthritis self-efficacy

The Arthritis Self-efficacy Scale (ASE, Lorig et al. 1989) was used as a measure of the strength of a person’s belief in their ability to control, or manage various aspects of arthritis. The ASE has two subscales: ASE: pain (five items) and ASE: other symptoms (six items). Each item was scored from 0 (very uncertain) to 10 (very certain). Scores were summed across the items for each subscale, producing scores of 5–50 for ASE: pain, and 6–60 for ASE: other symptoms. Participants rated their perceived degree of ability to control arthritis pain and other related symptoms. Higher scores indicate greater perceived ability to control various aspect of arthritis.

Use of self-management techniques

Self-management techniques included non-pharmacological management of the OA, such as hot and cold compresses for pain relief, joint protection methods and practice of exercise. The joint protection practices included ‘share the load among varied joint(s)’, ‘use a large joint to carry a heavy load’ and ‘avoid maintaining the same joint position for prolonged periods’. The joint protection practices were assessed by using a simple ‘yes’ or ‘no’ response. The frequency and duration of leisure-time light exercise (including flexibility and strengthening exercises, walking exercise and Tai Chi movements) were noted on a weekly basis.
**Arthritis pain intensity and daily activity**

Standard 100 mm horizontal visual analogue scales (VASs) were used to assess current pain. Scores ranged between 0 and 100. Respondents were asked to place a mark on a line representing their level of pain or fatigue. On the pain VAS, the line was anchored by ‘no pain’ and ‘pain as bad as it could be’. The modified Health Assessment Questionnaire (HAQ, Pincus et al. 1983) was used as a measure of the restrictions on daily activities imposed by participants’ illness. Participants rated their degree of difficulty on a 4-point scale in eight areas of life, including ability to perform a range of daily activities such as dressing and grooming, walking, hygiene, arising, eating and reaching. Scores ranged from 0 to 3 (0, ‘without any difficulty’; 3, ‘unable to do’), with higher scores indicating greater physical impairment.

**Ethical considerations**

The study was approved by the human subjects committee of the School of Nursing at The Hong Kong Polytechnic University and by the local hospitals. Participants were given detailed information about study procedures and written consent was obtained.

**Data analysis**

All analyses were completed using the Statistical Package for Social Sciences, version 9.0 (SPSS Inc., Chicago, IL, USA). Normality of the outcome data was examined by the Kolmogorov–Smirnov test, with \( P < 0.05 \) indicating that the data were not normally distributed and that non-parametric statistics should be performed. We then compared the baseline characteristics of participants from the control and intervention groups using Mann–Whitney \( U \) or chi-square tests, according to the type of variables. Intervention effects with and without intent-to-treat were compared. These results were similar, and so analyses of intervention effects on an intent-to-treat basis were performed. To determine whether groups of participants improved on outcome measures, we calculated the mean change by the following formula: mean change = \( X_2 - X_0 \), where \( X_2 \) was the mean score at 16 weeks postintervention and \( X_0 \) was the mean score at baseline. The effect size of the outcome measures was calculated by nQuery Advisor 4/0 (Statistical solutions, Belfast, UK, 2001). The Friedman test was used to compare the outcome measures over the baseline and the two follow-ups within the groups. Between-group mean changes on the outcome measures were compared using Mann–Whitney \( U \) tests. The level of statistical significance was 0.025 (one-tailed) for all tests.

**Results**

**Demographics**

For the 182 participants enrolled in the study, 1-week postintervention was completed with 149 (81.90%) and 16 week postintervention with 120 (65.9%) (see Figure 1). The mean age of participants was 65 years, and approximately 75% were women. Participants had suffered from OA knee for 8 years on average. No differences between the groups with respect to age, gender, education, pre-retirement occupation, marital status and all outcome measures were noted (\( P \)-value range from 0.10 to 0.99). Moreover, participants and drop-outs were also comparable across most demographic characteristics and outcome variables, except arthritis pain intensity rating (\( P = 0.02 \)). The drop-out group suffered higher arthritis pain (mean = 52.42/100, \( SD = 2.76 \)) than the participant group (mean = 44.58/100, \( SD = 2.11 \)).

**Change of ASE score**

Mean ASE scores in the two groups for pain and other symptoms at baseline, 1 week postintervention and 16 weeks postintervention were compared using \( U \) tests. The level of statistical significance was 0.025 (one-tailed) for all tests.

![Figure 1 Study flow.](image-url)
postintervention score (ASE: pain) was found in the intervention group ($P = 0.0001$) at 16 weeks postintervention. No statistically significant change in ASE: pain was found for the control group ($P = 0.75$) (effect size = 0.53). Similarly, an improvement in other symptoms (ASE: OS) was found in the intervention group ($P = 0.0001$) but not for the control group ($P = 0.17$) at 16 weeks postintervention (effect size = 0.51). Comparing between-groups on mean changes, participants in the intervention group demonstrated a statistically significant increase in arthritis self-efficacy both for pain and other symptoms ($P = 0.0001$) between baseline and 16 weeks postintervention.

**Use of self-management skills from baseline to 16 weeks postintervention**

Among the intervention group, the use of hot and cold compresses increased from baseline (34.10%) to 16 weeks postintervention (58.0%) ($P = 0.0001$). Although their use in the control group slightly increased (26.6% at baseline and 36.2% at 16 weeks postintervention), this was not statistically significant ($P = 0.04$) (Table 2). Joint protective practices of sharing the load among varied joints and use of large joints to carry heavy loads were increased from baseline to 16 weeks postintervention ($P = 0.0001$ and $P = 0.01$, respectively) for the intervention group but not for the control group ($P = 0.74$ and $P = 0.09$, respectively). The practice of avoiding maintaining the same joint position for prolonged periods increased at 1 week postintervention and 16 weeks postintervention for both the intervention group ($P = 0.0001$) and the control group ($P = 0.0001$). This was a time trend effect rather than an intervention effect.

There was a statistically significant increase in duration of practising light exercise weekly from baseline (mean = 5.60 hours, $sd = 4.48$) to 16 weeks postintervention (mean = 7.17 hours, $sd = 5.18$) for the intervention group but not for the control group (mean = 5.07 hours, $sd = 3.96$ at baseline and mean = 5.41 hours, $sd = 4.20$ at 16 weeks postintervention). The $P$-values for the intervention and control groups were 0.0001 and 0.95, respectively, with an effect size of 0.68. For the between-groups comparison of mean change, the $P$-value was 0.0001.

**Effects on arthritis pain intensity and daily activity at 16 weeks postintervention**

Reduction in current arthritis pain rating was statistically significantly higher for the intervention group (about 12 mm

Table 1 Mean change in perceived arthritis self-efficacy, joint pain rating, practice of light exercises and functional limitations in intervention ($n = 88$) and control ($n = 94$) groups at 1 week and 16 weeks postintervention

<table>
<thead>
<tr>
<th>Outcome variables</th>
<th>Baseline, mean ($sd$)</th>
<th>1 week postintervention, mean ($sd$)</th>
<th>16 weeks postintervention, mean ($sd$)</th>
<th>Baseline to 16 weeks postintervention, mean change ($sd$)</th>
<th>$P$-value</th>
<th>Effect size*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ASE: pain (Scale 5–50, higher score = better)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention group</td>
<td>29.20 (3.32)</td>
<td>34.89 (6.27)</td>
<td>36.09 (13.09)</td>
<td></td>
<td>Between groups $P$-value**</td>
<td>$0.0001^{**}$</td>
</tr>
<tr>
<td>Control group</td>
<td>31.73 (8.08)</td>
<td>32.75 (7.80)</td>
<td>33.27 (7.98)</td>
<td></td>
<td>$0.0001^{**}$</td>
<td>0.755</td>
</tr>
<tr>
<td>(2) ASE: other symptoms (Scale 5–60, higher score = better)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention group</td>
<td>36.46 (9.00)</td>
<td>43.61 (6.63)</td>
<td>42.92 (8.44)</td>
<td></td>
<td>Between groups $P$-value**</td>
<td>$0.0001^{**}$</td>
</tr>
<tr>
<td>Control group</td>
<td>37.86 (9.57)</td>
<td>40.09 (8.57)</td>
<td>40.12 (9.09)</td>
<td></td>
<td>$0.0001^{**}$</td>
<td>0.175</td>
</tr>
<tr>
<td>(3) Current pain rating (VAS, scale 0–100, lower score = better)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention group</td>
<td>50.45 (20.81)</td>
<td>37.33 (21.06)</td>
<td>38.58 (22.01)</td>
<td></td>
<td>Between groups $P$-value**</td>
<td>$0.0001^{**}$</td>
</tr>
<tr>
<td>Control group</td>
<td>44.26 (24.42)</td>
<td>44.41 (23.23)</td>
<td>42.50 (23.67)</td>
<td></td>
<td>$0.0001^{**}$</td>
<td>0.175</td>
</tr>
<tr>
<td>(4) Health Assessment Questionnaire (scale 0–100, lower score = better)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention group</td>
<td>5.56 (3.94)</td>
<td>4.63 (3.80)</td>
<td>4.70 (3.69)</td>
<td></td>
<td>Between groups $P$-value**</td>
<td>$0.0001^{**}$</td>
</tr>
<tr>
<td>Control group</td>
<td>5.03 (3.51)</td>
<td>4.46 (3.63)</td>
<td>4.44 (3.30)</td>
<td></td>
<td>$0.0001^{**}$</td>
<td>0.125</td>
</tr>
<tr>
<td>(5) Practice of light exercise* (hours/week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention group</td>
<td>5.06 (4.48)</td>
<td>7.39 (4.33)</td>
<td>7.17 (5.18)</td>
<td></td>
<td>Between groups $P$-value**</td>
<td>$0.0001^{**}$</td>
</tr>
<tr>
<td>Control group</td>
<td>5.07 (3.96)</td>
<td>4.83 (3.20)</td>
<td>5.41 (4.20)</td>
<td></td>
<td>$0.0001^{**}$</td>
<td>0.585</td>
</tr>
</tbody>
</table>

ASE, Arthritis Self-efficacy Scale.

*Mean of score at 16 week postintervention – mean of score at baseline.

$sd$ = standard deviation of the mean.

$P$-value is calculated by Friedman statistics for within-group comparison.

$**P$-value is calculated by Mann–Whitney $U$ statistics for between-group comparison.

*Statistically significant difference between two groups at baseline ($P = 0.02$).

*Effect size is calculated by nQuery 2.1 version.
reduction in 100 mm VAS, \( P = 0.0001 \) at 16 weeks postintervention compared with the control group (about 2 mm reduction in 100 mm VAS, \( P = 0.17 \), effect size = 0.61). Comparison of mean changes in the intervention group demonstrated a statistically significant decrease in current pain (\( P = 0.0001 \)) between baseline and 16 weeks postintervention. Intervention group participants showed more favourable daily activity outcomes than the control group, as assessed by the HAQ (\( P = 0.0001 \) and \( P = 0.12 \), respectively, effect size = 0.12). However, there was no statistically significant difference in disability health outcomes for the between-group comparison (\( P = 0.14 \)).

**Discussion**

The design of the intervention was grounded in self-efficacy theory (Bandura 1991), i.e. the individual’s sense of their ability to perform self-management arthritis tasks. The programme stressed empowerment of the confidence of participants' ability to manage arthritis pain and related symptoms, and to focus on goal-directed exercise components relevant to their lifestyles. We hypothesized that the modified programme with the added goal-directed exercise component would enhance arthritis self-efficacy and the practice of exercise. In addition, the experience of positive arthritis self-efficacy and the practice of exercise might result in less pain and increased daily activity. The results presented support these hypotheses.

Analyses revealed that the intervention group experienced a statistically significant increase in arthritis self-efficacy. Arthritis self-efficacy affects the sufferer’s perception of, interpretation of, and ways of coping with the arthritis experience. Bandura (1997) proposed that the perception of high self-efficacy increases the likelihood of consideration and adoption of self-management skills. Our results, which demonstrate increasing perceived self-efficacy throughout the modified self-management programme, are consistent with other findings from arthritis self-efficacy research (Taal et al. 1993, McGowan & Green 1995, Bandura 1997, Chui et al. 1998, Barlow et al. 1999, Siu & Chui 2004). This supports the assumption that level of self-efficacy is related to adoption of self-management behaviour.

On the basis of the central assumption of social-cognitive theory, an increase in the level of perceived arthritis self-efficacy may result in more investment of effort by sufferers in self-management skills, such as joint protection, regular exercise and the use of hot and cold compresses. Previous ASMP studies have shown various effects from increasing self-management behaviours. Some found positive effects on self-management skills such as joint protection (Alderson et al. 1999, Hammond et al. 1999), and exercise practice (Taal et al. 1993, Talbot et al. 2003, Siu & Chui 2004). However, there were no statistically significant increases in exercise practice for some arthritis self-management programmes (Simeoni et al. 1995, Lindroth et al. 1997, Fu et al. 2003, Wright et al. 2003). One of the joint protection practices, 'avoidance of maintaining the same joint position for prolonged periods', was similar in both groups in our study. This may indicate that joint protection practices were also encouraged in standard care. It is difficult to draw conclusions from the evidence about the increases in joint protection practices as a result of the self-management programme alone since few previous studies have measured this. The outcomes regarding the practice of exercise were
What is already known about this topic

- Osteoarthritis of the knee is the most prevalent form of arthritis and is a major source of morbidity and loss of function, especially in older people.
- Arthritis self-management programmes are effective.
- There is no evidence available on adapted arthritis self-management programmes with an added exercise component in an ethnic Chinese group with osteoarthritis of the knee.

What this paper adds

- An adapted arthritis self-management programme with an added exercise component had a short-term effect in improving self-efficacy, level of self-management practice, pain and ability to perform daily activities for sufferers of osteoarthritis of the knee.
- Further evidence of the benefits of applying self-efficacy theory with additional exercise practices to education programmes for osteoarthritis of the knee sufferers.
- More research is needed to evaluate the effects of the adapted arthritis self-management programme.

inconsistent in previous arthritis self-management experimental studies. One possible difference might relate to slight variations in focus between programmes. One observation of the characteristics of past studies with positive effects on exercise practice is those of arthritis self-management programmes in combination with an exercise component, e.g., kinaesthetic instruction assimilated to the sufferer’s home environment (Hammond et al. 1999); stress on an endurance exercise programme (Taal et al. 1993); home-based walking exercise (Talbot et al. 2003) or fitness and exercise (Alderson et al. 1999). Review of arthritis self-management studies showed that interventions with added exercise component were more likely to produce positive behavioural change in maintaining exercise habits. Examples include kinaesthetic instruction adapted to the sufferer’s home environment (Hammond et al. 1999); endurance exercise (Taal et al. 1993); home-based walking exercise (Talbot et al. 2003) or fitness and exercise (Alderson et al. 1999). Although it was too early to draw a definite conclusion, Stenstrom (1994) pointed out that a specifically focused and regular goal-directed exercise increase programme for OA knee sufferers was crucial. Talbot et al. (2003) also found that the ASMP with an added walking programme increased walking and improved muscle strength among OA participants at 24 weeks follow-up. Both the ACR and the EULAR 2000 emphasized the role of participation in exercise as the first line of non-pharmacologic treatment for OA knee (Pendleton et al. 2000). Similarly, Allegrant and Marks (2003) found that functional self-efficacy was an important factor affecting the functional performance outcome for people with OA knee.

Our adapted ASMP intervention with added goal-directed exercise protocol improved arthritis pain level and daily activity for the intervention group at 16 weeks post-intervention. Our results are in line with some previous findings suggesting benefits from an ASMP course in pain reduction (Lorig et al. 1985, Lindroth et al. 1997, Alderson et al. 1999, Barlow et al. 1999, Talbot et al. 2003, Siu & Chui 2004) and increased daily activity (Mazzuca 1994, Fransen et al. 1997, Dias et al. 2003, Talbot et al. 2003). However, our results are in contrast to previous findings about pain rating (Simeoni et al. 1995, Barlow et al. 2000, Solomon et al. 2002) and activity (Simeoni et al. 1995, Barlow et al. 1999, Solomon et al. 2002). In the present study, the reductions in arthritis pain and increase in daily activity may have been mediated by improvement in participants’ perceptions of control of their knee arthritis and related symptoms (Creamer & Hochberg 1998). In addition, the pain reduction may have been related to the focus on an exercise protocol (Berman et al. 1999) which was related to joint protective practices and regular light exercise. Perhaps the next step is to explore ways to increase participants’ enjoyment and sustainability of self-management practice.

Study limitations

A limitation of this study was the high drop-out rate, especially in the control group. For instance, there were slight differences in the characteristics of drops-out and participants in the number of unplanned medical consultations for arthritis-related problems. Another important limitation in the outcome measures was the potential for response bias by participants in reporting the number of weekly hours of practice of light exercise. In addition, the Hawthorne effect cannot be discounted: it is possible that the outcome improvement was not related to the content of the programme but was simply a result of participants behaving according to their expectations of what the researchers were looking for.

Conclusion

In conclusion, our findings suggest that the combined self-management programme with an exercise protocol had a
positive effect in enhancing arthritis self-efficacy, use of self-management skills, reducing pain and improving daily activities for OA knee sufferers in 16 weeks. Our findings add to the evidence of the benefits of applying self-efficacy theory with additional exercise practices in designing education programmes for OA knee sufferers. Self-efficacy theory has great potential for empowering sufferers to live with chronic illness and enriching arthritis educational management programmes. Future studies are needed to explore how to apply and test the theory for sufferers with OA knee in various local contexts. If our findings are confirmed in future studies, they have clear implications for knee OA education in arthritis care.

Acknowledgement

The study was supported by The Hong Kong Polytechnic University, School of Nursing.

Author contributions

YY, JS, KF, DW and TN were responsible for the study conception and design and YY and JS were responsible for the drafting of the manuscript. YY, KF, DW and LC performed the data collection and YY, JS and KF performed the data analysis. YY, JS, DW, SC and LC obtained funding and YY, JS, SC, LC and TN provided administrative support. YY, JS and TN made critical revisions to the paper. YY and JS provided statistical expertise. YY supervised the study.

References


Lau E.C., Cooper C., Lam D., Chan V.N.H., Tsang K.K. & Sham A. (2000) Factors associated with osteoarthritis of the hip and knee in


