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Abstract: A generic three-stage stack-and-draw method is demonstrated for the fabrication 

of complex-microstructured optical fibers. We report the fabrication and characterization 

of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged  

air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10
−4

 is demonstrated. 

The birefringent property of the fiber is found to be highly insensitive to external 

environmental effects, such as pressure. 
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1. Introduction 

Photonic crystal fiber (PCF), also known as microstructured optical fibers (MOFs) or “holey” fiber, 

produce their light guidance effect through a patterning of tiny holes, which run along the entire length 

of the fiber. In the simplest case, where the core of the fiber is solid, and surrounded by many air 

channels, and thus lower its effective refractive index, and allowing guidance by total internal 

reflection. They can therefore be made using a single material, without chemical doping. Since the first 
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photonic crystal fiber was reported in 1996 [1], researchers had been wanted to study PCF designs with 

non-circular holes. Many theoretical studies were unpublished based on unrealistic fabrication targets. 

Elliptical, rhomboidal and square hole shapes were studied in the few published works [2–4]. The 

combined effects of surface tension and hole pressure during fiber drawing, make it very difficult to 

control the shape of the holes in the fiber structure. Finding a balance is one of the main problems in 

producing PCFs with non-circular holes. Recently, the concept of a superlattice photonic crystal fiber 

was reported [5]. It is a novel and practical approach for the fabrication of PCFs with complex 

structures [6]. Any arbitrary shaped holes can be realized by arranging many smaller holes to 

approximate the designed shape. As an example, a high birefringence fiber design was proposed and 

the birefringent property was investigated. The idea was to design a PCF with hexagonal lattice and 

effective-elliptical-holes in the cladding; within each effective super-structured cell, only constant 

diameter circular holes are used. This is an alternative design concept to achieve high birefringence in 

a PCF other than by employing bow-tie-like [7], elliptical holes [8], squeezed elliptical core and 

holes [9] or elliptical core [10] structures. 

In this paper, a comparison of the birefringence for three different PCFs with different structure 

under external pressure is made. We report the fabrication of the first proof-of-concept silica 

superlattice PCF. The proposed all-silica high birefringent superlattice photonic crystal fiber (SL-PCF) 

can be fabricated by the structured-element-stacking method [11]. However, here, the preforms were 

stacked using circular silica capillaries and circular structured elements only. The focus of the work 

was on the fabrication method and the pressure response affected by the makeup of different fiber 

structures, especially by a more complex structure that of the superlattice reporting here. Together with 

the modified-stack-and-draw techniques demonstrated in [12], the authors intend to provide a complete 

practical solution for fabrication of complex PCFs; investigating the limit of the stack-and-draw 

techniques manually performed for the past two decades. The multi-stage stack-and-draw method leads 

to the possibility of realizing designs with multiple structures, multiple hole shapes and/or multiple 

cores within a single PCF. Thus, many studies have been carried out for novel fiber designs that may 

lead to new optical phenomena and applications. 

The mechanical properties derived from the microstructure of PCFs have not been studied in detail 

in the past. The mechanical effect on the optical property of a PCF is an interesting area in 

engineering, especially for sensing applications: an example of a novel lateral load insensitive design 

utilized this property is proposed in [13]. Here, the SL-PCF presented has a birefringence of 8.5 × 10
−4

, 

which is comparable with that of commercially available polarization-maintaining conventional and 

photonic crystal fibers. It was found that the birefringence was highly insensitive to external pressure. 

2. Fabrication 

The SEM images of the central region of the cane and fiber are shown in Figure 1a,b, respectively. 

The fiber was fabricated by a multiple stack-and-draw method. Figure 2 illustrates the fabrication 

scheme with photos of stacks and canes. Initially, nine capillaries with air-filling ratio of 0.95 were 

rhomboidally stacked together; the stack was then drawn to structured-elements with outer diameter (OD) 

of 1.69 mm. Next, one core element (~3% of the central area is Ge-doped with ∆n ≈ 0.55%) plus 90 

structured-elements were hexagonally stacked together to form the core and five rings of rhombus-like 
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holes in the cladding, respectively. Each structured-element was orientated manually to be aligned so 

that two clearly identifiable axes were formed in the overall structure. This stack was then drawn into 

final canes (OD = 1.9 mm). In the final step, a selected cane was inserted into a jacketing tube and drawn 

into the superlattice polarization maintaining photonic crystal fiber, SL-PM-PCF (OD = 170 µm). All the 

elements and fiber were drawn on a 5.5 m dual sided research fiber drawing tower at The Hong Kong 

Polytechnic University (Nextrom OFC20, Vantaa, Finland). 

Figure 1. SEM images of (a) the central region of the final cane; and (b) the SL-PM-PCF. 

Scale bar: 260 µm and 20 µm respectively 

 

(a) (b) 

Figure 2. Photos of stacks and canes to illustrate the structured-element-stacking method 

(the illuminated Ge-doped area can be seen in the core of the superlattice cane). 

 

Note that not all the structured-elements were aligned perfectly. However, only an overall averaged 

alignment was required to achieve high birefringence. The imperfection clearly shows the limitation of 

the stacking technique when carried out manually by simple eye inspection. A better result may be 

possible if the stacking is done robotically, or by using non-circular structured-elements. 
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3. Simulations 

We employed a full-vector finite-element method (FEM) and anisotropic perfectly matched layers 

using the simulation software Multiphysics (COMSOL AB, Stockholm, Sweden), to investigate the 

guided modes of the SL-PCF. An ideal structure was used, where the lattice-to-lattice pitch, Ʌ = 4 µm, 

hole-to-hole pitch within a structured-element cell, Ʌ′ = 1.1 µm and hole diameter d′ = 1 µm, see 

Figure 3a. The simulated fiber was found to be single mode at 1550 nm. The simulated effective 

indices for the fast and slow axes were 1.427874 and 1.428225, respectively. Therefore, the simulated 

birefringence was 3.51 × 10
−4

, which agreed fairly well with the experimental result. It is worth noting 

that, we also simulated the same structure without the Ge-doped region, and the resultant birefringence 

was 3.89 × 10
−4

. Therefore, the low concentration of Ge in the core only contributes slightly to the 

birefringence. Germanium is included in the fiber core to facilitate future UV inscription of Bragg 

gratings. The simulated mode profile is shown in Figure 3b,c. 

Figure 3. (a) The ideal structure used in the simulation, where Ʌ = 4 µm, Ʌ′ = 1.1 µm and 

d′ = 1 µm (with Ge-doped area indicated at the center); (b) x-polarized mode, fast axis 

effective index = 1.427874; (c) y-polarized mode, slow axis effective index = 1.428225 of 

the simulated mode profile. 

 

(a) (b) (c) 

4. Birefringence and Pressure Measurements 

The birefringence of the SL-PCF was measured using the Sagnac loop interferometer method [14]. 

The experimental setup is shown in Figure 4a. The Sagnac loop consisted of a standard 3dB fiber optic 

coupler, two pieces of conventional high NA fiber (Nufern-UHNA1) spliced to the two ports of the 

coupler on one side. A piece of SL-PCF with a length of 0.45 m was spliced between the two UHNA1 

fibers. The total loss of the two PCF-UHNA1 splicing points was <1.4 dB [15]. The coupler splits the 

input signal equally into two signals with a π/2 phase difference between them. The two signals 

counter-propagate through the SL-PCF before they interfere again at the coupler. A broadband 

superbright-light-emitting-diode source was used at the input, and the output signal was observed 

using an optical spectrum analyzer. The transmission spectrum was approximately a periodic function 

of the wavelength, and the birefringence, B, can be estimated by 

B = λ
2
∕(δλ·L) (1) 

where λ is the center wavelength; δλ is the period of the interference pattern; and L is the length of the 

SL-PCF. It is assumed that the effect of temperature is minimal for silica PCF, which has a very low 
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thermal expansion coefficient [14]. Figure 4b shows the output optical spectrum at the 1550 nm 

wavelength band. The spacing between two adjacent transmission minima is 6.3 nm, which correspond 

to a birefringence of 8.5 × 10
−4

 at 1550 nm. The birefringence of the real fiber is higher than the ideal 

structure because of the core element is also being slightly elliptical, see Figure 1. This is similar to the 

enhanced birefringence observed with the squeezed elliptical core and holes PCF reported in [9]. 

Figure 4. (a) Configuration of Sagnac loop for birefringence measurement; (b) output 

optical spectrum of the Sagnac loop. 

 

(a) (b) 

A pressure response experiment was also carried out using a setup with Sagnac loop interferometer 

and a high pressure oil tank [16]. A piece of the SL-PM-PCF with length of ~30 cm was used in the 

experiment. In order to obtained fibers with smaller outer diameter, hydrofluoric acid was used to etch 

the outer silica region of the SL-PM-PCF, while keeping the structural region unchanged. The post-etched 

diameter was 110 µm. The experiment was carried out at a wavelength of 850 nm, and the fiber was 

found to be effectively single mode; higher order guiding modes of greater losses lead to lower 

visibility resonation within the Sagnac loop. The pressure response is expected to be about three times 

higher than that at 1550 nm. The main benefit of working at 850 nm is that a low-cost CCD 

interrogator can be used, which also provide a much higher spectrum scanning speed than that of a 

standard optical spectrum analyzer [16]. 

It was found that the pressure response was ~1.6 nm/MPa at 850 nm. This is consistent with the 

simulated value of 0.5 nm/MPa at 1550 nm for an ideal structure using a FEM tool. Next, the result 

was compared to that found by using commercially available PM-PCF (NKT Photonics PM-1550-01). 

A piece of this fiber with the original outer diameter of 125 µm was used. It was found that the 

pressure response was ~9.7 nm/MPa at 850 nm, which is again fairly consistent with the simulated 

value of 3.8 nm/MPa at 1550 nm. Therefore, a pressure response difference of more than six times 

between the two fibers is observed. Finally, a suspended core fiber was used to perform the same 

experiment [17]. It had an outer diameter of 125 μm, with six wedge-shaped holes; each had a 

dimension of ~22 μm by ~27 μm. The thickness of the struts was ~730 nm. The suspended elliptical 

core had a major and minor axis of ~8 μm × 4 μm, with a birefringence of ~4.8 × 10
−4

 at 1550 nm. The 

pressure response was ~2.8 nm/MPa at 1550 nm. Again, much higher than that of the superlattice fiber. 

It can be concluded that for the PM-1550-01 and superlattice fibers, which have holey structured 

region diameter of ~40 µm, similar outer diameter and birefringence of ~8 × 10
−4

, exhibit very 

different pressure responses. The suspended core fiber representing another very different structural 
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makeup and the response to external pressure is also different. The pressure induced birefringence 

response can vary greatly according to the complexity of the cladding microstructures. The birefringence of 

the superlattice PCF is almost independent to external pressure, which may provide a stable operation 

in harsh environmental conditions such as the ones under high pressure downhole [18]. 

5. Conclusions 

We have shown experimentally that a high birefringent superlattice microstructured fiber can be 

fabricated using the proposed structured-element-stacking method. The initial circular capillaries can 

be arranged to form rhombus-like super-cell holes, and can be manually aligned on average over the 

entire structure with good birefringence result. The measured birefringence matched well with the 

simulated ideal structure. The fiber exhibited very low pressure (and temperature) response in 

comparison to other PCF microstructures. A much higher birefringence is expected for a SL-PCF with 

smaller core and pitch [5]. It is expected that this work will further widen the structured optical fiber 

research field, especially in the mechanical area. 
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