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By reducing the testing temperatures down to the temperature well below the glassy transition

temperature, the serrated flow behaviour during plastic deformation of a Zr-based metallic glass

was experimentally investigated and the results were presented in Part I of the present paper. It

shows that the yield strength, the plastic deformation ability, the density of shear bands of the

metallic glass increase with decreasing temperature. In order to understand the mechanisms for the

changes of the mechanical behaviour at low temperatures, in Part II of this study, the stress-time

sequence in the plastic strain regime is characterized by a comprehensive dynamical and statistical

analysis. The stress-time sequence is found to exhibit a chaotic state at high temperatures

(>203 K), whereas a self-organized critical state is obtained at low temperatures (�203 K) due to

the freezing effect. The reasons for the transition between these two distinct spatio-temporal

dynamical states are elucidated by investigating the effect of temperature on the deformation units

(shear transformation zones) and the elastic interactions between neighbouring shear bands. The

results demonstrate that the low temperatures results in an enhancement of the interactions between

the elastic strain fields initiated by neighbouring shear bands, which is primarily responsible for the

enhanced plasticity of the metallic glass and a dynamics transition. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4815944]

I. INTRODUCTION

In Part I of the present paper, the compression deforma-

tion of a Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at. %) metallic glass

at low temperatures (from 293 K to 123 K) was experimen-

tally revealed. The yield strength and the plastic deformation

ability were significantly improved with decreasing tempera-

ture. With increasing plastic strain, the density of shear

bands was found to increase, and in the plastic regime, the

intermittent serrated flow was observed. The amplitude of

these serration events gradually decreased from approxi-

mately 35 MPa to 4 MPa when the temperature decreased

from 293 K to 203 K. Further decreasing temperature to

123 K, the stress fluctuation of serration events was covered

by the background noise. To elucidate these mechanical

behaviours, in the past decade, tremendous amount of studies

were carried out, and several theories were postulated, such

as the shear transformation zone (STZ) theory,1 the free vol-

ume theory,2 concordant shifting region theory,3 and the

potential energy landscape (PEL) theory.4 These theories can

well describe the elastic deformation behaviour,3 the homo-

geneously flow behaviour,4 and the localized inhomogene-

ously flow behaviour.1,2 For the serrated flow, it is believed

to be associated with the shear band formation and propaga-

tion process.5 Quantitatively describing this serrated flow is

rather difficult because experimental methods cannot directly

build up the relationship between the shear bands and the ser-

ration events.6–8 Since that, a phenomenological model was

established to schematically examine the correlation between

the shear banding and serration events of metallic glasses by

analysing the elastic energy aggregation and release in serra-

tion events.9 Since the serrated flow that corresponds to the

discrete bursts of plasticity cannot be elucidated using the con-

tinuum theory alone,10,11 some researchers have applied statis-

tical analysis to investigate the serrated flow behaviour.12–15

Using such a method, two distinct types of dynamical behav-

iour: self-organized critical (SOC) behaviour and chaotic

behaviour,12,13 have been reported in different metallic

glasses. However, the transition mechanism between SOC and

chaotic behaviour is still not clear and has yet to be deter-

mined. The links between the dynamic behaviours of serrated

flow and the deformation unit evolution in the deformation

process are absent. Thus, it requires a quantitatively physical

mechanism to describe the correlation of the deformation

units, serrated flow and shear bands.

In this paper, based on dynamical and statistical analysis

of the resultant stress-time series during serrated flow, the

dynamics of the serrated flow are characterized in a wide

temperature range (293 K to 123 K). Temporal correlation of

a)Authors to whom correspondence should be addressed. Electronic addresses:
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the serration events in the plastic flow regime is characterized

by a nonlinear dynamics theory. Spatial interactions between

the shear bands are also elucidated by simulating the elastic

strain fields at the tip of shear bands. The purpose of the pres-

ent study is not only to understand how the deformation me-

dium (shear bands and STZs) changes at low temperatures and

their effect on the mechanical properties of metallic glasses,

but also to better understand how the dynamical behaviour

evolution of serrated flow is influenced by the intriguing spa-

tial and temporal interaction between the shear bands.

II. DYNAMICS TRANSITION AT LOW TEMPERATURE

Based on the enlarged experimental stress-time (r-t)
curves at four representative temperatures of 293 K, 223 K,

203 K, and 193 K (Figs. 1(a), 1(c), 1(e), and 1(g)), which

have been reported in Part I of the paper, the corresponding

quantity of |dr/dt| is plotted in Figs. 1(b), 1(d), and 1(f) to

reflect bursts of plastic serration events. The |dr/dt| value as

the function of time, t, at 293 K exhibits that time interval, tn,

between any two neighbouring serration events are homoge-

neous (tn�1� tn� tnþ1) (Fig. 1(b)). Decreasing the tempera-

ture to 223 K leads to slightly inhomogeneous time intervals

(Fig. 1(d)). Further decreasing temperature to 203 K results

in very inhomogeneous time intervals (tn�1 6¼ tn 6¼ tnþ1)

(Fig. 1(f)), suggesting that the serration events at relatively

low temperatures (<203 K) lack of any typical time scale.

This phenomenon indicates a characteristic of SOC behav-

iour.16 When temperature continues to decrease, accurate

fluctuation of the stress due to the serration events cannot be

FIG. 1. Enlarged stress-time curves of

the Zr41.25Ti13.75Ni10Cu12.5Be22.5 me-

tallic at four different temperatures,

along with a plot of the corresponding

jdr=dtj curves. Note: tn indicates the

processing time of one serration event.

The jdr=dtj curve at 193 K is not plot-

ted because the background noise cov-

ers serration vents.
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discerned because of background noise. An average elastic

energy accumulation time between two successive drops, tI,
and an average relaxation time, tR, is representatively marked

in Figs. 1(a), 1(c), and 1(e) and also listed in Table I. It is

evident that with decreasing temperature, the ratio between

the elastic energy accumulation time and the relaxation time,

R (¼tI/tR), increases from approximately 11.9 at 293 K to 1.2

at 203 K.

Stress drop in serration events is associated with shear

band formation and propagation, which makes it difficult to

directly establish quantitative relationships among the serra-

tion event, the elastic energy and the shear band number.11

Moreover, direct observation of the elastic energy relaxation

during serration is impossible. Since the amplitude of stress

undulation during serration events initially appears to be

irregularly and stochastically distributed across the variant

strain conditions produced by different loading rates and

temperatures,13,17 mechanistic trends are identified in these

distributions by applying dynamic and statistical analyses.

Using these methods, a better understanding of the mecha-

nism is achieved despite the characteristic lack of periodicity

in intermittent serrated flow behaviour.

Nonlinear dynamics provides a powerful tool to separate

the complex behaviour in a nonlinear system into numerous

spatio-temporal units in different scales.18 These units con-

form a hierarchical structure in which each unit can drive the

dynamical system. This hierarchic structure consists of vec-

tors, du(t), and associated Lyapunov exponents, ki, indexed

by i¼ 1, 2,…,M, and ordered by decreasing i. Each vector,

du(t), represents a particular set of time dependent, infinitesi-

mal, translational perturbations and velocity perturbations.

Thus, the dynamic analysis will trace the time dependent

vectors and their diverge rate that is associated with the

Lyapunov exponent. In the serrated flow of metallic glasses,

the stress as a time dependent value is treated as the spatio-

temporal unit in the dynamic system. Therefore, according

to the analysis method for dynamic systems, the stress signal

in each temperature as a time function in the plastic regime

is used to further determine the characteristics of serrated

flow. In this case, a mathematical model is required to bridge

the missing part between the mathematical description of the

dynamical system and the experimental stress-time series in

the metallic glass. Thus, a phase space concept is introduced

to deterministically model the possible states of the dynami-

cal system.19 Phase space reconstruction is a primary method

of analysing the stochastic time series of fr(t), (t¼ 1, 2, …,

N)g (where r(t) is the stress at the time t, as shown in Fig. 1),

which builds a proxy of the observed dynamic states.19 The

phase space reconstruction firstly embeds the given stress-

time sequence fr(t), (t¼ 1, 2, …, N)g, into a higher dimen-

sional space to reveal all the information hidden in this

sequence using a time delay technique.20 For the time series

of fr(t), (t¼ 1, 2, …, N)g, choosing an appropriate embed-

ding dimension, m, and a time delay, s, are the necessary

conditions for the phase space reconstruction. The mutual in-

formation method, which is the mainstream approach that is

able to obtain the exact time delay, is used to measure the

nonlinear correlation of the time series.20 The mutual infor-

mation for two random variables is a quantity that measures

the mutual dependence of each of two random variables. The

time delay, s, as the mutual information of two variables tak-

ing the minimum value at the first time, is selected as the

optimal time delay for phase space reconstruction, which is

calculated as listed in Table I. Subsequently, because the

Cao-method can avoid the influence of the noise on the stress

signal, which makes the result more accurate and is an effec-

tive method for the small quantity of data, we choose it to

calculate the embedding dimension that are also listed in

Table I.21 The embedding dimension, m, is chosen, when the

distances for the nearest two points no longer change in

the m and mþ 1 space, to accurately reflect the structure of

the dynamic system. This produces a reconstructed phase

space spanned by a m-dimension vector of Y(ti)¼fr(ti),
r(tiþ s), …, r(tiþ (m� 1)s), ti¼ 1, …, [N� (m� 1)s]g, where

ti is the ith evolution time. Based on this reconstructed phase

space, Wolf’s method is used to calculate the largest

Lyapunov exponents.22 Set the initial point, Y(t0), and its

nearest neighbour point, Y0(t0) (the distance between these

two points is L0), after a period of time, these two points

evolve to be Y(t1) and Y0(t1), respectively, and the distance

of these two points develops to be L0
0 ¼ jYðt1Þ

�Y0ðt1Þj > x, where x is a constant slightly larger than the

minimum distance of each two points in the phase space.

Then, around the point of Y(t1), its nearest neighbouring

point is taken as Y1(t1). The distance between Y(t1) and Y1(t1)

is L1. Tracking the evolution of Y(t1) and Y1(t1) to get

L1
0 ¼ jYðt2Þ � Y1ðt2Þj, and repeating the above process until

the m-dimensional vector, Y(ti), reaches the end of the time

series. The iteration number for this evolution tracking is M.

Then the largest Lyapunove exponent, k, can be calculated

to be23

k ¼ 1

tM � t0

XM

i¼0

ln
Li
0

Li
: (1)

According to Eq. (1), the largest Lyapunov exponent implies

an average exponentially diverging rate of the two trajecto-

ries in the phase space.23 A positive Lyapunov exponent

TABLE I. Mechanical properties of the metallic glass compressed at differ-

ent temperatures. T is temperature, G0T is shear modulus, sCT is critical shear

stress, cCT is critical shear strain, LY is the largest Lyapunov exponent, s is

the time delay, m is the embedding dimension, DS is the average interval

space between neighbouring shear bands, tI is average elastic energy accu-

mulation time, tR is average elastic energy relaxation time and R¼ tI/tR. The

experimental process was summarized in Part I of the paper.

T
(K)

G0T

(GPa)

sCT

(MPa) cCT

DS

(lm) tI (s)

tR
(s) R s m LY

293 32.1 927 0.0289 �100 1.79 0.15 11.9 25 8 0.011

273 32.7 931 0.0285 �100 1.81 0.16 11.3 60 10 0.025

223 33.7 966 0.0287 �70 1.98 0.24 8.3 2 6 0.008

213 33.8 1035 0.0306 �60 1.17 0.60 2.0 37 10 0.002

203 34.0 1053 0.0310 �40 0.76 0.62 1.2 31 10 �0.001

193 34.2 1023 0.0299 �30 / / / 39 9 �0.004

183 34.4 1089 0.0317 �30 / / / / / /

173 34.5 1090 0.0316 �20 / / / / / /

123 35.2 1180 0.0335 �20 / / / / / /
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suggests that the trajectories in the phase space diverge at an

exponential rate (at least) in some directions. In other words,

the neighbouring points, no matter how close, will diverge,

which is characteristic of a chaotic state. It is obvious that

chaotic state describes the evolution of a dynamic system

that is very sensitive to initial conditions. Small perturbation

in initial conditions yields fast diverging evolution trajecto-

ries.18 A negative Lyapunov exponent suggests that the tra-

jectories in the phase space converge at an exponential rate,

characteristic of a dissipative or non-conservative dynamic

system. Such systems exhibit asymptotic stability, in which

smaller negative exponents generate greater stability.21 The

largest Lyapunov exponents of the metallic glass strained at

different temperatures are listed in Table I. Clearly, the de-

formation occurring between 293 K and 213 K represents a

chaotic state, while deformation occurring at less than 203 K

represents a stable state.

Based on these dynamic approaches, statistical analysis

is conducted to further characterize the stochastic serration

events in this metallic glass. Since extremely localized shear

flow occurs in the shear bands, thus inducing stress drops

in the serration events, the shear avalanche size can be

represented by the stress drop.12 The statistical distribution

of the shear drops forms a unique profile of shear avalanche

sizes that are distinct to each plastically strained metallic

glass, essentially like a fingerprint for each material.24

According to previously described methods,12 after remov-

ing the serration events resulted from the noise from testing

system, the stress drop is subjected to normalization, result-

ing in the statistical distributions of the normalized stress

drop, S, shown in Fig. 2. From 293 K to 213 K, the normal-

ized stress drops reveal peaked distributions, suggesting cha-

otic behaviour.25 Further decreasing temperature generates a

power-law distribution of stress with an exponent of

1.61 6 0.19, as shown in the inset of Fig. 2. This suggests

that SOC behaviour occurs in the stable state.12 These statis-

tical distributions for stress drop are consistent with

Lyapunov exponent calculations.

Dynamic analysis of the serrated flow provides a mathe-

matical index reflecting the shear banding temporal interfer-

ence.13 It then requires a physical mechanism to link the

mathematical analysis and the experimental phenomena. The

structural origination of the deformation in metallic glasses

is attributed to deformation unit operation.1,2 In the elastic

FIG. 2. Statistical distribution of the

stress drop, N(s), of the Zr41.25Ti13.75Ni10

Cu12.5Be22.5 metallic glass deformed at

different temperatures. The inset shows

the power-law distribution of the stress

drop at 203 K.
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deformation stage, the elastic stress can drive atoms concord-

antly shifting, and form a concordant region.3 With the elastic

stress increasing, more atoms can participate in a concordant

shift, resulting an expansion of the concordant shifting region.

After yielding, this expansion possibly approaches a jamming

state because of the elastic field interaction between neigh-

bouring concordant regions.26 The expansion of the concord-

ant region generates a larger internal stress concentration,

causing that new flow events, such as STZs, can be more eas-

ily activated.27 Therefore, the growth of the concordant

region in the elastic regime can effectively activate the shear

banding operation. In the plastic deformation stage, the elastic

stress increase in each serration event also corresponds to the

concordant region change in a smaller scale as compared to

that happens in the elastic deformation stage. The concordant

shifting region model elucidates the idea that atoms in glassy

phase shifting concordantly could form a jamming state. A

“pining” stress required for operating the concordant region

is therefore increased with loading time.28 When the stress is

increased to be larger than the yield stress, flow event oper-

ates and the shear banding can slide a given distance. Thus,

intermittent serrated flow is formed due to these concordantly

shifting regions collectively operating.

Accordingly, the time-dependent stress value that is

used in the dynamic analysis reflects the shear bands tempo-

ral interaction. The chaotic behaviour at higher temperature

(>203 K) correspondingly shows large amplitudes in serra-

tion events. They suggest that the elastic energy accumula-

tion time is much larger than the stress drop time, i.e., the

elastic energy relaxation time. Thus, the elastic energy in

each serration event can be quickly relaxed and there is no

temporal correlation between neighbouring serration events,

which could result in the chaotic behaviour.29 In the SOC

state, the elastic strain accumulation time is comparable with

the relaxation time, suggesting that the elastic energy in the

serration events cannot be fully relaxed during this limited

time (Table I). This can enhance the interference between

the elastic energy stored in neighbouring serration events in

the temporal space. Thus, new shear bands are formed in the

field of the unrelaxed elastic energy, which possibly forms a

hierarchy of length scales in the shear bands,29 leading to the

SOC behaviour. However, the dynamic and statistic analysis,

and the elastic accumulation and relaxation times observation

cannot provide a clear picture to elucidate the spatial interac-

tion between shear bands. As such, more work has to be done

to further support the above dynamics transition analysis.

III. STZ VOLUME AND SPATIAL INTERACTION
BETWEEN SHEAR BANDS AT LOW TEMPERATURES

The potential landscape theory of liquids provides an

energic conceptualization framework for bridging elastic de-

formation and plastic flow in metallic glasses.26 In this

theory, the flow of metallic glasses is modelled as a move-

ment of atoms between inherent states and across energy bar-

riers.30,31 The activation energy for this barrier, W, can be

expressed as W ¼ ð8=p2ÞcC
2GX, where G is the shear modu-

lus, X is the effective shear transition zone (STZ) volume,

and cc is a critical shear strain for metallic glasses, which

was found to be a constant (0.036) for metallic glasses at

room temperature.2,32 Accordingly, the activation energy of

atoms cooperative motion across such barriers is dominated

by the shear modulus and the activation volume of STZ.

The activation volume of STZ can be calculated by31

X ¼ kTlnðx0=C _cÞ
4RG0TcC

21ð1�sCT=sC0Þ3=2, where lnðx0=C _cÞ � 30; R� 0.25;

1� 3; T is the environmental temperature; k is Boltzmann

constant (1.381� 10�23 J/K); sC0 is the yield shear stress at

0 K; G0T is the shear modulus at the temperature of T.

According to the shear modulus as the function of tempera-

ture shown in Part I of present paper, the shear modulus at

0 K can be deduced to be 35.3 GPa and the critical shear

strain at 0 K, cC0, is 0.036,31 the sC0 value is approximately

1271 MPa. The critical shear stress at different temperatures

can be calculated by sCT¼rFT sin hT cos hT,33,34 where rFT

and hT are the fracture stress and the fracture angle at differ-

ent temperatures, respectively. The fracture angle and the

fracture stress were determined in Part I of present paper.

Thus, the activation volume of STZ is calculated as a func-

tion of temperature, as shown in Fig. 3. For decreasing tem-

peratures from 293 K to 203 K, the volume of STZ slightly

increases from 13.3 nm3 to 18.7 nm3. Subsequently, the vol-

ume increases dramatically to 104.8 nm3 as the temperature

further decreases to 123 K. The volume of STZ and shear

modulus changes result in the activation energy of STZ cor-

respondingly increasing (Fig. 3).

Activation energy of STZs increases at low temperatures,

indicating that deformation requires more energy than is

required at room temperature. Thus, more elastic energy must

be accumulated in the elastic regime to compensate for the

incremental activation energy as the temperature decreases.

The yield strength and elastic energy (elastic modulus) resul-

tantly increase, which is consistent with previous reports.35,36

Simultaneously, increasing the STZ size significantly enhan-

ces the stress concentration around the STZs,27 further ena-

bling multiple shear band formation. As expected, the density

of the shear bands increases with temperature.

Shear localization can be attributed to STZs aggrega-

tion7 that activates a stress concentration, resulting in the for-

mation of an elastic strain field at the localization point.37–39

This elastic shear strain field can expand to approximately

600 lm in the direction perpendicular to the loading

FIG. 3. The volume of STZ and its activation energies as functions of

temperature.
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direction. Several shear bands are covered in this range

because the maximum average interval space is only 155 lm

at 293 K (Table I), indicating that the elastic shear strain

fields resulting from the neighbouring shear bands must

mutually interact. As the temperature decreases, the average

interval space decreases to approximately 32 lm and 20 lm

at 183 K and 123 K, respectively (Table I). A larger density

of shear bands can be expected to enhance these interactions.

In light of the interaction between the long-range elastic

stress fields generated by dislocations in crystalline materi-

als, these interactions may result in significant work harden-

ing.40 As a result, interactions between the elastic strain field

around the shear band tip or the shear localization point must

distort the atomic bonds, causing alterations in the local

shear stress.

To further quantitatively describe the interaction

between neighbouring shear bands, we discuss it in the

framework of elastic mechanics. The elastic strain field can

be simplified and expressed as a semi-infinite elastic body,41

demonstrated in the schematic plot in Fig. 4(a). In this

sketch, two arrows represent the shear band tips that activate

the underlying local elastic strain field. The interval space

between these two neighbouring shear bands is denoted by

2x0. Thus, the interaction between the shear bands can be

treated as the superposition of two elastic strain fields, and

the shear stress can be expressed as

sxy ¼
3P

2p
z2 xþ x0

½ðxþ x0Þ2 þ z2�5=2
þ x� x0

½ðx� x0Þ2 þ z2�5=2

( )
; (2)

where P is the load (assumed to be 500 N, corresponding to

the maximum load in our DSCM experiment), and z and x
values are in respect to the position of one point in the elastic

strain field. The z values are 1, 2, and 4 lm according to the

dotted line in Fig. 4(a), which represents points in the inter-

action area. Then, five x values are chosen to reflect the shear

stresses along z¼ 1, 2, 4 lm as a function of the interval

space, x0, which is plotted in logarithmic coordinates in Figs.

4(b)–4(d), respectively.

Therefore, when the x0 value decreases from 85 lm to

10 lm, i.e., the interval space between the shear bands

decreases from 170 lm to 20 lm, the shear stress in the inter-

action area increases approximately 105–106 times. Referring

to Table I, the critical shear stresses at different temperatures,

sCT, are in the range of 1053 6 126 MPa. This value is

marked by a dashed line in Figs. 4(b)–4(d). When the shear

stress from Eq. (2) is higher than the critical shear stress

(1053 6 126 MPa), shear banding is activated. According to

Fig. 4(b), at the critical shear stress (1053 MPa), a critical

interval space between neighbouring shear bands exists at

2x0¼ 46 lm (x0¼ 23 6 6 lm). The interval spaces between

the shear bands in the temperature range from 293 K to 213 K

is higher than the critical interval space of 46 lm at the point

of z¼ 1 lm (cf. Table I). For temperatures lower than 203 K,

the interval space is significantly less than the critical value.

This indicates that long-range interactions between the shear

bands can significantly improve the shear stress in localized

regions, which is caused by a confinement effect of the elastic

shear strain fields by two neighbouring shear bands.42 Thus,

localized yielding occurs in a hydrostatic state, as previously

described,43 and the weak shear bands appear in these highly

stressed regions associated with small shear banding proc-

esses. In this case, elastic energy can be relaxed by the forma-

tion of various shear bands in different scales, which

generates a hierarchical structure in the length scales. These

are manifested as weak traces of the surviving shear bands on

FIG. 4. (a) Sketch illustrating the inter-

ference between two neighbouring

elastic strain fields. P is the maximum

load. Z-axis is the loading direction. x0

is the half distance between two neigh-

bouring shear bands. (b) The shear

stress as a function of the x0 value at

z¼ 1 lm. (c) The shear stress as a

function of the x0 value at z¼ 2 lm. (d)

The shear stress as a function of the x0

value at z¼ 4 lm.
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fractured sample surfaces deformed at 203–123 K. As a

result, serrated flow behaviour is non-significant or non-

existent, as shown in Fig. 1(g), at very low temperatures.

Furthermore, the appearance of the shear bands in different

length scales, i.e., the hierarchical structure of the shear

bands, causes SOC behaviour to be observed.37

Just past the shear band tip (z¼ 2 and 4 lm), the critical

interval spaces approach 62 lm and 78 lm (x0¼ 31 6 8 and

39 6 8 lm) (Figs. 4(c) and 4(d)), respectively. In this case,

not only plastic straining occurs at the lower temperatures

(� 213 K) but also the deformation at the higher tempera-

tures (213 K and 223 K) can elevate the shear stress because

the average interval spaces at 213 K (60 lm) and 223 K

(72 lm) are already smaller than the critical interval spaces

(62 lm and 78 lm). However, notably, as the z value is

increased, the points achieving critical shear yielding

become increasingly far from the shear band tips. Meantime,

since the points are far away from the shear band tips, the

confinement effects produced by interactions between the

two shear bands are correspondingly weakened, potentially

resulting in failure to produce the conditions necessary for

localized yielding. Therefore, weak shear bands are only

observed at very low temperatures (� 213 K).

IV. CONCLUSIONS

Stochastic stress-time series analysis, i.e., dynamic anal-

ysis, as well as statistical analysis show that the dynamics of

serrated flow behaviour evolve from the chaotic state to the

SOC state when the temperature decreases to less than

203 K. In the chaotic state, the deformation mediums (or

units), such as shear bands, evolve in the divergent trajec-

tory, suggesting the shear bands could propagate individually

without strong interference and confinement, which is mani-

fested by the large stress amplitude in the serration events. In

this case, the dynamic system of the plastic deformation is

very sensitive to these stress fluctuations, and the plastic

strain ability becomes relative poor. In the SOC state, the

strong interaction between shear bands can initiate numerous

weak shear bands, leading to a high density of shear bands.

The amplitude of stress fluctuation in the serrated flow is

therefore reduced, and the dynamic system of the plastic de-

formation is insensitive to the stress perturbation, leading to

a large strain ability.

The experimental results provide a solid evidence to sup-

port the dynamic and statistical analysis. Low temperatures

freeze the atomic motion of the metallic glass, resulting in

more atom participation in deformation units (STZs). This

significantly promotes the size and the activation energy

required of STZs, which is shown to correspond to higher

stress concentrations, thus increasing the quantity (density) of

the shear bands. As a result, the interactions between elastic

strain fields of neighbouring shear bands are enhanced by the

decreased interval space of the shear bands, which promote

localized yielding. It will further initiate shear bands in a

smaller length scale. The formation of shear bands at different

length scales is associated with the hierarchical shear band

structure, which is a key factor generating the characteristic

transition from chaotic behaviour at high temperatures to

SOC behaviour at very low temperatures. With the under-

standing of the mechanism of the dynamics transition, it may

be able to characterize the elastic energy dissipation more

accurately during the intermittent plastic deformation and

provide a practicable method to enhance the malleable ability

of metallic glasses from the viewpoint of elastic energy accu-

mulation and relaxation.
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