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An Efficient Computational Scheme for the
Two-Dimensional Overcomplete Wavelet Transform
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Abstract—We have studied the computational complexity asso-
ciated with the overcomplete wavelet transform for the commonly
used Spline wavelet family. By deriving general expressions for the
computational complexity using the conventional filtering imple-
mentation, we show that the inverse transform is significantly more
costly in computation than the forward transform. To reduce this
computational complexity, we propose a new spatial implementa-
tion based on the exploitation of the correlation between the low-
pass and the bandpass outputs that is inherent in the overcomplete
representation. Both theoretical studies and experimental findings
show that the proposed spatial implementation can greatly sim-
plify the computations associated with the inverse transform. In
particular, the complexity of the inverse transform using the pro-
posed implementation can be reduced to slightly less than that of
the forward transform using the conventional filtering implemen-
tation. We also demonstrate that the proposed scheme allows the
use of an arbitrary boundary extension method while maintaining
the ease of the inverse transform.

Index Terms—Computational complexity, over-complete
wavelets, spatial implementation, wavelet transform.

I. INTRODUCTION

POINTS of sharp variation such as edges and discontinu-
ities in multiple scales are usually one of the most im-

portant features for analyzing properties associated with sig-
nals and images. It was conjectured that the basic representa-
tion (the primal raw sketch) furnished by the retinal system is
a succession of contour sketches at scales that are in geometric
progression [1]. The wavelet transform modulus maxima rep-
resentation proposed by Mallat [2] provides such a multiscale
contour representation of an image. This representation is ob-
tained by retaining the local maxima of the continuous dyadic
wavelet transform. It has been shown that the wavelet transform
modulus maxima correspond to locations of discontinuities in
an image. It thus provides a compact but meaningful descrip-
tion of an image. This representation has been used in various
applications, including the image compression [3]–[5], edge and
discontinuity characterization [6]–[10], contrast enhancement
of medical images [11], artifact removal for image restoration
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[12], [13], texture characterization [14], and object recognition
[15], [16].

Despite its ability to provide a meaningful representation, the
main concern with the overcomplete representation is its com-
putational complexity. Unlike the subsampling wavelet, where
the computational time decreases with the number of decompo-
sition levels [17], [18], the computational time increases linearly
with the number of decomposition levels in the overcomplete
case [19], [20]. Therefore, computational complexity becomes
a major issue in its practical implementation. In addition, it is
generally conceived that the inverse wavelet transform is com-
putationally more expensive than the forward wavelet transform
since the reconstruction filters are always longer than the for-
ward filters in the Spline wavelet family [2]–[5].

In this paper, we provide an analysis of the computational
complexity for the Spline wavelet family with an arbitrary order

and find that it is significantly higher for the inverse trans-
form compared with the forward transform. In fact, it asymp-
totically approaches five times for a large. In order to reduce
the computations, we use the fact that the overcomplete wavelet
transform provides a redundant representation of an image. This
implies that a correlation exists between the lowpass and the
bandpass outputs at a number of scales. Indeed, this correla-
tion information has been explored in many applications ranging
from discontinuity-preserving surface reconstruction, contrast
enhancement, and denoising to artifact removal [6]–[14]. We
propose to study the correlation between the lowpass and the
bandpass outputs to reduce the computations, especially for the
inverse transform.

By studying this correlation, a new spatial interpretation for
the overcomplete wavelet transform is obtained, which greatly
reduces the computational complexity associated with the in-
verse transform. In fact, the complexity of the inverse transform
using the proposed spatial implementation turns out to be even
slightly less than that of the forward transform using the fil-
tering implementation. Besides the reduction in the computa-
tional complexity, this spatial interpretation provides us with a
flexible and straightforward way of dealing with the boundary
extension problem. Unlike the conventional filtering approach
implementation, any boundary extension scheme can be used
in the spatial implementation without complicating the inverse
transform.

This paper is organized as follows. Section II describes the
overcomplete wavelet transform. The computational complexi-
ties for both the forward and the inverse transforms are derived.
The correlation between the lowpass and the bandpass outputs
is then studied in Section III. By exploiting this correlation, an
efficient spatial implementation structure is found. An analysis
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Fig. 1. jth-level forward overcomplete wavelet transform withJ = 2 .

of its computational complexity is also described in Section III.
Section IV provides the design examples for commonly used
low-order Spline wavelets using the new spatial implementa-
tion scheme. An analysis of the computational complexity as-
sociated with these low-order Spline wavelets is also provided.

Sections II–IV provide a theoretical analysis of both the con-
ventional filtering implementation and the proposed spatial im-
plementation. Section V consists of an experimental analysis of
these two approaches. In particular, we compare their compu-
tational times using software implementations. Section VI then
concludes the paper.

II. OVERCOMPLETEWAVELET REPRESENTATION

An overcomplete wavelet representation for an image is ob-
tained by applying filters to both the horizontal and the vertical
directions [2]–[6]. There are three outputs from a single-level
decomposition: the lowpass approximation of the original image
and two bandpass outputs. One bandpass output shows the hor-
izontal edges, whereas the other shows the vertical edges in the
image. Mathematically, the lowpass output is given by

(1)

The two bandpass outputs are written, respectively, as

(2)

(3)

where , , and denote, respectively, the
one–dimensional (1-D) lowpass filter, the 1-D bandpass filter,
and the original image. Fig. 1 shows ath-level forward
overcomplete wavelet transform. It can be seen that the lowpass
and the bandpass filters are applied separately to the horizontal
and the vertical directions. The lowpass output is obtained
by applying the 1-D lowpass filter in both the horizontal and
the vertical directions. The bandpass outputs are obtained by
applying the bandpass filter in either the horizontal or the
vertical directions. This is different from the subsampling
scheme in which each subimage is associated with filters in
both the horizontal and the vertical directions.

The th-level inverse overcomplete wavelet transform is
shown in Fig. 2. The original signal is reconstructed by

(4)

where is the time reverse of , and and are
the bandpass reconstruction filters. Similar to the forward trans-
form, the inverse filter is applied separately to the horizontal and
the vertical directions. By substituting (1)–(3) to (4), the perfect
reconstruction constraint can be found as

(5)

Equation (5) is a necessary and sufficient condition for perfect
reconstruction. There is considerable freedom in choosing these
four filters when the orthogonal, the biorthogonal, and the sub-
sampling requirements are dropped from the filter design.

Mallat and Zhong have constructed the wavelet function in
such a way that it is the derivative of a smoothing function
[2]. The local extrema of the resultant wavelet representation
then characterizes the multiscale edges in the image. This rep-
resentation allows the processing and manipulation of images
with edge-based algorithms. Examples include the edge-based
image coding, discontinuity-preserving surface reconstruction,
contrast enhancement for medical images, and structural-based
texture characterization [3], [6]–[14]. The set of wavelet func-
tions is commonly known as the Spline wavelet family. The 1-D
lowpass and bandpass filters for orderare written, respec-
tively, as

(6)

and (7)

Using the perfect reconstruction constraint from the 1-D frame-
work [2], [22], the reconstruction filter can be expressed
as

(8)
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Fig. 2. jth-level inverse overcomplete wavelet transform withJ = 2 .

Substituting (8) to the perfect reconstruction constraint in (5),
the expression for can be obtained. For completeness, its
expression is summarized as in Lemma 1.

Lemma 1: To achieve perfect reconstruction, it is required
that

Proof: Substituting (8) into (5), it can be seen that

(9)

Rearranging (9), we obtain

(10)

As outlined by an anonymous reviewer, there are three possible
cases for (10) to be satisfied.

Case 1)

This is not possible since is not an allpass
function.

Case 2)

This will give the desired form for .
Case 3) Assume that

and ; then, it
follows that

where

and

for some constants. This suggests that

and

Letting , the requirement becomes ,
which is impossible. Therefore

and

which completes the proof.
By using Lemma 1 and (6), can be expanded as

(11)

Upon comparing the forward and the inverse filters shown in
(6)–(8) and (11), it can be seen that the number of filter coef-
ficients for is always two, regardless of the order of the
Spline wavelet. The numbers of filter coefficients for ,

, and are , , and , respectively.
As the inverse filters are significantly longer than the forward
filters, the computational complexity associated with the in-
verse transform would be much higher than that associated with
the forward transform. A detailed analysis of the computational
complexity is carried out in Sections II-A and B.

A. Filter Complexity

In order to study the computational complexity associated
with the Spline wavelet, we need to expand the filters expres-
sions and find out the numbers of additions and multiplications
involved. This complexity metric is of interest for both hard-
ware and software realizations. The form of given in (7)
is simple and requires only one addition and one multiplication.
Its complexity is thus given by

Complexity Cost Cost (12)
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where Cost and Cost define the cost for an addition
and a multiplication operations, respectively. The form of
shown in (6) is expanded using the Binomial theorem as

(13)

where

(14)

Equation (13) shows that the number of additions in is
and that the number of multiplications is , i.e.,

Complexity Cost Cost
(15)

In reconstruction, the complexities of , , and
need to be determined. is the time reverse of . Its
expression can be obtained from (13) simply by replacingwith

, i.e.,

(16)

Thus, the complexity of is the same as that of given
in (15). In calculating the complexity of , we expand the
summations in (8) and use the Binomial theorem [21] to obtain

(17)

where

(18)

and (19)

Equation (17) shows that the numbers of additions and multipli-
cations in are and , respectively, i.e.,

Complexity Cost

Cost (20)

By employing the Binomial theorem, an expression for can
be obtained by expanding (11) as

(21)

where

(22)

An analysis of (21) shows that the numbers of additions and
multiplications in are and , respectively, i.e.,

Complexity Cost Cost
(23)

B. Computational Complexity

A one-level forward transform involves filtering in both the
horizontal and the vertical directions (see Fig. 1). Substituting
the filter expression for in (13) to (1), the lowpass output

can be rewritten as

(24)

Two multiplications in and are merged into
one multiplication in (24); thus, the complexity of obtaining

equals to two times the complexity of minus
one multiplication, i.e.,

Complexity Cost

Cost (25)

The bandpass outputs can be found by substituting (7) with (2)
and (3)

(26)

(27)

The complexity in obtaining or is then
equal to the complexity in obtaining , i.e.,

Complexity Complexity

Cost Cost (28)

For the inverse transform, its complexity can be obtained
by considering the complexities of ,

and (see
Fig. 2). Using the filters expression in (17) and (21),

can be expanded as

(29)

The complexity of is thus equal to the
sum of the complexities in and , i.e.,

Complexity

Cost Cost (30)

The complexity of is also equal to the
sum of the complexities in and and is thus the same
as the complexity of , i.e.,

Complexity

Cost Cost (31)

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 5, 2008 at 23:45 from IEEE Xplore.  Restrictions apply.



2810 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 11, NOVEMBER 2002

Using (16), the expression for can be
written as

(32)

Two multiplications in and are combined
into one multiplication in (32); thus, the complexity of

is equal to two times the complexity in
minus one multiplication, i.e.,

Complexity

Cost Cost (33)

From the complexities expression in (25), (28), (30), (31), and
(33), we arrive at Theorem 1.

Theorem 1: A one-level overcomplete forward wavelet
transform obtained using the filtering approach as shown in
Fig. 1 has a complexity of

Complexity Forward Cost

Cost

The inverse transform using the filtering approach as shown in
Fig. 2 has a complexity of

Complexity Inverse Cost

cost

Proof: A one-level forward wavelet transform consists of
three outputs:

•
•
• .

The complexity of the forward wavelet transform can thus be
obtained by summing their complexities as shown in (25) and
(28). The operations in the inverse transform involve three parts:

• ;
• ;
• .

The inverse complexity is thus obtained by summing their
complexities shown in (30), (31), and (33). This completes the
proof.

As shown in Theorem 1, the inverse transform is significantly
more complex than the forward transform. The inverse trans-
form is nearly five times more complicated than the forward
transform in the wavelet transform. This is undesirable, and
we need to reduce the computational complexity in the inverse
transform.

III. PROPOSEDSPATIAL IMPLEMENTATION FOR THE

OVER-COMPLETE WAVELET REPRESENTATION

The overcomplete wavelet representation provides a redun-
dant representation of an image. There exists a correlation be-
tween the lowpass and the bandpass outputs at different scales.
Indeed, many applications, such as the discontinuity-preserving
surface reconstruction, contrast enhancement, and denoising,
have benefited from this correlation in solving their problems
[6]–[14]. We propose to study this correlation in the calculation
of the wavelet transform. This can provide an alternative im-
plementation structure that is able to reduce the computational
complexity associated with the inverse transform.

A. One Stage of Wavelet Transform

We consider a single stage of wavelet transform in this sub-
section. The first-level lowpass output is given in (24). We could
rewrite this equation using Lemma 2.

Lemma 2: The expression

(34)

can be rewritten as

where

(35)

and (36)

Proof: The proof starts by forming two recursion for-
mulae from (35)

(37)

and (38)

for an arbitrary integer . Expanding the summations in (34)
and using (37) and (38), we obtain

(39)
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As , (39) becomes

(40)

Upon expanding the summations in (40), it can be shown that

(41)

and (42)

Substituting (41) and (42) into (40) completes the proof.
Using Lemma 2, it can be seen that

(43)

Equation (43) implies that the transform is applied along
(the column) for every row of the image. Substituting (43) into
(24), we arrive at Theorem 2. This theorem provides an alterna-
tive method for the implementation of the overcomplete wavelet
transform.

Theorem 2: The first-level lowpass output of the overcom-
plete wavelet transform using the Spline wavelet family with an
arbitrary order can be rewritten as

where

(44)

and

(45)

Proof: The proof starts by substituting (43) into (24), i.e.,

(46)

Note that the last term in (46) can be expressed as

(47)

Substituting (47) to (46), the first-level lowpass output can be
expressed as
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(48)

which completes the proof.
Theorem 2 provides a way to relate the first-level lowpass

output with the original signal and the two bandpass outputs.
Employing the concept of filtering, Theorem 2 can be restated
as

(49)

For the Spline wavelet family, the filters , , and
can be written as

(50)

(51)

(52)

Since a separable wavelet scheme is used in the design, all fil-
ters are 1-D, as can be seen in (50)–(52). Note that all filters
including , , , and are FIR in struc-
ture. This implies that the proposed implementation in (49) or
in Theorem 2 will not produce errors or noise amplification and
is stable. In fact, (49) can be extended to other wavelet fami-
lies with different choices of , , and . To see
this, we could firstly look at the 1-D case due to the similarity
between the designs of the 1-D and the 2-D cases [such as (8)].
In the 1-D case, we have

(53)

where

(54)

(55)

Placing (54) and (55) in (53), it can be seen that

(56)

A stable implementation is obtained if is in FIR structure,
i.e.,

is divisible by (57)

In the 2-D case, we could consider [cf. (8)]

(58)

Placing (58), (56), and (1)–(3) in (49), it can be seen that

(59)

Since the design is separable, (59) implies that

(60)

(61)

Therefore, for any other choices of wavelets besides the Spline
wavelet family, the overcomplete wavelet representation with

and that satisfy (57) can be implemented using the
proposed spatial implementation as described in Theorem 2 or
in (49).

Theorem 2 not only provides an alternative implementation
scheme for the forward transform but also simplifies the compu-
tation for the inverse transform. In particular, the inverse trans-
form can be easily calculated as

(62)

The inverse transform is very similar to the forward transform
in Theorem 2. The proposed implementation scheme for both
the forward and the inverse transforms according to Theorem 2
and (62) is shown in Fig. 3. It can be seen that a simple spatial
implementation is used for image reconstruction. It greatly sim-
plifies the computation involved in the inverse transform.

B. Computational Complexity

In analyzing the computational complexity associated with
the proposed scheme, the complexities in and

given in (44) and (45) can be written
as

Complexity

Cost Cost (63)

Complexity

Cost Cost (64)

Using both (63) and (64), the complexities for the forward and
the inverse wavelet transforms can be defined as in Theorem 3.

Theorem 3: The overcomplete forward wavelet transform
using the proposed implementation scheme described in
Theorem 2 has a complexity of

Complexity Forward Cost

Cost

and the inverse transform has a complexity of

Complexity Inverse Cost

Cost

Proof: The forward transform has three outputs: the
two bandpass outputs and and the
lowpass output . The complexities for obtaining
the two bandpass outputs are given in (28). According to
the new implementation scheme in Theorem 2, the low-
pass output involves the calculation of and

. Its cost would include two
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Fig. 3. Proposed spatial domain 2-D overcomplete wavelet transform. (a) Forward transform. (b) Inverse transform.

additions: one multiplication and the complexities in ob-
taining and .
By summing up these complexities, the forward complexity
can be determined. In reconstruction, there is no need to
calculate or . Thus, the inverse com-
plexity would only involve two additions: one multiplication
and the complexities in obtaining and

In the filtering approach, the complexity of the forward
transform is much smaller than that of the inverse transform, as
shown in Theorem 1. In contrast, the complexity of the forward
transform is slightly higher than that of the inverse transform
in the proposed implementation scheme (Theorem 3). On
comparing the two approaches, we see that the complexity of
the forward transform of the proposed scheme is slightly higher
than that of the filtering approach. However, the complexity of
the inverse transform of the proposed scheme is much lower
than that of the filtering approach since no filtering is required
for the reconstruction of the original signal. Instead, a simple
spatial implementation is used for the reconstruction, and
therefore, its computational complexity is greatly reduced.
It can be seen that the inverse transform using our proposed
scheme is one multiplication less than the forward transform
in the filtering approach.

Besides a decrease in computational complexity of the
inverse transform, the proposed implementation handles the
boundary in a more flexible way than the filtering approach. As
images are of finite length, the boundary needs to be extended in
a practical implementation [23]. Under the filtering approach,
there are two common ways of dealing with the boundary
extension problem for perfect reconstruction: The image is
extended before filtering, or the boundary pixels are corrected
after the inverse transform. The former would increase the
computational time, especially for a large image, whereas
the latter involves the design of nontrivial filter-dependent
boundary correction rules for different boundary extension
methods. However, using our proposed implementation, it
can be seen that the prediction terms and

, remain the same in both forward

and inverse transforms. As the prediction terms are unchanged,
there is no need to do boundary correction after reconstruction.
Any boundary extension scheme can be used while maintaining
the ease of the inverse transform.

C. Multiple-Level Wavelet Decompositions

The correlation between the lowpass and the bandpass out-
puts is explored to provide an alternative implementation for
the first-level overcomplete wavelet transform. In this section,
we extend the proposed scheme to the multiple decomposition
framework. As in Fig. 1, the second-level wavelet transform in-
volves , , , and . The two bandpass
outputs and the lowpass output are written as

(65)

(66)

(67)

Let us first analyze the computational complexity involved in
calculating the second-level output compared with
the first-level output . Equation (65) can be rewritten
as

(68)

where and are, respectively,
the even and the odd parts of . As the length of
either or is only half of that
of , the total number of computations involved in
obtaining would be the same as that of .
In fact, for any arbitrary number of decomposition level

(69)

where

(70)
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An analysis of (69) shows that the number of computations
involved in obtaining remains the same as that of

. Using (66), a similar conclusion can be arrived
for . Therefore, the computational complexities of
the two bandpass outputs remain unchanged, regardless of the
number of decomposition levels.

The lowpass output in (67) can be obtained by
substituting (13) in (67) as

(71)

Upon comparing (67) and (24), it can be seen that both
expressions look very similar if is replaced by in (24).
The analysis in Theorem 2 can thus be extended to ob-
tain by replacing with ,

with , and with . This takes into
account the filter interpolation in the subsequent decomposition
levels. Mathematically, the second-level lowpass output can be
obtained as

where

and

Using this result, we arrive at the following theorem for any
arbitrary number of decompositions.

Theorem 4: For an overcomplete wavelet transform, the
th-level lowpass output can be written as

where

(72)

and

(73)

Proof: The proof relies on the fact that is replaced by
in the filter for the th decomposition level. The lowpass

output can be written as

(74)

Using Lemma 2, (74) can be rewritten as

(75)

Following the analysis in (47) and (48), we will arrive at the
expressions shown in (72) and (73).

Theorem 4 provides a general expression for the lowpass
output. By comparing Theorem 4 and Theorem 2, it can be seen
that the number of computations remains unchanged. Therefore,
the computational complexity of the lowpass output is indepen-
dent of the decomposition level. In summary, the computational
complexity of the proposed implementation remains the same
as in Theorem 3 for any arbitrary number of decompositions.
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TABLE I
FILTER COEFFICIENTS FOR THEQUADRATIC AND THE CUBIC SPLINE WAVELETS

IV. DESIGN EXAMPLES

The coefficients for some low-order wavelets in the Spline
family are tabulated in Table I. Note that the lengths of the re-
construction filters and are always larger than that
of and . Three examples are given. The first one is
the linear Spline. Substituting to (44) and (45), the new
implementation for the lowpass output becomes

By substituting to (44) and (45), the new implementation
for the quadratic Spline wavelet is

where

Similarly, by substituting to (44) and (45), the new im-
plementation for the cubic Spline wavelet becomes
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Fig. 4. Plots of (a) the number of additions and (b) the number of multiplications for different orders of Spline wavelet of the 2-D wavelet transform. The solid
line represents the filtering approach, and the dotted line represents the proposed approach.

where

The computational complexities for the linear , the
quadratic, and the cubic Spline wavelets are shown in Table III.
It can be seen that the saving in computation of the inverse trans-
form is significant. For the quadratic Spline wavelet, the number
of additions is reduced from 30 to eight, whereas the number
of multiplications is reduced from 15 to four. This corresponds
to a saving of 73.3% for both the additions and multiplications.
For the cubic Spline wavelet, the number of additions is reduced
from 50 to 12, whereas the number of multiplications is reduced
from 25 to six. This corresponds to a saving of 76.0% for both
the additions and multiplications. Fig. 4 shows a comparison
of the computational complexity between the filtering approach
and the proposed implementation for different orders of Spline
wavelets. It can be seen that the saving in computation asymp-
totically approaches five times for both the additions and multi-
plications.

V. EXPERIMENTAL RESULTS

The theoretical analysis of both the filtering approach and the
proposed implementation has been presented in Sections II–IV.
In this section, we will confirm the theoretical findings ex-
perimentally by running Visual C++ programs on a PII 333
MHz PC. The first case we considered is the linear Spline
wavelet with . Its filter coefficients are given in Table I,

TABLE II
COMPUTATIONAL COMPLEXITY OF THE QUADRATIC AND THE CUBIC SPLINE

WAVELETS OF TWO-DIMENSIONAL WAVELET TRANSFORM

Fig. 5. Plot of the computation times for different image sizes in a single
decomposition using the linear Spline wavelet.

whereas the numbers of additions and multiplications are
given in Table II. Fig. 5 shows a plot of the computation times
for the filtering approach and the proposed implementation
using different image sizes and by setting the decomposition
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Fig. 6. Plot of the computation times for different image sizes in a single
decomposition using the quadratic Spline wavelet.

level to one. The experimental results match very well with
the theoretical findings. The computation time for the inverse
transform that uses the filtering approach is much longer than
that used in our proposed implementation. The average time for
the computation required in a single pixel can be calculated as

Time
(76)

where Time, , and denote, respectively, the computation
time, the width, and the height of theth image. is the total
number of images in the test. This metric denotes the average
computation time required in a single pixel.

For the linear Spline wavelet with a single level of de-
composition, the average computation time of each of the
forward and the inverse transforms using the filtering approach
is 2.04 10 and 3.67 10 s, respectively. The average
computation time of each of the forward and the inverse
transforms using our proposed implementation is 2.1310
and 1.46 10 s, respectively. The forward transform using
our proposed implementation is slightly slower than that using
the filtering approach, whereas the inverse transform using
our proposed implementation is much faster. There is a 60.2%
speed up in the reconstruction.

Fig. 6 shows the computation times for the Quadratic Spline
wavelet. Similar to the linear Spline wavelet case in Fig. 5, the
inverse transform from our proposed implementation is much
faster than that from the filtering approach. Using the filtering
approach, the average computation time calculated according
to (76) for each of the forward and the inverse transforms is
4.05 10 and 9.03 10 , respectively. Using our proposed
implementation, the average computation time for each of the
forward and the inverse transforms becomes 3.5810 and
2.97 10 , respectively. We can see that there is a 67.1%
speedup in the reconstruction by using our proposed implemen-
tation. It is interesting to note that the forward transform using
our proposed implementation is slightly faster than that using
the filtering approach. Although the numbers of additions and
multiplications in our proposed implementation are larger than

Fig. 7. Plot of the computation times for different image sizes in a single
decomposition using the cubic Spline wavelet.

that in the filtering approach (Table II), there are other factors
that affect the computation time in the actual implementation.
In this case, the addressing in our proposed implementation is
slightly more efficient than that in the filtering approach. This
results in a faster execution time.

Another example shown is the cubic Spline wavelet. Fig. 7
shows the computation times of the filtering approach and our
proposed implementation. Consistent with the theoretical find-
ings, the inverse transform using our proposed implementation
is the fastest. The average computation time for each of the for-
ward and the inverse transforms using the filtering approach is
4.31 10 and 1.44 10 , respectively. The average com-
putation time for each of the forward and the inverse trans-
forms using our proposed implementation is 4.7810 and
3.77 10 , respectively. There is a 73.8% speedup in the in-
verse transform.

The previous results concern a single level of decomposition.
The theoretical findings stated in Theorems 1 and 3 concerning
the computational complexity of the filtering approach and our
proposed implementation have been confirmed experimentally.
The theoretical findings for multiple levels of decomposition are
presented next. Fig. 8 shows the computation times when the
decomposition level is increased to two and five for the linear
Spline case. Similar to the case of the single level of decom-
position, the inverse transform using our proposed implementa-
tion is the fastest. In addition, a linear performance is observed
from the result. Table III shows the average computation times
calculated from (76). It can be seen that for the forward and
the inverse transforms using either the filtering approach or our
proposed implementation, the computation times for anth level
of decomposition are approximately equal totimes that for a
single level of decomposition. This fits very well with our the-
oretical findings described in Section III-C.

VI. CONCLUSION

The computational complexity of the overcomplete wavelet
transform for the Spline wavelet family with an arbitrary order
is studied in this paper. By deriving general expressions for the
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Fig. 8. Plots of the computation times for different image sizes using the linear Spline wavelet for a (a) two and (b) five level of decompositions.

TABLE III
AVERAGE COMPUTATION TIMES FOR THELINEAR, THE QUADRATIC, AND THE CUBIC SPLINE WAVELETS

computational complexity using the conventional filtering im-
plementation, we found the inverse transform to be significantly
more complicated than the forward transform. In fact, it asymp-
totically approaches five times for a large filter order. In order to
reduce the computations, we propose a new spatial implemen-
tation based on the exploitation of the correlation between the
lowpass and the bandpass outputs inherent in the overcomplete
representation. Both theoretical studies and experimental find-
ings reveal that the new spatial implementation results in an ef-
ficient inverse structure. We also demonstrated that the compu-
tational complexity associated with the inverse transform using
the proposed spatial implementation is slightly more efficient
than the complexity associated with the forward transform using
the filtering approach. Furthermore, we showed that unlike the

conventional filtering implementation, the spatial implementa-
tion allows the use of an arbitrary boundary extension method
and requires no boundary correction.
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