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Abstract
Background: The DNA microarray technology allows the measurement of expression levels of
thousands of genes under tens/hundreds of different conditions. In microarray data, genes with
similar functions usually co-express under certain conditions only [1]. Thus, biclustering which
clusters genes and conditions simultaneously is preferred over the traditional clustering technique
in discovering these coherent genes. Various biclustering algorithms have been developed using
different bicluster formulations. Unfortunately, many useful formulations result in NP-complete
problems. In this article, we investigate an efficient method for identifying a popular type of
biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster
visualization and analysis.

Results: We develop a novel and efficient biclustering algorithm which can be regarded as a greedy
version of an existing algorithm known as pCluster algorithm. By relaxing the constraint in
homogeneity, the proposed algorithm has polynomial-time complexity in the worst case instead of
exponential-time complexity as in the pCluster algorithm. Experiments on artificial datasets verify
that our algorithm can identify both additive-related and multiplicative-related biclusters in the
presence of overlap and noise. Biologically significant biclusters have been validated on the yeast
cell-cycle expression dataset using Gene Ontology annotations. Comparative study shows that the
proposed approach outperforms several existing biclustering algorithms. We also provide an
interactive exploratory tool based on PC plot visualization for determining the parameters of our
biclustering algorithm.

Conclusion: We have proposed a novel biclustering algorithm which works with PC plots for an
interactive exploratory analysis of gene expression data. Experiments show that the biclustering
algorithm is efficient and is capable of detecting co-regulated genes. The interactive analysis enables
an optimum parameter determination in the biclustering algorithm so as to achieve the best result.
In future, we will modify the proposed algorithm for other bicluster models such as the coherent
evolution model.
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Background
Gene expression matrix
Data from microarray experiments [2,3] is frequently
given as a large matrix showing expression levels of genes
(rows) under different experimental conditions (col-
umns). The so-called gene expression data can thus be
written as a matrix of size m × n where m is the number of
genes and n is the number of experimental conditions.
Typically m is much greater than n. For example, (m, n) is
(6220, 15) and (4026, 47) respectively for the time series
yeast samples [4] and lymphoma specimens [5]. One of
the challenges in microarray data analysis is to identify
groupings of genes with similar behaviours/functions.
Several clustering algorithms have been applied to DNA
gene expression data to identify biologically relevant
groupings based on similarity in expression profiles [6-
10]. However, traditional clustering techniques are global
in nature in which the expression patterns are grouped
either along the entire row or along the entire column
[1,11]. This implies that one would find the grouping of
genes that would express similarly for all conditions, or
the groupings of conditions in which all genes exhibit
similar behaviour. However, in practice only a subset of
genes is highly correlated under a subset of conditions.
This requires simultaneous clustering along both the row
and column directions, and is often called biclustering
[11-16]. A bicluster often exhibit certain kinds of homo-
geneity, for example constant level of expression through-
out the whole bicluster (constant bicluster), constant level
of expression along either rows or columns (constant
rows and constant columns), and rows/columns that are
related by additions or multiplications [15], as shown in
Figure 1. We have recently shown that the different biclus-
ter patterns have a simple geometric interpretation as lin-
ear objects in a high dimensional feature space [14,15]. A

comprehensive survey on different biclustering algo-
rithms was given in references [11,13,16].

Parallel coordinate plots
The parallel coordinate (PC) technique is a powerful
method for visualizing and analyzing high-dimensional
data under a two-dimensional setting [17,18]. In this
technique, each dimension is represented as a vertical
axis, and then the N-dimensional axis is arranged in par-
allel to each other. By giving up the orthogonal represen-
tation, the number of dimensions that can be visualized is
not restricted to only two [19-21]. Studies have found that
geometric structure can still be preserved by the PC plot
despite that the orthogonal property is destroyed [17-21].
In gene expression matrix, each gene is represented by a
vector of conditions (i.e., row) and each condition is con-
sidered as a vector of genes (i.e., column). Since gene
expression data always involves a large number of genes as
well as a certain number of experimental conditions, the
PC technique is well suited to their analysis. Moreover,
visualization of gene expression data is an important
problem for biological knowledge discovery [22]. Thus,
the PC plots have been studied for gene expression data
visualization [23,24]. Further details about visualization
of biclusters using PC plots are provided in Additional file
1. In section "Method", a new greedy algorithm for biclus-
ter identification is presented. Meanwhile, an interactive
approach of parameter determination for the proposed
biclustering algorithm based on PC visualization is dis-
cussed.

Methods
Identification of biclusters from difference matrix
The biclusters given in Figure 1(A)–(D) can be described
by an additive model in which each pair of rows has the
same difference in all the related columns or each pair of
columns has the same difference in all the related rows.
Thus, a difference matrix, each column of which repre-
sents the column differences between a pair of columns in
a data matrix, provides useful information for identifica-
tion of additive-related biclusters. Consider the data in
Figure 2, there are two biclusters: the first one (shown in
blue color) is a constant bicluster while the second one
(shown in yellow color) is an additive-related bicluster. As
the rows in a bicluster is supposed to correlate in a subset
of columns, the column difference between every two col-
umns is computed so as to identify this column subset.
There are altogether 6(6-1)/2 = 15 permutations as shown
in the difference matrix in Figure 3. In the difference
matrix, we can find special features that are related to the
biclusters. For example, consider column "C5-C3". There
are only three distinct difference values: 0 (5 counts), 1 (1
count), 2 (5 counts). This suggests the existence of three
biclusters formed between "C5" and "C3":

Examples of different biclustersFigure 1
Examples of different biclusters. (A) A constant biclus-
ter. (B) A constant row bicluster. (C) A constant column 
bicluster. (D) An additive-related bicluster. (E) A multiplica-
tive-related bicluster. Note that Ci denotes the i-th experi-
mental condition.

(A) C1 C2 C3 (B) C1 C2 C3 (C) C1 C2 C3 

 5 5 5  25 25 25  25 7 16 

 5 5 5  7 7 7  25 7 16 

 5 5 5  16 16 16  25 7 16 

(D) C1 C2 C3 (E) C1 C2 C3 

 2 4 5  45 9 18 

 3 5 6  5 1 2 

 4 6 7  40 8 16 
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• the first bicluster is for rows R1, R3, R5, R9 and R11 in
which the difference between "C5" and "C3" is zero, i.e.,
a constant bicluster;

• the second bicluster is for rows R2, R4, R6, R8 and R10
in which the difference between "C5" and "C3" is two, i.e.,
an additive bicluster; and

• the third bicluster involves row R7 only, thus it is not
considered to be a valid bicluster.

Analyzing the distribution along the column direction in
the difference matrix thus helps to identify possible
biclusters. In the above example, we have two valid biclus-
ters. Thus, C3 and C5 are merged to form two groups as

shown in Figure 4. The analysis can be repeated for each
of these two groups to find out whether any other col-
umns can be merged to {C3, C5}, i.e., using either C3 or
C5 as a reference, we check whether C1, C2, C4 and C6
can be merged with {C3, C5}. In particular, if C3 is used
as a reference, two difference matrices as shown in Figure
5 can be obtained. Note that their difference values can be
read directly from the original difference matrix of Figure
3. By examining the first difference matrix in Figure 5, we
see that two paired columns, "C1-C3" and "C2-C3", show
a single bicluster with a difference value equals to zero.
This suggests that columns C1 and C2 can be merged to
{C3, C5} for rows R1, R3, R5, R9 and R11. The second dif-
ference matrix also has a single cluster with a difference
value equal to 1 at paired column "C6-C3". Therefore, C6
can be merged to {C3, C5} for rows R2, R4, R6, R8 and
R10. Thus by this repeated bicluster growing process –
expanding the column set and refining the row set, we can
identify possible biclusters embedded in the dataset. Also,
note that the difference matrix needs to be calculated only
once. This greatly reduces the computational complexity
of our algorithm.

Proposed algorithm for additive models
Additive-related biclusters can be found by progressively
merging columns through studying the data distribution
along each column in the difference matrix. If there is just
one bicluster between two columns in the gene expression
matrix, the distribution will have a single peak in one of
the columns of the difference matrix. Related rows for this
bicluster can then be identified. If there are multiple
biclusters formed between two columns in the gene
expression matrix, we can separate the rows into different
groups by examining the distribution in the correspond-
ing columns of the difference matrix. Therefore, by ana-
lyzing the distributions of difference values along
columns of the difference matrix, peaks that correspond
to different biclusters can be identified.

An example of gene expression matrix with two embedded biclustersFigure 2
An example of gene expression matrix with two 
embedded biclusters.

 C1 C2 C3 C4 C5 C6 

R1 1 1 1 5 1 0 

R2 1 3 2 2 4 3

R3 1 1 1 2 1 2 

R4 3 1 3 6 5 4

R5 1 1 1 0 1 3 

R6 2 3 3 1 5 4

R7 0 3 6 7 7 1 

R8 4 5 2 1 4 3

R9 1 1 1 3 1 3 

R10 6 0 1 6 3 2

R11 1 1 1 2 1 4 

The difference matrix for the dataset shown in Figure 2Figure 3
The difference matrix for the dataset shown in Figure 2.
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C1

C4-

C1
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C3-

C2
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C2

C5-

C2

C6-

C2

C4-

C3

C5-

C3

C6-

C3

C5-

C4

C6-

C4

C6-

C5

R1 0 0 4 0 -1 0 4 0 -1 4 0 -1 -4 -5 -1 

R2 2 1 1 3 2 -1 -1 1 0 0 2 1 2 1 -1 

R3 0 0 1 0 1 0 1 0 1 1 0 1 -1 0 1 

R4 -2 0 3 2 1 2 5 4 3 3 2 1 -1 -2 -1 

R5 0 0 -1 0 2 0 -1 0 2 -1 0 2 1 3 2 

R6 1 1 -1 3 2 0 -2 2 1 -2 2 1 4 3 -1 

R7 3 6 7 7 1 3 4 4 -2 1 1 -5 0 -6 -6 

R8 1 -2 -3 0 -1 -3 -4 -1 -2 -1 2 1 3 2 -1 

R9 0 0 2 0 2 0 2 0 2 2 0 2 -2 0 2 

R10 -6 -5 0 -3 -4 1 6 3 2 5 2 1 -3 -4 -1 

R11 0 0 1 0 3 0 1 0 3 1 0 3 -1 2 3 
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An overview of the procedure of our proposed bicluster-
ing algorithm is shown in the flow chart provided in Fig-
ure 6 while the details are described in the pseudo-code in
Figure 7. There are four parameters in our algorithm: noise
threshold ε, minimum number of rows Nr, minimum
number of columns Nc and maximum bicluster overlap in
percentage Po. The parameter ε specifies the noise toler-
ance as well as the homogeneity in the identified biclus-
ters. On the other hand, Nr and Nc set the lower bounds of
the number of rows and columns of the identified biclus-
ters respectively. Po determines the maximum degree of
overlap between identified biclusters. More specifically,
no overlap exceeding Po percentage in both the row and
column dimensions simultaneously is allowed. In this
paper, a bicluster with a subset of rows R and a subset of
columns C is denoted by (R, C). At the beginning, the
first-level difference matrix D1 is calculated for the input
expression matrix E as described in line 4 in Figure 7. Sup-
posed that E has size m rows by n columns. There is alto-
gether n(n - 1)/2 different number of permutations so the
size of D1 is m × n(n - 1)/2. In order to derive possible
biclusters, a simple clustering algorithm can be applied to
identify clusters for each column (lines 6–12). Let X = {x1,
x2,...,xN} be a set of N expression values. By comparing xi
with all values in X, a set of values Si similar to xi can be
found as follows,

Si = {a ∈ X :|xi - a| <ε} (1)

where i = 1, 2, ..., N. Also, the set of indices Qi associated
with the values in Si can be obtained. Qi can be expressed
by

Qi = {p ∈ {1, 2, ..., N}: xp ∈ Si} (2)

As an example, given that X = {1, 2, 9, 3} and ε = 2. S2 =
{1, 2, 3} and Q2 = {1, 2, 4}. A clustering algorithm based
on equation (1) would generate N clusters but these clus-
ters may be very close to each other and have large over-
lap. In order to reduce unnecessary clusters, we adopt a
two-step clustering approach presented in lines 56–84. In
addition to the definitions in (1) and (2), let us denote the
current collections of clusters and corresponding sets of
indices by S and Q, which are both set to be empty ini-
tially. In the first step (lines 58–75), for i = 1, 2, ..., N, xi
and its associated cluster Si are tested for the following
three conditions with each Sj ∈ S:

(1) |xi - | ≥ ε where  denotes the average operation of

a set.

(2) |Si| ≥ Nr, where |•| denotes the cardinality of a set.

S j •

The two different groups formed by merging columns "C5" and "C3"Figure 4
The two different groups formed by merging columns "C5" and "C3".

 {C3, C5} C1 C2 C4 C6   {C3, C5} C1 C2 C4 C6 
R1 {1, 1} 1 1 5 0  R2 {2, 4} 1 3 2 3 
R3 {1, 1} 1 1 2 2  R4 {3, 5} 3 1 6 4 
R5 {1, 1} 1 1 0 3  R6 {3, 5} 2 3 1 4 
R9 {1, 1} 1 1 3 3  R8 {2, 4} 4 5 1 3 
R11 {1, 1} 1 1 2 4  R10 {1, 3} 6 0 6 2 

The difference matrix for the two different groups formed by merging columns "C5" and "C3"Figure 5
The difference matrix for the two different groups formed by merging columns "C5" and "C3".

{C3, C5} C1-
C3

C2-
C3

C4-
C3

C6-
C3

  {C3, C5} C1-
C3

C2-
C3

C4-
C3

C6-
C3

R1 {1, 1} 0 0 4 -1  R2 {2, 4} -1 1 0 1 
R3 {1, 1} 0 0 1 1  R4 {3, 5} 0 -2 3 1 
R5 {1, 1} 0 0 -1 2  R6 {3, 5} -1 0 -2 1 
R9 {1, 1} 0 0 2 2  R8 {2, 4} 2 3 -1 1 
R11 {1, 1} 0 0 1 3  R10 {1, 3} 5 -1 5 1 
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The flow chart of the proposed biclustering algorithmFigure 6
The flow chart of the proposed biclustering algorithm.
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The pseudo-code of the proposed biclustering algorithmFigure 7
The pseudo-code of the proposed biclustering algorithm.

1: input: expression matrix E, noise threshold , minimum 

number of rows N , minimum number of columns N ,

maximum bicluster overlap in percentage 

2: output: a set of biclusters B 

3:  / 100 

4: 1D  difference matrix of E 

5: L1  {} 

6: for  each column vector d in D1 do

7:      determine the column pair ( , ) in E for d in D1

8:      ),( cluster(d, , N )

9:      for  each do

10:           ),(,11

11:      end for

12: end for

13: sort 1 such that 1  for )),(,( 21

     and  to form 21 2

14: B = {} 

15: for  1 to 2 do

16:      consider -th bicluster in 2 , )),(,( 21

17:      ValidFlag true

18:      for  each ),( do

19:           if 1  and 2  and 

            ),min( then

20:              ValidFlag false, break

21:           end if

22:      end for

23:      if ValidFlag = true then

24:           obtain the second-level difference matrix D2 with 

             respect to the first column  (excluding the 1

             difference for columns  and ) for rows in  1 2

             

25:      1  {} 

26:           for  each column vector d in D2 do

27:              determine the column  in E for d in D2

28:              ),( cluster(d, , N )

29:                for  each do

30:                     ,11

31:                end for

32:           end for

33:           sort 1 such that 1''  for ,( ''

              with  to form 1') 2' 2

34:           ,  { 1 , 2 }

35:           for  '  1 to 2 do

36:                consider ’-th object in 2 , ),( '''

37:                ''

38:                if N'  then

39:    ’,

40:      end if

41:           end for

42:           if N  then

43:                for  each do),(

44:                     if ),min(  and

                       ),min( then

45:                          ValidFlag false, break

46:                     end if

47:                end for

48:           else

49:                ValidFlag false

50:           end if
51:           if ValidFlag = true then

52:                )},{(

53:           end if

54:      end if

55: end for

56: procedure cluster( , , N )

57:       {},  {} 

58:      for  each do

59:           find  and 

60:           if  is empty then

61:                if N then

62:                     }{ , }{

63:                end if 

64:           else

65:                ValidFlag true

66:              for  each do

67:                     if  or N  or

                       then 

68:                          ValidFlag false, break

69:                     end if 

70:                end for  

71:                if ValidFlag = true then 

72:                     }{ , }{

73:                end if 

74:           end if

75:      end for

76:      ’  {}, ’  {} 

77:      for  each do

78:           find '  and '

79:           if N' then

80:                }'{'' , }'{''

81:           end if

82:      end for

83:      r eturn ( ’, ’)

84: end procedure

}{ '
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(3) .

If the above three conditions are satisfied for all Sj ∈ S, Si
and Qi are added to S and Q respectively. In the second
step (lines 76–82), the clusters are refined. Denote the sets
of output clusters and the corresponding indices by S' and
Q' respectively. First, S' and Q' are set to be empty. For
each Sj ∈ S, a new cluster S'j is derived as

The corresponding set of indices Q'j is given by

Q'j = {p ∈ {1, 2, ..., N}:xp ∈ S'j} (4)

S'j and Q'j are added to S' and Q' respectively if |Sj'| ≥ Nr.
For the first-level difference matrix D1, each Q'j contains
the row indices of the cluster S'j. Each column of D1 con-
sists of difference values between column i and j of the
original expression matrix. Define the collection of row
indices sets of the clusters to be Uij. After finding all Uij for
all distinct column pairs (i, j), the row indices set of the
clusters and their associated column pairs are collected to
form a list of possible biclusters L1 which can be expressed
by

L1 = {(Rij, (i, j)): Uij ≠ φ, Rij ∈ Uij, i = 1, 2, ..., n - 1 and j = i 
+ 1, i + 2,...,n} (5)

As one always tries to find the biggest bicluster, a sorting
is performed for the possible biclusters in L1 based on the
number of rows in line 13 so that a bicluster with the larg-
est number of rows can be processed first.

Starting from the biggest bicluster l1 in the sorted list of
possible biclusters L2, the second-level difference matrix
D2 is formed as in line 24 in which one of the bicluster col-
umns (column ck1 or ck2) is compared with all the remain-
ing columns on those chosen rows (e.g. difference
matrices illustrated in Figure 3). Note that the second-
level difference matrix D2 can be obtained directly from
the first-level difference matrix D1. Before D2 calculation,
early termination can be introduced as presented in lines
17–23 as an optional step. In the early termination, the
biclusters in L2 which significantly overlap with the iden-
tified biclusters are skipped as they are unlikely to derive
a well-distinguishable bicluster according to the given
parameter Po. Similar to the clustering done for D1, clus-
tering and sorting are performed for D2 as described in
lines 26–33. As a result, a list of possible column segments
H2 for growing the current bicluster is obtained. In lines
34–41, a possible bicluster (R, C) is constructed based on
the row intersection with each column segment in H2. Ini-
tially, (R, C) is set to be the current bicluster lk in L2. If the

size of the row set R does not fall below the user-defined
threshold Nr after the row intersects with a column seg-
ment, the column is included in C and R is updated. Oth-
erwise, the process is moved to the next column segments
until the last one is examined. Finally, the bicluster is val-
idated with respect to the given requirements in bicluster
size and degree of overlap as depicted in lines 42–50.
Only a valid bicluster is output (lines 51–53).

Relation to existing δ-pCluster approaches
The proposed algorithm identifies biclusters which are
homogeneous in each column pair. In this section, we
show that the biclusters can be expressed as δ-pClusters
[25]. Hence, any sub-matrix in an identified bicluster has
similar homogeneity to that bicluster and the problem of
outliers as in Cheng and Church algorithm [12] can be
avoided. Denote a bicluster with a subset of rows U and a
subset of columns V by B = (U, V). The bicluster B is a δ-
pCluster if for each 2 × 2 sub-matrix M, the following con-
dition holds

|aij - ain - (amj - amn)| ≤ δ (6)

where , aij denotes a value of the expres-

sion matrix at position (i, j), i, m ∈ U and j, n ∈ V. In our
algorithm, the clustering (the second step) performed in
the second-level difference matrix ensures that there exists

a column k ∈ V such that

|aij - aik -ljk| <ε for ∀j ∈ V and some constant Ijk

(7)

where ε is the noise threshold parameter of the proposed
algorithm. Hence, for any i, m ∈ U, we have

|aij - aik - (amj - amk)| = |aij - aik - ljk - (amj - amk - ljk)| ≤ |aij - aik 

- ljk| + |amj - amk - ljk| < 2ε (8)

where the last inequality follows from inequality (7). For
a column n ∈ V with n ≠ k, using inequality (8), it is shown
that

|aij - ain - (amj - amn)| =
|aij - aik - (amj - amk) + aik - ain - (amk - amn)| ≤

|aij - aik - (amj - amk)| + |(aik - ain) - (amk - amn)| < 4ε (9)

This means that the bicluster B is a δ-pCluster with δ = 4ε.
Although the biclusters identified by our algorithm are δ-
pClusters, it should be emphasized that our algorithm is
not designed specially for detecting δ-pClusters but rather
is based on the clustering results in the difference matrix.
Hence, there are some differences between our bicluster-

| |S Si j− ≥ ε

S a X a Sj j’ { : }= ∈ − < ε (3)

M
a a

a a
ij in

mj mn
=
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ing strategy and the other δ-pClusters algorithms like
pCluster algorithm [25] and S. Yoon et al. approach [13].
Specifically, our algorithm takes into account the cluster
density in which cluster centroids are considered. In con-
trast, the other two δ-pCluster based algorithms rely only
on the inter-distances between elements in the difference
matrix as defined by the inequality (6). This results in an
exponential-time complexity in the worst case. Our pro-
posed algorithm can be regarded as a greedy version of the
other two algorithms. In particular, for each column-pair
bicluster, our proposed algorithm derives a possible
bicluster by greedily finding a larger column set through
sequential intersection with other column-pair biclusters.
The large column-pair biclusters usually contain the
whole or a large part of the true gene set. On the other
hand, these simplifications significantly reduce the com-
plexity from exponential-time to polynomial-time.

Complexity estimation
In general, a biclustering problem is NP-complete [11].
However, we have adopted a simple clustering algorithm
and bicluster growing strategy to reduce the complexity.
Given a matrix of size m × n, the complexity of obtaining
the difference matrix is O(mn2). The simple clustering
algorithm applied on each column requires operations on
the order of O(m2) because it involves comparing the
value of each element with the others and the centroids of
the found clusters. In addition, the total number of clus-
ters found would not exceed m. Therefore, the complexity
in obtaining clusters in the difference matrix is O(m2n2)
and the number of clusters is at most mn(n-1)/2. The sort-
ing of the clusters requires a complexity of O(mn2 log
mn2). After that, each identified cluster is used as a seed to
construct a bicluster. In the biclusters growing process, a
seed is first checked if it has significant overlap with other
identified biclusters for early termination. The overlap-
ping in rows can be checked by sorting followed by ele-
ment-wise comparison. The complexity is thus O(mlogm).
For columns, as a seed has only two columns, the com-
plexity is O(n). Note that the number of identified biclus-
ters is bounded by the number of seeds. Thus, the
complexity for checking overlaps in all identified biclus-
ters is O(mn2 (n + m log m)). If the seed is valid, a sub-
matrix of the difference matrix is extracted as the second-
level difference matrix. This step requires no arithmetic
operations due to data reuse. Clustering and sorting pro-
cedure are then performed on this second-level difference
matrix. As the matrix has n-1 columns only, the clustering
and the sorting processes need operations on the order of
O(m2n) and O(mn log(mn)), respectively. Note that there
are at most (n-1)m clusters detected in the second-level
difference matrix. In the bicluster construction, row inter-
section is performed. In total, the complexity is O(m2n log
m). Finally, the new identified bicluster is validated (i.e.
filtered) with respect to the number of columns and

degree of overlap with other biclusters. The validation
requires an additional complexity of O(mn2 (m log m + n
log n)). Among the operations for obtaining each biclus-
ters from the first-level difference matrix, the validation
step dominates. So the entire processing for bicluster for-
mation from seeds is O(m2n4 (m log m + n log n)). Since
this cost dominates all other costs in previous steps, our
algorithm has a polynomial-time complexity of O(m2n4

(m log m + n log n)). The above estimation shows the
worst case complexity, in which the validation process
dominates. In practice, the number of biclusters is far less
than mn(n - 1)/2. Moreover, some of the validation steps
can be avoided through early termination of invalid
biclusters. Elimination of invalid biclusters reduces the
number of potential biclusters and this in turn reduces the
complexity inside the validation step.

Modification for multiplicative models
As seen in Figure 1(E), a multiplicative-related bicluster is
a bicluster in which any two rows are related by the same
ratio in all the related columns or any two columns are
related by the same ratio in all the related rows. In order
to modify the proposed framework for multiplicative
models, the difference matrix is replaced by a ratio matrix
which is in the form of ci/cj or cj/ci for all the n(n - 1)/2 dis-
tinct combinations between columns i and j where ck rep-
resents the values in the k-th column. In practice, we select
the column which has the largest average magnitude as
the denominator because quotient is sensitive to noise
when the divisor is small. Thus, the major change for
detecting multiplicative-related biclusters is to replace the
difference matrix by a ratio matrix. Note that the complex-
ity for multiplicative models is essentially the same as that
for additive models.

Interactive adjustment of noise threshold using PC plots
The setting of the noise threshold ε is important for the
proposed algorithm as it balances the homogeneity
requirement and the noise tolerance in the identified
biclusters. The noise threshold is determined through vis-
ual inspection of the homogeneity of the detected biclus-
ters in the PC plots [26]. The PC visualization for a data
matrix embedded with biclusters can be found in Addi-
tional file 1. Consider a noisy 100 × 10 dataset which con-
tains uniformly distributed values between -5 and 5
embedded with a 30 × 4 additive-related bicluster shown
in Figure 8. Furthermore, an additive Gaussian noise with
variance of 0.2, which was chosen empirically for clear
demonstration, was introduced. In this example, we var-
ied the values of the noise threshold ε while fixing the val-
ues of the minimum number of rows Nr, the minimum
number of columns Nc and the maximum overlap with
other biclusters Po to be 20, 4 and 20%, respectively. Fig-
ure 9 shows a bicluster found by our algorithm when ε is
set to 1.2. The four columns are found correctly, however,
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three rows are missed. Figure 9(A) shows the four col-
umns but with all the rows in the original data while Fig-
ure 9(B) shows the difference between the last three
columns with respect to the first column. Figures 9(C) and
9(D) illustrate the inconsistency between the identified
bicluster and the true bicluster using PC plots of expres-
sion values and difference values respectively in which the
three missed rows are displayed in blue. We can see that
these three rows are missed because the noise threshold is
not large enough. In practice, since we do not know the
bicluster in advance, we should adopt an exploratory
approach for setting the parameter ε. Start with the current
value of ε, we gradually increase ε while visualizing the
bicluster using the PC plot. Initially, we would see more
and more related rows being included into the bicluster.
Then, at some point, unrelated rows start to creep into the
bicluster. When this is observed in the PC plot, we stop
increasing the noise threshold. Using this procedure, we
found that when ε is set to 1.5, all the rows are correctly
detected. This example shows that the PC plot can be a
powerful visualization and interactive tool that allows us
to examine the biclusters found.

Results and Discussion
Evaluation methods
We analyze the performance of our algorithm on both
artificial datasets and a real dataset. For artificial datasets,
biclusters information is known in advance. So accuracy
in bicluster discovery can be measured using the overall
match score [16]. The overall match score of a set of
biclusters M1 with respect to another set of biclusters M2 is
defined as,

where  and  are gene and condi-

tion match scores respectively.  is calculated

as,

S M M S M M S M MU V
∗ ∗ ∗= ×( , ) ( , ) ( , )1 2 1 2 1 2

(10)

S M MU
∗ ( , )1 2 S M MV

∗ ( , )1 2

S M MU
∗ ( , )1 2

The PC plots of the bicluster identified using noise threshold of 1.2Figure 9
The PC plots of the bicluster identified using noise 
threshold of 1.2. The expression values of all rows in the 
four related columns and their difference between the last 
three columns and the first column are drawn using PC plots 
in Figures (A) and (B) respectively. In Figures (A) and (B), red 
color shows rows from the identified bicluster while blue 
color shows rows from the original dataset. Figures (C) and 
(D) illustrate the inconsistencies between the identified 
bicluster and the true bicluster in the four related columns 
and the column differences respectively. In Figures (C) and 
(D), the red color indicates rows of the true bicluster that 
are found by our algorithm while the blue color represents 
the three missed rows of the true bicluster.

(A) 

(B) 

    

(C) 

(D) 

      

The PC plot of the true additive-related biclusterFigure 8
The PC plot of the true additive-related bicluster.
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where a bicluster with a subset of genes Ui and a subset of

conditions Vi is denoted by (Ui, Vi).  is

defined similarly with U replaced by V. Let M be the set of
detected biclusters and Mt be the set of true biclusters

embedded in the artificial expression dataset. The overall
match score S*(M, Mt) quantifies the average relevance of

the detected biclusters to the true biclusters. Conversely,
S*(Mt, M) measures the average recovery of the true

biclusters in the detected biclusters. To unify the two
measures into a single quantity for evaluation, their aver-
age is computed as the biclustering accuracy.

The performance of the proposed algorithm for artificial
datasets has been compared with two existing algorithms
with the additive model assumption, namely the Cheng
and Church (C&C) algorithm [12] and the pCluster algo-
rithm [25]. We considered the biclustering accuracy
together with other measures such as number of biclus-
ters, bicluster size and processing time. The programs for
both algorithms are publicly available [27,28]. The pro-
posed algorithm was implemented in a C MEX-file and
ran in Matlab 6.5. All the experiments were conducted on
the Window XP platform in a computer with 2.4 GHz
Intel Pentium 4 CPU and 512 MB RAM. In identification
of multiplicative-related biclusters, since C&C algorithm
and the pCluster algorithm are designed for additive mod-
els, logarithm operation was applied to the expression
data so that the multiplicative models become additive
models. For comparison, we also applied the proposed
algorithm for additive models to the logarithm values.
Henceforth, the proposed algorithm for additive models
and multiplicative models will be referred to as PA and
PM respectively while the proposed algorithm for additive
models with the logarithm operation as pre-processing
will be referred to as PAL.

The evaluation on real datasets was performed on three
aspects: biological, homogeneity and statistical assess-
ment. In the biological assessment, we used the Gene
Ontology (GO) annotations [29] to determine the func-
tional enrichment of biclusters. The measure was the per-
centage of overrepresented biclusters in one or more GO
annotation. A bicluster is said to be overrepresented in a
functional category if it gives a small p-value. Given that a
bicluster B with k genes is identified in a gene expression
matrix with a gene set S of size N. For a functional category
with C genes in S, the bicluster B possesses r genes. The p-

value is defined as the probability of choosing k genes
from S with r genes in that category [30], i.e.,

In other words, the p-value is the probability of including
genes of a given category in a cluster by chance. Thus, the
overrepresented bicluster is a cluster of genes which is very
unlikely to be obtained randomly. The annotations con-
sist of three ontologies, namely biological process, cellular
component and molecular function.

For the homogeneity aspect, mean squared residue score
(MSRS) [12] and average correlation value (ACV) [31]
were computed. For an m × n bicluster, the MSRS is
defined as

where aij is the value of the bicluster at position (i, j), 

is the average of the i-th row,  is the average of the j-th

column and  is the overall average. ACV is defined by

where c_rowij is the correlation coefficient between rows i
and j and c_colpq is the correlation coefficient between col-
umns p and q. ACV is applicable to additive models as well
as multiplicative models but the MSRS is valid only for
additive models. In order to measure homogeneity of
multiplicative-related biclusters, logarithm was applied
onto the expression values before calculating MSRS values
so that a multiplicative-related bicluster can be formu-
lated using an additive model. In order to avoid confu-
sion, the MSRS for the logarithm of expression values is
denoted by MSRSl. A bicluster with high homogeneity in
expression levels should have a low MSRS/MSRSl value
but a high ACV value. The minimum value of MSRS/
MSRSl is zero while ACV has a maximum value of one.

The statistical properties of the biclustering results refer to
quantities including the number of discovered biclusters
and the bicluster size. Comparative studies were per-
formed in the three aspects with several existing bicluster-
ing algorithms such as C&C, iterative signature algorithm
(ISA) [32,33], order-preserving submatrix (OPSM)
approach [1] and xMotifs [34], which are available in
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[27]. In addition, the computational complexity of the
proposed algorithm and other approaches is estimated
using processing time as done for the artificial datasets.
Despite the dependence of factors such as programming
language and parameter settings, a rough comparison in
complexity can still be achieved.

Datasets
Two types of artificial datasets were considered, one for
the additive models and the other for the multiplicative
models. The first type of dataset TD1 had a size of 200
rows by 40 columns. Uniformly distributed random val-
ues were first generated. Then four biclusters were embed-
ded. Their details are as follows:

• bicluster A is a constant row bicluster of size 40 × 7;

• bicluster B is a constant row bicluster of size 25 × 10;

• bicluster C is a constant column bicluster of size 35 × 8;
and

• bicluster D has coherent values related by additions of
size 40 × 8.

Biclusters A and B have two columns in common but in
different rows; bicluster B overlaps with bicluster C in five
rows and three columns; biclusters C and D have one col-
umn in common but in different rows. Finally, Gaussian
noise with different standard deviation (s.d.) was added
to the dataset. At each non-zero noise level, five expres-
sion matrices were generated. Figure 10 shows the dataset
TD1 with 4 embedded biclusters before noise was added.

The second type of dataset TD2 consists of 60 × 15 posi-
tive values embedded with two 25 × 7 multiplicative-
related biclusters. The two biclusters overlap in two col-
umns. A positive-biased Gaussian noise was added to the
dataset so that all the values in the resultant datasets
remained positive. The positive-valued dataset was essen-
tial for Cheng and Church algorithm, the pCluster algo-
rithm and our proposed algorithm for the additive
models PAL due to the use of the logarithm operation. It
should be noted that the proposed algorithm for multipli-
cative-related biclusters PM can be applied on datasets
with negative values because no logarithm operation is
needed. Figure 11 shows the dataset TD2 with two embed-
ded multiplicative biclusters before noise was added.
These two artificial datasets allowed us to test the perform-
ance of our algorithm in realistic situations as real expres-
sion data often involves various types of biclusters with
overlaps (i.e. regulatory complexity) and noise.

The real dataset used was the yeast Saccharomyces cerevi-
siae cell cycle dataset as used in [12], which contains 2884

genes and 17 conditions. The non-missing values were all
non-negative. As multiplicative models were also investi-
gated, those zero non-missing values were set to some
small positive values. The missing values were filled with
positive uniformly distributed random values to mini-
mize the influence to our analysis.

Performance on artificial datasets
For the artificial datasets with additive-related biclusters,
biclusters with rows and columns more than or equal to
21 and 5 respectively were identified. It was further
required that any detected bicluster cannot have more
than 50% overlap with another bicluster simultaneously
in the row and column dimensions. Since the Cheng and
Church (C&C) algorithm and the pCluster algorithm can-
not be directly configured to discover biclusters with all
the given requirements, a post-filtering procedure was
adopted to eliminate those invalid biclusters. The post-fil-
tering parameters are provided in Table 1 together with
the parameters of the biclustering algorithms. Note that
parameters for noise tolerance (ε/δ) were determined for
optimal performance under different noise levels. The
biclustering accuracies are plotted against various noise
levels in Figure 12. As can be seen, the proposed algorithm
always has higher biclustering accuracy than C&C and the
pCluster algorithm. For the expression dataset with noise
of standard deviation at or below 0.1, we detect the four
embedded biclusters perfectly. The pCluster algorithm did
not attain perfect discovery even in the noise-free case
because more than one maximal δ-pCluster (defined by
equation (6)) exists for one or more column pair due to
column overlap between some biclusters in the datasets
[35]. In more noisy case such as when the noise s.d. is 0.5,
the biclustering accuracy of our algorithm still has a high
value of 0.89. In contrast, the accuracies of C&C and the
pCluster algorithm are 0.70 and 0.26 respectively.

Statistical properties of the biclustering results before fil-
tering are given in Table 2. Unlike the pCluster algorithm,
the number of biclusters identified by the proposed algo-
rithm is insensitive to noise level. On average, there were
6.6 biclusters identified at the highest noise level which
was close to the true number 4. For the pCluster algo-
rithm, a large number of biclusters with high overlap were
detected under noisy situation. The post-filtering proce-
dure was therefore necessary for the pCluster algorithm to
extract the significant biclusters. The number of biclusters
identified by C&C was 40 which is the same as that speci-
fied in its parameter setting. In fact, this parameter setting
was necessary to acquire high biclustering accuracy. With
respect to the biclusters size, the proposed algorithm
shows the closest agreement to those embedded in the
datasets. The average numbers of rows and columns in the
biclustering results are always around 34 and 7.8 respec-
tively while the actual average numbers of rows and col-
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umns are 35 and 8.25 respectively. The pCluster
algorithm also produced good results. C&C gave the worst
performance as it does not allow any constraints to be
imposed on the biclusters dimensions. Therefore, the
post-filtering procedure is essential for C&C to find the
embedded biclusters.

For the datasets with two multiplicative-related biclusters,
a bicluster was considered to be valid if its size is no
smaller than 18 and 4 in row and column dimensions
respectively and the overlap with other valid biclusters is
less than or equal to 25%. The settings for the biclustering
algorithms and the post-filtering procedure are also
included in Table 1. The biclustering accuracies of the pro-
posed algorithms PAL and PM, together with C&C and the
pCluster algorithm (applied on log values) at various
noise levels is shown in Figure 13. At all the noise levels,
our two proposed algorithms outperform C&C and the
pCluster algorithm. Both PAL and PM can exactly detect
the true biclusters in the noise-free case while the other
two algorithms fail to do so. In particular, the failure of
perfect discovery in the pCluster algorithm can be attrib-
uted to the column overlap in the datasets. The perform-
ance of PM is slightly better than that of PAL in general.
The biclustering accuracy decreases when the noise level
increases except in the case of C&C when noise level
changes from 0.4 to 0.5. It was probably because outlier is
less likely to be included in biclusters at high noise levels.
In terms of the statistical properties given in Table 3, the
two proposed algorithms exhibit closest match to the true
embedded biclusters, with PM performs slightly better
than PAL. Similar to the case of the additive models, the
proposed algorithms can return more reasonable number
of biclusters with similar dimensions to those embedded
than the other two algorithms without any post-filtering
procedure.

In order to justify the efficiency of our proposed algo-
rithms, processing time for the artificial datasets with

The second type of dataset with two multiplicative-related biclusters before noise is addedFigure 11
The second type of dataset with two multiplicative-
related biclusters before noise is added.

Table 1: Parameter settings for biclustering algorithms and post-filtering in the experiments on artificial datasets

Experiment Algorithm/post-filtering Parameter settings*

Artificial datasets for additive models PA ε = 0.5 – 2.0, Nr = 21, Nc = 5, Po = 50
C&C δ = 0.04 – 0.5, α = 1.2, M = 40
pCluster δ = 0.5 – 1.0, Nr = 21, Nc = 5
Post-filtering Nr = 21, Nc = 5, Po = 50 and M = 10

Artificial datasets for multiplicative models PM ε = 0.2 – 0.6, Nr = 18, Nc = 4, Po = 25
PAL ε = 0.4 – 1.0, Nr = 18, Nc = 4, Po = 25
C&C δ = 0.04 – 0.5, α = 1.2, M = 20
pCluster δ = 0.5 – 1.0, Nr = 18, Nc = 4
Post-filtering Nr = 18, Nc = 4, Po = 25 and M = 5

* The definitions of parameters ε, Nr, Nc and Po follow those defined for the proposed algorithm, i.e. noise threshold, minimum number of rows, 
minimum number of columns and maximum percentage in overlap allowed in biclusters respectively. Furthermore, M denotes the maximum 
number of biclusters required and δ of C&C and the pCluster algorithm is defined as in the original publications [12, 25].
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noise s.d. of 0.3 was measured and provided in Table 4.
The proposed algorithm PA required an average of 3.8 sec
for the artificial datasets with additive-related biclusters.
This showed substantial improvement over the pCluster
algorithm which needed 2716 sec to finish. The reduction
in computational complexity is achieved by the bicluster
growing strategy in which similar patterns in column-pair
are combined to form biclusters through row intersection.
The proposed algorithm is also more efficient than C&C
by a factor of 4.5. For datasets embedded with multiplica-
tive-related biclusters, the matrices sizes are smaller than
those used for additive-model experiments so less
processing time was obtained in all the algorithms. How-
ever, it can be seen that the proposed approach PM has the
lowest computational complexity. The average processing

time was 0.0232, 1 and 105.2 sec for PM, C&C and the
pCluster algorithm respectively. In conclusion, the results
on artificial datasets demonstrate that our proposed algo-
rithms have high accuracy in detecting additive-related
and multiplicative-related biclusters, even in the presence
of overlap and noise contamination. The computational
complexity of the proposed algorithms is lower than sev-
eral biclustering algorithms with similar model assump-
tion.

Performance on a real dataset
Experiments have been conducted on the yeast cell cycle
dataset using the proposed algorithms and Cheng and
Church (C&C) algorithm [12], iterative signature algo-
rithm (ISA) [32,33], order-preserving submatrix (OPSM)
approach [1] and xMotifs [34]. Post-filtering was applied
to the biclustering results in order to eliminate insignifi-
cant biclusters as well as impose common constraints for
comparison. The parameter settings of various algorithms
and post-filtering are provided in Table 5. These values
were selected based on the guideline in [16] and our
experimental work. The functional enrichment was stud-
ied over a number of upper bounds on p-value, p0 and
illustrated in Figure 14. Compared with C&C which pos-
sesses the same model assumption as the proposed algo-
rithm for additive model (PA), higher percentage of
functionally-enriched biclusters were identified by the
proposed algorithm at p0 ≥ 5 × 10-4, 1 × 10-2 and 5 × 10-3

in the biological process, cellular component and molec-
ular function ontologies respectively. In particular, at p0 =
1 × 10-2, the percentage of functionally-enriched biclusters
found by PA is 96.0%, 88.0% and 80.0% which corre-
spond to an improvement of 18.6%, 13.8% and 9.0% to
C&C in the biological process, cellular component and
molecular function ontologies, respectively. At the lowest
value of p0 = 1 × 10-5, our proposed algorithm PA outper-
forms C&C in the cellular component ontology but not in

Biclustering accuracy against noise level for additive modelsFigure 12
Biclustering accuracy against noise level for additive 
models. The biclustering accuracies of the proposed algo-
rithm, Cheng and Church algorithm and pCluster algorithm 
are represented by the curves 'Proposed', 'C&C' and 'pClus-
ter' respectively.
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Table 2: Statistical properties of biclustering results for the artificial datasets embedded with additive-related biclusters before post-
filtering

Property Algorithm Noise s.d.

0 0.1 0.2 0.3 0.4 0.5

Average number of biclusters PA 4 4 4 4.4 5.8 6.6
C&C 40 40 40 40 40 40
pCluster 23 366.6 378.2 255.6 124.2 21.40

Average number of rows PA 35 35 34.85 33.67 31.87 32.25
C&C 7.625 7.640 8.025 7.980 8.265 7.895
pCluster 25.57 23.14 23.28 22.98 22.69 21.74

Average number of columns PA 8.250 8.250 8.250 7.480 7.262 7.228
C&C 3.725 4.500 4.915 4.765 5.070 5.280
pCluster 5.217 5.224 5.115 4.873 4.468 4.237
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the other two ontologies. However, the reduction in the
percentage of functionally-enriched biclusters is less than
7.5% in the biological process ontology and 2.5% in the
molecular function ontology, which is relatively small
compared with the improvement at the large values of p0.
The homogeneous analysis provided in Table 6 shows
that the biclusters identified by PA are more homogene-
ous than C&C with the average MSRS lower by 142.4 and
the average ACV higher by 0.0199. From the statistical
results in Table 7, it can be found that PA can also avoid
identification of very large bicluster as is in the case of

C&C. The largest bicluster size found using PA is 597 × 17
while that found using C&C is 1391 × 17.

When multiplicative model is concerned, i.e. the pro-
posed algorithm for multiplicative model (PM) and C&C
applied on log value (C&C (log)), the functional enrich-
ment drops in general. At first glance, PM gives poorer per-
formance in term of functional enrichment. Nonetheless,
if the number of identified biclusters is also considered,
PM actually outperforms C&C (log) by identifying more
significant biclusters. The total number of biclusters iden-
tified by PM was 59 but CC only found 5 biclusters. In
addition, the biclusters identified by PM exhibit higher
homogeneity. The average values of MSRSl and ACV are
9.573 × 10-3 and 0.9219 for PM respectively. In compari-
son, the average values of MSRSl and ACV are 6.262 × 10-
2 and 0.5740 for the C&C (log) respectively.

In addition to C&C based algorithms, Figure 14 shows the
comparative results of ISA, OPSM and xMotifs for differ-
ent values of p0. Although OPSM shows high percentage
of functionally-enriched biclusters at large values of p0,
there are only two biclusters found which are far from
expectation. Thus, the proposed algorithms actually iden-
tify more functionally-enriched biclusters. Also, the per-
centage of functionally-enriched biclusters of OPSM
drops to zero at low values of p0. At low values of p0, the
results of ISA are the best in most cases. For p0 ≥ 5 × 10-4,
the performance of the proposed algorithm PA, however,
is close to or even better than that of ISA. For both OPSM
and ISA, the identified biclusters are less homogeneous in
terms of average MSRS and ACV because their bicluster
models are different from those studied in this paper. PA
and PM show better performance than xMotifs in the per-
centage of functionally-enriched biclusters despite that
our algorithms have lower average value of ACV. The rea-

Biclustering accuracy against noise level for multiplicative modelsFigure 13
Biclustering accuracy against noise level for multipli-
cative models. The biclustering accuracy of the proposed 
algorithms for multiplicative models is denoted by 'PM' while 
the proposed algorithms for additive models, Cheng and 
Church algorithm and pCluster algorithm on logarithm of 
expression data are labelled by 'PAL', 'C&C (log)' and 'pClus-
ter (log)' respectively.
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Table 3: Statistical properties of biclustering results for the artificial datasets embedded with multiplicative-related biclusters before 
post-filtering

Property Algorithm Noise s.d.

0 0.1 0.2 0.3 0.4 0.5

Average number of biclusters PM 2 2 2.2 3 2.4 2.6
PAL 2 2 2.2 3.2 3 3.6
C&C 20 20 20 20 20 20
pCluster 1109 956.4 855.8 753.4 658.8 729.2

Average number of Rows PM 25 24.80 24.17 23.72 20.20 23.40
PAL 25 23.70 21 20.10 19.52 19.72
C&C 5.850 5.560 6.900 8.820 8.270 6.940
pCluster 19.94 19.93 19.87 19.75 19.71 19.66

Average number of columns PM 7 7 6.367 6.400 5.900 5.933
PAL 7 7 6.433 5.517 5.567 5.417
C&C 4.300 3.870 5.020 5.660 5.570 5.110
pCluster 4.346 4.345 4.297 4.224 4.178 4.158
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son is that xMotifs is designed to find biclusters with
coherent state in each gene, which is only a subclass of
additive models. The homogeneity analysis suggests that
the difference in biological relevance of identified biclus-
ters between various algorithms such as the proposed
algorithm PA and ISA is not merely due to implementa-
tion architecture but also due to the model assumption.

In addition to the identification of biologically-significant
biclusters, the efficiency of the proposed algorithm is jus-
tified by the processing time provided in Table 8. PA and
PM require 0.72 and 1.35 sec respectively to finish. The
results are the best and show improvement by a factor of
at least 23.7 compared with the others. This implies that
our algorithms have low computational complexity.

Details of annotation results of the proposed algorithms
PA and PM are shown in Tables 9, 10, 11 and Tables 12,
13, 14 at p-value < 0.001 respectively. In these tables, Bon-
ferroni correction of p-value which adjusts the probability
of random annotation for multiple tests [30] is provided.
Consideration of the corrected p-value is important when
multiple terms are tested for annotation in a single biclus-
ter. The 4-th additive-related bicluster identified by PA has
the lowest p-value in all the three ontologies. For the bio-
logical process ontology, 69 out of 201 genes are assigned
to category "translation" at p-value of 6.92 × 10-44. The
annotation is also significant after multiple test correction
as it has a low corrected p-value of 8.51 × 10-42. For the cel-
lular component ontology, 33 out of 201 genes are anno-

tated with category "cytosolic small ribosomal subunit
(sensu Eukaryota)" at p-value of 7.45 × 10-29 (corrected p-
value of 5.29 × 10-27). For the molecular function ontol-
ogy, 66 out 201 genes are associated with category "struc-
tural constituent of ribosome" at p-value of 7.61 × 10-47

(corrected p-value of 3.96 × 10-45). For the multiplicative
model, the 24-th bicluster found by PM exhibits the low-
est p-value in all the three ontologies. In fact, there are 141
genes shared between the biclusters with the lowest p-
value identified by PA and PM, which correspond to
70.15% of genes in the bicluster identified by PA. As a
result, the 24-th bicluster identified by PM are annotated
with the similar categories as the 4-th bicluster found by
PA in all the three ontologies. The annotations are also
overrepresented in the bicluster as found in the experi-
ments using PA except that the cellular component cate-
gory with the lowest p-value is "cytosolic large ribosomal
subunit (sensu Eukaryota)". The p-values are 6.16 × 10-69,
1.11 × 10-45 and 3.69 × 10-75 (corrected p-values of 7.51 ×
10-67, 7.07 × 10-44 and 1.88 × 10-73) while out of 225 genes
there are 91, 46 and 88 genes annotated in the biological
process, cellular component and molecular function cate-
gories respectively.

The experiments on the real dataset show that our pro-
posed algorithms PA and PM can identify biclusters with
high biological relevance efficiently. Furthermore, PA can
always give a reasonable number of biclusters, and with a
good degree of homogeneity. Although GO annotation
only provides descriptions currently known in the biolog-

Table 4: Average processing time for the artificial datasets

Dataset Artificial datasets for additive models with noise s.d. of 0.3 Artificial datasets for multiplicative models with noise s.d. of 0.3

Algorithm PA C&C pCluster PM C&C (log) pCluster (log)

Average time (sec) 3.776 17 2716 0.0232 1 105.2

Table 5: Parameter settings of algorithms and post-processing investigated in experiments based on the yeast dataset

Algorithm/post-filtering Parameter settings*

PA ε = 60, Nr = 10, Nc = 5, Po = 20
PM ε = 0.2, Nr = 10, Nc = 5, Po = 20
C&C δ = 100, α = 1.2, M = 100
C&C (log) δ = 0.25, α = 1.2, M = 100
ISA tg = 2, tc = 1.0, number of initial sets = 500
OPSM l = 100
xMotifs ns = 10, nd = 1000, sd = 4, p-value = 10-10, α = 0.29, max. number of expression values = 50
Filtering Nr = 10, Nc = 5, Po = 20

* The definitions of parameters ε, Nr, Nc, Po and M follow those defined in the experiments on artificial datasets. The other parameters in C&C, ISA, 
OPSM and xMotifs are as defined in their original publications [1, 12, 32-34].
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ical community, the results still give a reasonable indica-
tion of performance. Furthermore, the biclusters which
have no GO terms assigned should be investigated for any
new biological discoveries.

Determination of biclusters homogeneity
In previous experiments, the homogeneity parameter, i.e.
noise threshold ε of our algorithms is determined empir-
ically. In fact, the aforementioned exploratory approach
based on the PC plots can be employed to determine this
parameter in an interactive manner for a given dataset.
This exploratory approach uses an assumption that the
homogeneity decreases monotonically with ε while the
biclustering accuracy is a concave function of ε. To see
this, we apply the proposed algorithm for additive models
to artificial datasets with noise s.d. of 0.3 over a wide
range of ε. Figure 15 shows the graphs of biclustering
accuracy and ACV against ε. The biclustering accuracy first
rises rapidly to its maximum value when ε changes from
0.5 to 1. The biclustering accuracy then decreases slightly
until ε becomes 1.75. A steeper drop is found when ε is
larger than 1.75. In other words, the biclustering accuracy
is approximately concave with respect to ε. On the other
hand, when ε increases, the average ACV of detected
biclusters decreases as expected. From the graph, it can be
observed that the ACV decreases faster when ε exceeds

1.25. Meanwhile, the biclustering accuracy remains high
for ε between 1 and 1.25. These observations support the
use of the interactive approach for parameter determina-
tion.

Conclusion
In this paper, a novel biclustering algorithm for additive
models is proposed. First, we performed analysis on the
difference matrix computed from a gene expression
matrix. It was shown that the column-wise differences of
an additive-related bicluster appear as clusters in each cor-
responding column in the difference matrix. Similarly,
clusters can be found from the column-wise ratios calcu-
lated from multiplicative-related biclusters. These obser-
vations were then explored to construct biclusters greedily
from the clustering results in column-wise differences or
ratios in the proposed algorithms.

The proposed algorithms have been analyzed by compar-
ing with pCluster algorithm. The results suggest that the
proposed algorithms can be regarded as a greedy version
of the pCluster algorithm. The biclusters found by the pro-
posed algorithms can be expressed as δ-pClusters but clus-
tering density is utilized in pattern discovery. Although
the identified δ-pClusters is not guaranteed to be maxi-
mal, the proposed algorithm is much more efficient.

Table 6: Homogeneity comparison of biclusters identified in the yeast cell-cycle dataset using various algorithms

Algorithm MSRS/MSRSl* ACV

min mean max min mean max

PA 326.0 412.1 552.7 0.8960 0.9416 0.9755
PM 3.694 × 10-4 9.573 × 10-3 3.809 × 10-2 0.7493 0.9219 1

C&C 439.6 554.5 593.3 0.6481 0.9217 0.9768
C&C (log) 2.784 × 10-2 6.262 × 10-2 8.451 × 10-2 0.3489 0.5740 0.9000

ISA 108.9 489.6 794.6 0.8420 0.9247 0.9588
OPSM 480.4 497.1 513.8 0.8866 0.8904 0.8941
xMotifs 1.910 × 10-12 4.820 12.04 0.9982 0.9992 1

* MSRS is evaluated for all the algorithms except PM and C&C (log) which use MSRSl.

Table 7: Statistical comparison of biclusters identified in the yeast cell-cycle dataset using various algorithms

Algorithm no. of biclusters size* no. of genes no. of conditions

min max min mean max min mean max

PA 25 10 × 5 597 × 17 10 97.64 597 5 13.16 17
PM 59 10 × 6 518 × 17 10 46.09 518 5 9.085 17

C&C 31 10 × 5 1391 × 17 10 91.74 1391 5 11.6 17
C&C (log) 5 12 × 13 2270 × 17 12 486.2 2270 13 14.80 17

ISA 18 28 × 5 149 × 6 28 74.56 149 5 5.667 7
OPSM 2 132 × 7 469 × 5 132 300.5 469 5 6 7
xMotifs 13 11 × 5 115 × 5 11 40.08 115 5 5 5

* The size of a bicluster is determined by its number of values, i.e. product of numbers of rows and columns.
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Experiments showed that the computational time of the
proposed algorithms is lower than that of the pCluster
algorithm by a factor of hundreds or more. Moreover, we
have verified that the worst case complexity of the pro-
posed algorithms is polynomial-time instead of exponen-
tial-time as in the case of the pCluster algorithm or other
δ-pCluster based approaches.

The robustness of our algorithms to noise and regulatory
complexity has been verified empirically using artificial
datasets. It was found that our algorithm is capable of dis-
covering overlapping biclusters under noisy condition.
Biological significance of biclustering results has been ver-
ified on the yeast cell-cycle dataset using Gene Ontology
annotations. Comparative study shows that the proposed
algorithm is the best or close to be the best one among
several existing algorithms in terms of the percentage and
the number of functionally-enriched biclusters for p-val-
ues below a range of value from 5 × 10-3 to 5 × 10-2. In par-
ticular, there are 96.0%, 88.0% and 80.0% of the
biclusters annotated with p-value below 0.01. The pro-
posed algorithm can identify biclusters with less deviation
from the additive models. The identified biclusters also
have reasonable size ranged from 10 to 597 genes and 5
to 17 conditions. Comparison in processing time suggests
that the proposed algorithm has the highest efficiency.

In the proposed algorithm, the noise threshold is a crucial
parameter as it balances the homogeneity requirement
and the noise tolerance in the identified biclusters. In

order to determine an appropriate value for the noise
threshold, an exploratory approach based on the PC plots
is adopted. We believe that the proposed biclustering
algorithm and the interactive PC plots offer an effective
data analysis tool for gene expression data. In future, our
research will be focused on detecting bicluster types other
than additive or multiplicative models, e.g. biclusters of
coherent evolution.

Availability and requirements
Project home page: http://www.eie.polyu.edu.hk/~nflaw/
Biclustering/index.html.

Percentage of additive-related biclusters enriched with GO annotations of different ontologiesFigure 14
Percentage of additive-related biclusters enriched 
with GO annotations of different ontologies. (A) Bio-
logical process ontology. (B) Cellular component ontology. 
(C) Molecular function ontology.
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Biclustering accuracy (solid line) and the ACV (dashed line) against noise threshold εFigure 15
Biclustering accuracy (solid line) and the ACV 
(dashed line) against noise threshold ε.

Table 8: Processing time for the yeast cell-cycle expression dataset using various biclustering algorithms

Algorithm PA PM C&C C&C (log) ISA OPSM xMotifs

Processing time (sec) 0.72 1.35 32 1217 1590 38 937
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Table 9: Annotations of biological process ontology for biclusters identified by the proposed algorithm for additive models at p-value < 
0.001.

Bicluster
index

Annotation P-value Corrected
P-value

Genes

1 chromatin modification 3.84E-04 1.39E-01 YBR081C, YBR198C, YDR392W, YDR448W, YGL112C, YMR236W, 
YNL097C

histone acetylation 4.84E-04 1.76E-01 YBR081C, YBR198C, YDR392W, YDR448W, YFL039C, YGL112C, 
YJL081C, YMR236W, YNL136W

endocytosis 7.24E-04 2.63E-01 YBR109C, YCL034W, YDR388W, YDR490C, YER166W, YFL039C, 
YGL106W, YHR001W, YHR073W, YNL084C, YNL227C, YNL243W, 
YOR089C, YOR109W, YOR327C, YPL145C

2 aerobic respiration 2.47E-04 4.34E-02 YBR026C, YDL174C, YDR231C, YHR001W, YMR030W, YMR081C, 
YPL132W, YPL159C

3 ribosome biogenesis and 
assembly

2.75E-13 4.73E-11 YBL024W, YBR142W, YDL153C, YDL167C, YDR060W, YDR120C, 
YDR312W, YDR365C, YEL026W, YER082C, YGL099W, YGR162W, 
YGR245C, YJL033W, YJR002W, YJR066W, YLL008W, YLR175W, 
YLR401C, YNL110C, YNL132W, YNL175C, YOL077C, YOR145C, 
YOR272W, YPL126W

35S primary transcript 
processing

2.23E-06 3.84E-04 YCL031C, YDR339C, YER082C, YGR090W, YJL033W, YJR002W, 
YLL008W, YLR175W, YOR145C, YPR137W

4 ergosterol biosynthetic process 1.08E-04 1.33E-02 YLR450W, YML008C, YMR202W, YMR208W
translational elongation 1.87E-06 2.30E-04 YAL003W, YDL081C, YDR382W, YDR385W, YLR249W, YLR340W, 

YOL039W
regulation of translational 
fidelity

7.04E-07 8.67E-05 YBR048W, YDL229W, YDR025W, YGR118W, YNL209W, YPL081W

ribosomal small subunit 
assembly and maintenance

6.90E-05 8.49E-03 YBR048W, YDR025W, YDR447C, YGR214W, YLR048W, YLR167W

ribosomal large subunit 
assembly and maintenance

6.83E-06 8.40E-04 YBR142W, YDR312W, YLR075W, YLR340W, YLR448W, YML073C, 
YOL127W, YPR102C

translation 6.92E-44 8.51E-42 YBL072C, YBL092W, YBR048W, YBR268W, YDL061C, YDL075W, 
YDL081C, YDL082W, YDL083C, YDL136W, YDL191W, YDL229W, 
YDR012W, YDR025W, YDR064W, YDR382W, YDR447C, YDR450W, 
YDR471W, YDR500C, YER074W, YER117W, YER131W, YGR118W, 
YGR214W, YHL001W, YHR141C, YIL069C, YJL136C, YJL190C, YJR123W, 
YKL056C, YKL156W, YKR057W, YKR094C, YLR048W, YLR075W, 
YLR167W, YLR185W, YLR325C, YLR340W, YLR388W, YLR441C, 
YLR448W, YML026C, YML063W, YML073C, YMR143W, YMR242C, 
YNL067W, YNL096C, YNL162W, YNL209W, YNL301C, YNL302C, 
YNL306W, YOL039W, YOL040C, YOL127W, YOR167C, YOR234C, 
YOR293W, YOR312C, YOR369C, YPL081W, YPL090C, YPL143W, 
YPL198W, YPR102C

6 protein folding 3.15E-04 1.51E-02 YDR214W, YFL016C, YML130C, YNL007C, YOR027W
copper ion import 3.98E-04 1.91E-02 YLR411W, YPR124W

8 tricarboxylic acid cycle 8.65E-04 1.03E-01 YDR178W, YIL125W, YLL041C, YNL037C
mitochondrial electron 
transport, ubiquinol to 
cytochrome c

4.23E-04 5.04E-02 YEL024W, YHR001W, YOR065W

ubiquitin-dependent protein 
catabolic process

3.41E-04 4.05E-02 YBR173C, YDR394W, YJL001W, YMR119W, YOL038W

9 cytokinesis, contractile ring 
contraction

1.51E-04 3.17E-03 YBR038W, YHR023W

10 cell morphogenesis checkpoint 8.19E-04 7.37E-02 YJL187C, YKL101W
chitin biosynthetic process 8.19E-04 7.37E-02 YER096W, YNL233W
mitotic sister chromatid 
cohesion

6.67E-06 6.01E-04 YFL008W, YIL026C, YJL019W, YMR076C, YMR078C, YNL273W

14 glycolysis 4.18E-04 3.81E-02 YCL040W, YDR050C, YJR009C, YKL152C
ribosomal small subunit 
assembly and maintenance

9.27E-04 8.43E-02 YDR337W, YGR214W, YLR167W, YML024W

15 protein folding 4.54E-04 1.22E-02 YAL005C, YBR169C, YDR214W, YLR216C
19 tricarboxylic acid cycle 7.49E-05 2.55E-03 YDR148C, YLL041C, YNR001C
24 response to stress 3.45E-04 3.45E-03 YBR072W, YDR258C, YPL240C
25 SRP-dependent cotranslational 

protein targeting to membrane, 
translocation

4.27E-04 8.12E-03 YAL005C, YER103W

response to stress 6.85E-05 1.30E-03 YAL005C, YDR258C, YER103W, YPL240C
protein folding 5.73E-04 1.09E-02 YAL005C, YDR258C, YER103W
protein refolding 2.86E-04 5.43E-03 YAL005C, YPL240C
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Table 10: Annotations of cellular component ontology for biclusters identified by the proposed algorithm for additive models at p-
value < 0.001.

Bicluster index Annotation P-value Corrected P-value Genes

1 SLIK (SAGA-like) complex 4.45E-04 7.56E-02 YBR081C, YBR198C, YDR392W, YDR448W, YGL112C, 
YMR236W

transcription factor TFIID 
complex

4.45E-04 7.56E-02 YBR198C, YER148W, YGL112C, YML114C, YMR236W, 
YPL129W

INO80 complex 3.75E-04 6.38E-02 YDL002C, YFL039C, YJL081C, YLR052W, YPL129W
3 nucleolus 4.60E-14 4.28E-12 YAL059W, YBR142W, YCL031C, YCL054W, YDR312W, 

YDR339C, YDR365C, YDR378C, YEL026W, YEL055C, 
YGR090W, YGR159C, YJL033W, YJR002W, YLL008W, YLL034C, 
YLR175W, YML074C, YNL110C, YNL132W, YNL175C, 
YOL077C, YOL080C, YOR145C, YOR272W

small nucleolar 
ribonucleoprotein complex

2.46E-04 2.29E-02 YDL153C, YDR378C, YEL026W, YER082C, YGR090W, 
YJR002W, YPL126W, YPR137W

4 cytosolic large ribosomal 
subunit (sensu Eukaryota)

1.76E-23 1.25E-21 YBL092W, YDL075W, YDL081C, YDL082W, YDL136W, 
YDL191W, YDR012W, YDR382W, YDR471W, YDR500C, 
YER117W, YHL001W, YHR141C, YKR094C, YLR075W, 
YLR185W, YLR325C, YLR340W, YLR448W, YML073C, 
YMR242C, YNL067W, YNL162W, YNL301C, YOL039W, 
YOL127W, YOR234C, YOR312C, YPL143W, YPL198W, 
YPR102C

cytosolic small ribosomal 
subunit (sensu Eukaryota)

7.45E-29 5.29E-27 YBL072C, YBR048W, YDL061C, YDL083C, YDR025W, 
YDR064W, YDR447C, YDR450W, YER074W, YER131W, 
YGR118W, YGR214W, YIL069C, YJL136C, YJL190C, YJR123W, 
YKL156W, YKR057W, YLR048W, YLR167W, YLR388W, 
YLR441C, YML026C, YML063W, YMR143W, YNL096C, 
YNL302C, YOL040C, YOR167C, YOR293W, YOR369C, 
YPL081W, YPL090C

ribosome 2.87E-05 2.04E-03 YAL003W, YDR385W, YEL034W, YKL056C, YLR249W, 
YOL139C, YPR163C

5 chromatin remodeling 
complex

5.68E-04 3.12E-02 YJL176C, YOR290C, YPL016W

8 mitochondrion 1.66E-08 1.11E-06 YBL015W, YBL090W, YBR003W, YBR037C, YBR120C, 
YBR122C, YBR147W, YCR028C, YDL027C, YDR141C, 
YDR178W, YDR305C, YDR316W, YDR494W, YDR513W, 
YEL006W, YEL024W, YER141W, YGL229C, YGR207C, 
YGR243W, YHR001W, YHR147C, YIL111W, YIL125W, YJL131C, 
YJL171C, YKL087C, YLL041C, YLR168C, YLR395C, YML120C, 
YMR145C, YMR167W, YNL037C, YNL073W, YOL038W, 
YOL059W, YOL096C, YOR065W, YOR317W, YOR356W, 
YOR386W, YPL005W, YPL029W, YPL103C

respiratory chain complex 
III (sensu Eukaryota)

4.23E-04 2.84E-02 YEL024W, YHR001W, YOR065W

endosome 9.02E-05 6.04E-03 YAL030W, YDL113C, YJL053W, YLR119W, YLR408C, 
YNR006W, YOR036W

9 bud neck 1.42E-06 2.27E-05 YBR038W, YGR092W, YHR023W, YIL106W, YLR190W, 
YOL070C

10 bud neck 7.51E-04 3.68E-02 YDR507C, YGR152C, YGR238C, YIL140W, YJL187C, YKL101W, 
YNL233W

septin ring 9.01E-05 4.42E-03 YIL140W, YKL101W, YNL233W
14 lipid particle 5.85E-05 2.93E-03 YIL124W, YJR009C, YMR110C, YNL231C, YOR317W
17 mitochondrion 8.16E-06 2.86E-04 YCL057W, YDL027C, YDL164C, YDR116C, YDR194C, 

YDR375C, YDR513W, YGL104C, YHR002W, YHR067W, 
YHR147C, YIL087C, YIL111W, YJL063C, YLL040C, YLR270W, 
YLR346C, YMR098C, YMR152W, YMR188C, YNL063W, 
YNL073W, YNL200C, YNL274C, YOL059W, YOL071W, 
YOR136W, YPR011C

18 bud neck contractile ring 6.08E-05 1.58E-03 YHR023W, YJR092W, YMR032W
pre-autophagosomal 
structure

6.62E-04 1.72E-02 YBL078C, YDL113C

20 nuclear cohesin complex 3.74E-04 5.24E-03 YDL003W, YIL026C
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Table 11: Annotations of molecular function ontology for biclusters identified by the proposed algorithm for additive models at p-value 
< 0.001.

Bicluster index Annotation P-value Corrected P-value Genes

1 endopeptidase activity 7.71E-05 1.26E-02 YBL041W, YDR394W, YER012W, YJL001W, 
YOL038W, YOR362C

3 ATP-dependent RNA helicase activity 5.10E-04 3.57E-02 YBR142W, YER172C, YJL033W, YLL008W, YMR080C

snoRNA binding 7.57E-04 5.30E-02 YDL153C, YER082C, YGR090W, YPL126W, 
YPR137W

4 structural constituent of ribosome 7.61E-47 3.96E-45 YBL072C, YBL092W, YBR048W, YBR268W, 
YDL061C, YDL075W, YDL081C, YDL082W, 
YDL083C, YDL136W, YDL191W, YDR012W, 
YDR025W, YDR064W, YDR382W, YDR447C, 
YDR450W, YDR471W, YDR500C, YER074W, 
YER117W, YER131W, YGR118W, YGR214W, 
YHL001W, YHR141C, YIL069C, YJL136C, YJL190C, 
YJR123W, YKL156W, YKR057W, YKR094C, 
YLR048W, YLR075W, YLR167W, YLR185W, 
YLR325C, YLR340W, YLR388W, YLR441C, 
YLR448W, YML026C, YML063W, YML073C, 
YMR143W, YMR242C, YNL067W, YNL096C, 
YNL162W, YNL301C, YNL302C, YNL306W, 
YOL039W, YOL040C, YOL127W, YOR167C, 
YOR234C, YOR293W, YOR312C, YOR369C, 
YPL081W, YPL090C, YPL143W, YPL198W, YPR102C

RNA-directed DNA polymerase activity 9.72E-04 5.05E-02 YAR009C, YJR027W, YML039W, YML045W, 
YMR045C, YMR050C

DNA helicase activity 5.11E-04 2.66E-02 YDR545W, YLR467W, YNL339C, YPL283C, 
YPR204W

ribonuclease activity 9.72E-04 5.05E-02 YAR009C, YJR027W, YML039W, YML045W, 
YMR045C, YMR050C

RNA binding 3.10E-05 1.61E-03 YAR009C, YDL208W, YDR378C, YDR381W, 
YEL026W, YHL001W, YJR027W, YLR277C, 
YLR448W, YML039W, YML045W, YML073C, 
YMR045C, YMR050C, YNL175C, YOL123W, 
YOL127W

helicase activity 2.93E-05 1.53E-03 YEL077C, YJL225C, YLL066C, YLL067C, YML133C

6 copper uptake transporter activity 3.98E-04 1.11E-02 YLR411W, YPR124W

17 glycerol-3-phosphate dehydrogenase 
(NAD+) activity

8.19E-04 2.95E-02 YDL022W, YOL059W

18 spermidine transporter activity 1.12E-04 2.24E-03 YLL028W, YOR273C

spermine transporter activity 6.62E-04 1.32E-02 YLL028W, YOR273C

24 unfolded protein binding 1.05E-04 4.19E-04 YBR072W, YDR258C, YPL240C

25 unfolded protein binding 1.38E-05 8.29E-05 YAL005C, YDR258C, YER103W, YPL240C

ATPase activity 9.71E-04 5.82E-03 YAL005C, YDR258C, YER103W
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Table 12: Annotations of biological process ontology for biclusters identified by the proposed algorithm for multiplicative models at p-
value < 0.001.

Bicluster index Annotation P-value Corrected P-value Genes

1 ribosomal large subunit biogenesis and assembly 5.83E-06 1.97E-03 YAL025C, YBR267W, YDR091C, YNL110C, 
YNL163C, YOR272W, YPL211W

tRNA methylation 1.94E-04 6.55E-02 YBL024W, YBR061C, YDR165W, YNR046W, 
YOL093W, YOL124C

processing of 20S pre-rRNA 1.80E-05 6.05E-03 YDL153C, YDL166C, YDR449C, YEL026W, 
YJL191W, YJR002W, YLR068W, YLR192C, 
YLR222C, YML093W, YMR093W, YOR056C, 
YPR137W

transcription from RNA polymerase III 
promoter

1.02E-04 3.45E-02 YBR154C, YDL150W, YDR045C, YER148W, 
YLR223C, YNL113W, YNR003C, YOR224C

35S primary transcript processing 6.37E-06 2.15E-03 YBL004W, YCL031C, YCL059C, YDR339C, 
YGR090W, YJR002W, YKR060W, YLL008W, 
YLR051C, YLR186W, YLR430W, YNR038W, 
YOL021C, YOR145C, YPR112C, YPR137W

transcription from RNA polymerase I promoter 9.82E-04 3.31E-01 YBL014C, YBR154C, YDR156W, YER148W, 
YNL113W, YOR224C, YOR341W

rRNA processing 5.33E-04 1.80E-01 YBR142W, YBR257W, YCL059C, YDR365C, 
YDR478W, YGR159C, YLR223C, YMR049C, 
YMR290C, YOL144W, YOR145C, YPL211W

ribosome biogenesis and assembly 1.09E-15 3.66E-13 YAL025C, YBL024W, YBL054W, YBR034C, 
YBR084W, YBR142W, YBR267W, YCL059C, 
YDL153C, YDL167C, YDR060W, YDR165W, 
YDR300C, YDR312W, YDR365C, YDR449C, 
YDR465C, YEL026W, YHL039W, YJR002W, 
YJR066W, YKL143W, YKL191W, YKR056W, 
YKR060W, YLL008W, YLR186W, YML093W, 
YMR093W, YMR131C, YMR290C, YNL110C, 
YNL113W, YNL132W, YNL175C, YNR003C, 
YNR038W, YNR053C, YOL077C, YOL124C, 
YOL144W, YOR056C, YOR145C, YOR206W, 
YOR272W, YPL211W, YPL212C, YPL226W

mRNA export from nucleus 3.51E-04 1.18E-01 YBR034C, YDL116W, YDR432W, YER107C, 
YJL140W, YKL057C, YKL068W, YKR002W, 
YKR095W, YMR308C, YOR098C

5 nucleotide-excision repair 1.88E-04 1.97E-02 YBR088C, YDL164C, YJL173C, YNL312W

DNA recombination 1.47E-05 1.54E-03 YDL164C, YJL173C, YML061C, YNL312W

DNA replication, synthesis of RNA primer 6.91E-05 7.25E-03 YJL173C, YKL045W, YNL312W

double-strand break repair via homologous 
recombination

8.96E-04 9.41E-02 YER147C, YJL173C, YNL312W

7 arabinose catabolic process 3.55E-04 1.03E-02 YHR104W, YOR120W

D-xylose catabolic process 3.55E-04 1.03E-02 YHR104W, YOR120W

protein refolding 1.22E-05 3.55E-04 YBR169C, YLL026W, YPL240C

15 protein refolding 2.41E-06 6.74E-05 YAL005C, YBR169C, YPL240C

21 ribosome biogenesis and assembly 2.26E-04 1.26E-02 YAL025C, YBR238C, YBR267W, YDL031W, 
YDR083W, YDR184C, YIR026C, YKL078W

24 Glycolysis 3.40E-05 4.15E-03 YAL038W, YCR012W, YDR050C, YJR009C, 
YKL060C, YKL152C

translational elongation 4.41E-09 5.38E-07 YAL003W, YBR118W, YDL081C, YDL130W, 
YDR382W, YDR385W, YLR249W, YLR340W, 
YOL039W

regulation of translational fidelity 1.61E-08 1.97E-06 YBR048W, YBR189W, YDL229W, YDR025W, 
YGR118W, YNL209W, YPL081W

ribosomal small subunit assembly and 
maintenance

4.58E-07 5.59E-05 YBR048W, YCR031C, YDR025W, YDR447C, 
YGR214W, YLR048W, YLR167W, YML024W

ribosomal large subunit assembly and 
maintenance

1.58E-04 1.93E-02 YDR418W, YLR075W, YLR340W, YLR448W, 
YML073C, YOL127W, YPR102C
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translation 6.16E-69 7.51E-67 YBL027W, YBL038W, YBL072C, YBL092W, 
YBR031W, YBR048W, YBR181C, YBR189W, 
YBR191W, YCR031C, YDL061C, YDL075W, 
YDL081C, YDL082W, YDL083C, YDL130W, 
YDL136W, YDL191W, YDL229W, YDR012W, 
YDR025W, YDR064W, YDR382W, YDR418W, 
YDR447C, YDR450W, YDR471W, YDR500C, 
YER074W, YER102W, YER117W, YER131W, 
YGR118W, YGR214W, YHR141C, YIL069C, 
YJL136C, YJL177W, YJL189W, YJL190C, 
YJR123W, YJR145C, YKL006W, YKL056C, 
YKL156W, YKL180W, YKR057W, YKR094C, 
YLL045C, YLR029C, YLR048W, YLR075W, 
YLR167W, YLR185W, YLR325C, YLR333C, 
YLR340W, YLR344W, YLR388W, YLR406C, 
YLR441C, YLR448W, YML024W, YML026C, 
YML063W, YML073C, YMR121C, YMR143W, 
YMR194W, YMR230W, YMR242C, YNL067W, 
YNL096C, YNL162W, YNL209W, YNL301C, 
YNL302C, YOL039W, YOL040C, YOL127W, 
YOR167C, YOR234C, YOR293W, YOR312C, 
YOR369C, YPL081W, YPL090C, YPL143W, 
YPL198W, YPR043W, YPR102C

telomere maintenance via recombination 5.04E-04 6.14E-02 YDR545W, YER190W, YLR467W, YNL339C, 
YPL283C

31 nucleotide-excision repair 3.95E-04 2.05E-02 YAR007C, YDL164C, YNL312W

DNA recombination 6.57E-05 3.42E-03 YAR007C, YDL164C, YNL312W

DNA replication, synthesis of RNA primer 9.46E-04 4.92E-02 YAR007C, YNL312W

mitotic sister chromatid cohesion 6.18E-05 3.21E-03 YDL003W, YFL008W, YIL026C, YMR078C

DNA strand elongation during DNA 
replication

7.82E-07 4.06E-05 YAR007C, YKL108W, YLR103C, YNL312W

34 NADH oxidation 1.25E-05 9.00E-04 YBR145W, YML120C, YMR145C, YOL059W

35 transposition, RNA-mediated 3.41E-06 1.36E-04 YCL020W, YER160C, YJR026W, YJR028W, 
YML040W, YOR142W

36 glycine catabolic process 1.94E-05 9.31E-04 YAL044C, YDR019C, YMR189W

one-carbon compound metabolic process 4.79E-05 2.30E-03 YAL044C, YDR019C, YMR189W

41 karyogamy during conjugation with cellular 
fusion

4.10E-04 3.86E-02 YCL055W, YNL313C, YPL192C

ribosome biogenesis and assembly 2.32E-05 2.18E-03 YBR267W, YCR072C, YDL031W, YDR184C, 
YDR465C, YGL099W, YGR187C, YMR128W, 
YOL010W, YOR001W

35S primary transcript processing 4.81E-04 4.52E-02 YDL031W, YGR090W, YOL010W, YOL021C, 
YOR001W

50 pseudohyphal growth 9.72E-04 4.57E-02 YBR083W, YJL164C, YKL185W, YOR127W

N-terminal protein myristoylation 5.58E-04 2.62E-02 YIL009W, YOR317W

54 DNA unwinding during replication 6.79E-04 4.21E-02 YBR202W, YGL201C, YLR274W

DNA replication initiation 1.69E-04 1.05E-02 YBL035C, YBR202W, YGL201C, YLR274W

pheromone-dependent signal transduction 
during conjugation with cellular fusion

2.18E-04 1.35E-02 YHR005C, YJL157C, YNL173C, YOR127W

55 spore wall assembly (sensu Fungi) 7.33E-05 3.66E-03 YDR126W, YDR523C, YOR177C, YOR242C

56 meiotic mismatch repair 3.03E-05 1.48E-03 YDR097C, YNL082W, YOL090W

mismatch repair 6.19E-04 3.03E-02 YDR097C, YNL082W, YOL090W

microtubule nucleation 1.13E-04 5.52E-03 YDR356W, YKL042W, YOR373W, YPL124W

57 sulfate assimilation 1.76E-04 9.50E-03 YFR030W, YJR010W, YKR069W

microtubule nucleation 1.24E-04 6.67E-03 YBL063W, YMR117C, YOR373W, YPL124W

59 DNA replication checkpoint 5.86E-04 3.23E-02 YCL061C, YMR048W

Table 12: Annotations of biological process ontology for biclusters identified by the proposed algorithm for multiplicative models at p-
value < 0.001. (Continued)
Page 23 of 28
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:210 http://www.biomedcentral.com/1471-2105/9/210
Table 13: Annotations of cellular component ontology for biclusters identified by the proposed algorithm for multiplicative models at 
p-value < 0.001.

Bicluster 
index

Annotation P-value Corrected P-value Genes

1 DNA-directed RNA polymerase I complex 9.40E-04 1.50E-01 YBR154C, YDR156W, YNL113W, YOR224C, 
YOR341W

nucleoplasm 6.60E-04 1.06E-01 YAL059W, YDL051W, YKR002W, YKR095W, 
YNL175C, YNR053C

nucleolus 9.69E-17 1.55E-14 YAL025C, YAL059W, YBL004W, YBL026W, 
YBR142W, YCL031C, YCL054W, YCL059C, 
YDL051W, YDR299W, YDR312W, YDR339C, 
YDR365C, YDR378C, YEL026W, YGR090W, 
YGR159C, YJR002W, YKR060W, YLL008W, 
YLL034C, YLR051C, YLR068W, YLR186W, 
YLR223C, YMR049C, YMR131C, YMR233W, 
YMR269W, YMR290C, YNL110C, YNL132W, 
YNL147W, YNL175C, YNL299W, YNR038W, 
YNR046W, YNR053C, YOL041C, YOL077C, 
YOL144W, YOR145C, YOR272W, YPL211W, 
YPR112C

nucleus 1.60E-05 2.56E-03 YAL059W, YAR015W, YBL016W, YBL024W, 
YBL054W, YBL093C, YBR034C, YBR066C, 
YBR090C, YBR112C, YBR160W, YBR173C, 
YCL011C, YCL031C, YCL054W, YCR036W, 
YCR051W, YCR059C, YCR060W, YCR090C, 
YDL002C, YDL006W, YDL047W, YDL051W, 
YDL070W, YDL076C, YDL153C, YDL166C, 
YDR006C, YDR091C, YDR098C, YDR143C, 
YDR155C, YDR162C, YDR165W, YDR260C, 
YDR296W, YDR305C, YDR361C, YDR365C, 
YDR390C, YDR432W, YDR465C, YDR477W, 
YEL007W, YER012W, YER042W, YER148W, 
YGL130W, YGR090W, YGR159C, YGR200C, 
YJL140W, YJR002W, YJR017C, YJR105W, 
YKL143W, YKR060W, YKR072C, YKR079C, 
YKR096W, YLL034C, YLR007W, YLR039C, 
YLR051C, YLR052W, YLR068W, YLR107W, 
YLR186W, YLR223C, YLR262C, YLR265C, 
YLR327C, YLR384C, YLR420W, YLR430W, 
YML032C, YML053C, YML080W, YML081W, 
YML114C, YMR009W, YMR021C, YMR049C, 
YMR070W, YMR074C, YMR092C, YMR176W, 
YMR178W, YMR226C, YMR233W, YMR235C, 
YMR308C, YNL004W, YNL016W, YNL110C, 
YNL136W, YNL164C, YNL186W, YNL199C, 
YNL215W, YNL299W, YNR003C, YNR046W, 
YNR053C, YOL093W, YOL108C, YOL143C, 
YOR006C, YOR056C, YOR123C, YOR145C, 
YOR189W, YOR206W, YOR252W, YOR272W, 
YOR283W, YOR304W, YPL047W, YPL086C, 
YPL204W, YPL212C, YPL268W, YPR069C, 
YPR073C

small nucleolar ribonucleoprotein complex 1.97E-05 3.16E-03 YBL004W, YBL026W, YCL059C, YDL153C, 
YDR378C, YDR449C, YEL026W, YGR090W, 
YJL191W, YJR002W, YLR186W, YLR222C, 
YML093W, YMR093W, YNL147W, YPR137W

5 incipient bud site 4.75E-04 2.18E-02 YGR189C, YKR090W, YLL021W, YNL233W, 
YNL304W

nucleus 1.26E-05 5.80E-04 YBL046W, YBR073W, YBR088C, YCR065W, 
YDL006W, YDL103C, YDL164C, YDL197C, 
YER003C, YER152C, YGR042W, YKL045W, 
YKL089W, YKL113C, YLL022C, YLR233C, 
YLR376C, YML021C, YML061C, YML109W, 
YOR074C, YOR279C, YOR342C, YPL008W, 
YPL127C, YPL208W, YPL256C, YPR120C, 
YPR135W
Page 24 of 28
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:210 http://www.biomedcentral.com/1471-2105/9/210
bud neck 4.38E-04 2.01E-02 YDR507C, YGR152C, YKL101W, YKR090W, 
YLL021W, YNL233W, YNL304W

11 MCM complex 8.91E-04 5.52E-02 YEL032W, YLR274W, YPR019W
12 bud neck 1.07E-05 3.33E-04 YBR038W, YBR200W, YGR092W, YHR023W, 

YIL106W, YLR190W, YMR001C, YPR119W
14 spindle microtubule 6.05E-05 2.12E-03 YBL063W, YBR156C, YGL061C
16 endoplasmic reticulum 1.91E-04 4.21E-03 YBR229C, YCR011C, YCR044C, YDL204W, 

YIL124W, YML128C, YMR134W
mitochondrion 7.89E-04 1.74E-02 YBR003W, YBR026C, YBR037C, YBR147W, 

YBR229C, YCR005C, YHL021C, YHR067W, 
YIL087C, YIL124W, YLR142W, YLR253W, 
YML128C, YNL073W

24 cytosolic large ribosomal subunit (sensu 
Eukaryota)

1.11E-45 7.07E-44 YBL027W, YBL092W, YBR031W, YBR191W, 
YDL075W, YDL081C, YDL082W, YDL130W, 
YDL136W, YDL191W, YDR012W, YDR382W, 
YDR418W, YDR471W, YDR500C, YER117W, 
YHR141C, YJL177W, YJL189W, YKL006W, 
YKL180W, YKR094C, YLL045C, YLR029C, 
YLR075W, YLR185W, YLR325C, YLR340W, 
YLR344W, YLR406C, YLR448W, YML073C, 
YMR121C, YMR194W, YMR242C, YNL067W, 
YNL162W, YNL301C, YOL039W, YOL127W, 
YOR234C, YOR312C, YPL143W, YPL198W, 
YPR043W, YPR102C

cytosolic small ribosomal subunit (sensu 
Eukaryota)

7.45E-43 4.77E-41 YBL072C, YBR048W, YBR181C, YBR189W, 
YCR031C, YDL061C, YDL083C, YDR025W, 
YDR064W, YDR447C, YDR450W, YER074W, 
YER102W, YER131W, YGR118W, YGR214W, 
YIL069C, YJL136C, YJL190C, YJR123W, YJR145C, 
YKL156W, YKR057W, YLR048W, YLR167W, 
YLR333C, YLR388W, YLR441C, YML024W, 
YML026C, YML063W, YMR116C, YMR143W, 
YMR230W, YNL096C, YNL302C, YOL040C, 
YOR167C, YOR293W, YOR369C, YPL081W, 
YPL090C

ribosome 4.84E-06 3.10E-04 YAL003W, YBR118W, YDR385W, YEL034W, 
YKL056C, YLR249W, YOL139C, YPR163C

28 condensed nuclear chromosome 2.75E-04 2.20E-03 YHR157W, YPL194W
31 chromosome, telomeric region 4.77E-04 1.43E-02 YAR007C, YNL312W

nuclear cohesin complex 3.79E-05 1.14E-03 YDL003W, YFL008W, YIL026C
DNA replication factor A complex 4.77E-04 1.43E-02 YAR007C, YNL312W
replication fork 2.99E-04 8.97E-03 YDL164C, YKL108W, YLR103C

34 mitochondrial inner membrane 4.76E-04 2.14E-02 YDL198C, YDR197W, YER058W, YER141W, 
YOL027C, YPR011C

mitochondrion 5.60E-06 2.52E-04 YDL198C, YDR194C, YDR197W, YDR301W, 
YDR322W, YDR505C, YER058W, YER141W, 
YGL187C, YHR147C, YJR048W, YKL150W, 
YLR168C, YML030W, YML052W, YML120C, 
YMR098C, YMR145C, YMR188C, YNL306W, 
YNR036C, YOL009C, YOL027C, YOL038W, 
YOL059W, YPR011C

35 retrotransposon nucleocapsid 3.41E-06 9.89E-05 YCL020W, YER160C, YJR026W, YJR028W, 
YML040W, YOR142W

36 glycine cleavage complex 1.94E-05 4.46E-04 YAL044C, YDR019C, YMR189W
41 nuclear exosome (RNase complex) 4.93E-05 2.02E-03 YNL251C, YOL021C, YOR001W
54 MCM complex 1.19E-04 4.65E-03 YBR202W, YGL201C, YLR274W

pre-replicative complex 9.21E-04 3.59E-02 YBR202W, YGL201C, YLR274W
56 central plaque of spindle pole body 3.03E-05 8.78E-04 YDR356W, YKL042W, YPL124W

Table 13: Annotations of cellular component ontology for biclusters identified by the proposed algorithm for multiplicative models at 
p-value < 0.001. (Continued)
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Table 14: Annotations of molecular function ontology for biclusters identified by the proposed algorithm for multiplicative models at 
p-value < 0.001.

Bicluster index Annotation P-value Corrected P-value Genes

1 DNA-directed RNA polymerase 
activity

1.62E-05 2.62E-03 YBR154C, YDL140C, YDL150W, YDR045C, YDR156W, 
YJL140W, YNL113W, YNR003C, YOR224C, YOR341W

snoRNA binding 1.55E-04 2.51E-02 YBL004W, YDL153C, YDR449C, YGR090W, YLR222C, 
YML093W, YMR093W, YPR112C, YPR137W

3 MAP kinase kinase activity 9.00E-04 4.50E-02 YJL128C, YPL140C
7 ATPase activity, coupled 3.55E-04 6.04E-03 YLL026W, YPL240C

aldo-keto reductase activity 3.55E-04 6.04E-03 YHR104W, YOR120W
11 chromatin binding 6.21E-05 3.66E-03 YEL032W, YJL081C, YLR002C, YLR274W, YPR019W
14 protein phosphatase type 2C activity 4.51E-04 6.77E-03 YCR079W, YDL006W
24 structural constituent of ribosome 3.69E-75 1.88E-73 YBL027W, YBL038W, YBL072C, YBL092W, YBR031W, 

YBR048W, YBR181C, YBR189W, YBR191W, YCR031C, 
YDL061C, YDL075W, YDL081C, YDL082W, YDL083C, 
YDL130W, YDL136W, YDL191W, YDR012W, YDR025W, 
YDR064W, YDR382W, YDR418W, YDR447C, YDR450W, 
YDR471W, YDR500C, YER074W, YER102W, YER117W, 
YER131W, YGR118W, YGR214W, YHR141C, YIL069C, 
YJL136C, YJL177W, YJL189W, YJL190C, YJR123W, 
YJR145C, YKL006W, YKL156W, YKL180W, YKR057W, 
YKR094C, YLL045C, YLR029C, YLR048W, YLR075W, 
YLR167W, YLR185W, YLR325C, YLR333C, YLR340W, 
YLR344W, YLR388W, YLR406C, YLR441C, YLR448W, 
YML024W, YML026C, YML063W, YML073C, YMR121C, 
YMR143W, YMR194W, YMR230W, YMR242C, 
YNL067W, YNL096C, YNL162W, YNL301C, YNL302C, 
YOL039W, YOL040C, YOL127W, YOR167C, YOR234C, 
YOR293W, YOR312C, YOR369C, YPL081W, YPL090C, 
YPL143W, YPL198W, YPR043W, YPR102C

translation elongation factor activity 4.78E-04 2.44E-02 YAL003W, YBR118W, YDR385W, YLR249W
DNA helicase activity 6.99E-05 3.57E-03 YDR545W, YER190W, YLR467W, YNL339C, YPL283C, 

YPR204W
RNA binding 4.35E-04 2.22E-02 YAR009C, YCR031C, YDL208W, YJR027W, YKL006W, 

YLR029C, YLR344W, YLR448W, YML039W, YML045W, 
YML073C, YMR045C, YMR050C, YMR121C, YMR194W, 
YOL127W

helicase activity 1.61E-08 8.22E-07 YBL113C, YEL077C, YIL177C, YJL225C, YLL066C, 
YLL067C, YML133C

35 RNA binding 3.28E-05 1.05E-03 YCL020W, YER160C, YJR026W, YJR028W, YML040W, 
YMR290C, YOR142W, YPR107C

36 glycine dehydrogenase 
(decarboxylating) activity

1.94E-05 5.62E-04 YAL044C, YDR019C, YMR189W

50 long-chain-fatty-acid-CoA ligase 
activity

5.58E-04 1.06E-02 YIL009W, YOR317W

glycerol-3-phosphate dehydrogenase 
(NAD+) activity

1.88E-04 3.56E-03 YDL022W, YOL059W

citrate (Si)-synthase activity 5.58E-04 1.06E-02 YCR005C, YNR001C
52 structural constituent of cytoskeleton 5.63E-04 9.57E-03 YDR016C, YGR113W, YHR129C, YNL126W
54 ATP-dependent DNA helicase activity 3.25E-04 1.11E-02 YBR202W, YGL201C, YLR274W

ATP binding 3.25E-04 1.11E-02 YBR202W, YDR097C, YNL082W
56 ATP binding 1.64E-04 3.78E-03 YDR097C, YNL082W, YOL090W

structural constituent of cytoskeleton 4.43E-05 1.02E-03 YDR356W, YGR113W, YKL042W, YOR373W, YPL124W
guanine/thymine mispair binding 2.17E-04 5.00E-03 YDR097C, YOL090W
single base insertion or deletion 
binding

2.17E-04 5.00E-03 YDR097C, YOL090W

four-way junction DNA binding 2.17E-04 5.00E-03 YDR097C, YOL090W
57 structural constituent of cytoskeleton 7.39E-04 1.85E-02 YBL063W, YMR117C, YOR373W, YPL124W
58 copper ion binding 6.45E-04 1.42E-02 YBR037C, YBR295W
59 guanine/thymine mispair binding 1.97E-04 4.73E-03 YDR097C, YOL090W

four-way junction DNA binding 1.97E-04 4.73E-03 YDR097C, YOL090W
single base insertion or deletion 
binding

1.97E-04 4.73E-03 YDR097C, YOL090W
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