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ABSTRACT 
We studied the computational complexity of the over-complete 
wavelet representation for the commonly used Spline wavelet 
family with an arbitrary order. By deriving a general expression 
for the complexity, it is shown that the inverse transform is 
significantly more costly in computation than the forward 
transform. In order to reduce the computational complexity, a 
new spatial implementation is proposed. This new 
implementation exploits the redundancy between the lowpass 
and the bandpass outputs that is inherent to the over-complete 
wavelet scheme. It is shown that the new implementation can 
greatly simplify the computations, give an efficient inverse 
structure and allow the use of an arbitrary boundary extension 
method without affecting the ease of the inverse transform. 

1. INTRODUCTION 
Mallat and Zhong proposed a representation known as the over- 
complete wavelet representation (OCWR) for multi-scale edge- 
based signal characterization [I]. As points of sharp variations 
are one of the most important features fur andlyzing signal 
properties, this OCWR is useful in many applications, ranging 
from image compression, surface reconstruction to medical 
image processing [l-41. 

Despite its capability for providing a meaningful representation, 
a major concern with the OCWR is its computational 
complexity. Unlike the sub-sampled wavelet scheme, the 
computational time increases linearly with the number of 
decomposition levels in the OCWK [I-21. Therefore, complexity 
becomes a major issue in its practical implementation. In 
addition, it is conceived that the inverse transform is 
computationally more expensive than the forward transform 
since the reconstruction filters are always longer than the 
forward filters in the Spline wavelet family. 

In this paper, we study the computational complexity of the 
OCWR. A general expression for the complexity of the Spline 
wavelet family with an arbitrary order is derived. It is found that 
the inverse transform is significantly more complicated than the 
forward transform. This is undesirable in applications such as 
surface reconstmction and image compression where the inverse 
transform needs to be performed [2-61. For example, while the 
encoder in compression application can be very complicated, the 
decoder is often required to be simple. 

In order to reduce computation, we use the fact that the OCWR 
provides a redundant image representation. This implies that 
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correlation exists between the lowpass and the bandpass outputs. 
By studying this redundancy, a new spatial interpretation for the 
OCWR is obtained. Using this interpretation for an altemative 
implementation, a general expression for the complexity is 
derived. It is found that the proposed implementation can greatly 
simplify the computation and give an efficient inverse structure. 

2. OVER-COMPLETE WAVELET 
REPRESENTATION 

The OCWR for an image is obtained by applying filters to both 
the horizontal and the vertical directions. There are three outputs 
from a single level decomposition: the lowpass approximation of 
the original image and two bandpass outputs. Mathematically, 
the lowpass output is given by, 

Two handpass outputs are written as, 
x1 (zi I z2 )= ~ ( 2 ~  )H(&O(ZI z 2  

ot (21 , z 2 )  = 4,) Xn (21 I 2 2  

@(zi ,z2 ) = + z  )xn(zi,zz) (3) 

(1) 

(2) 

where H ( r ) ,  G(r) and X O ( q , q )  denote respectively the 
lowpass filter, the handpass filter and the original image. ln 
reconstruction, the original image is given as, 

(4) 
xo(zi  I 22)  = K(zi )&)D,! (21, zz )+ 

L(ZI k(z2)D:(zi3 22 ) + E h  )%I 1x1 (21 22)  

where H(r) is the time reverse of H ( z )  and K(r) and L(r) are 
the bandpass reconstruction filters. To achieve perfect 
reconstruction, it is required that, 

( 5 )  
K(.I)L(ZI)G(Zl)+ L b I ) & ) G ( Z d +  

)F(zz )H (21 )H ( 2 2 )  = 1 
Eqn.5 is a necessary and sufficient condition for perfect 
reconstruction. Unlike the sub-sampling scheme, there is 
considerable freedom in choosing these four filters. 

Mallat and Zhong have constructed the wavelet function in such 
a way that it is the derivative of a smoothing function [I]. The 
local extrema of the resultant transform then characterize the 
multiscale edges in the image. The set of wavelet Functions is 
commonly known as the Spline wavelet family. For an order n , 
the lowpass and the bandpass filters can he expressed 
respectively as, 
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and G(z) = 2G-I - 1) (6) 
The reconstruction filters can be shown to be, 

(7) 

Comparing the forward and the inverse filters shown in eqn.6 to 
eqn.8, it can be seen that the numbers of filter coefficients for 
C(z),  H ( z )  , K ( r )  and L(z) are 2, 2n + 2 ,  4n + 2 and 4n + 3 
respectively. As the inverse filters are significantly longer than 
the forward filters, the computational complexity associated with 
the inverse is much higher than that with the forward transform. 

To analyze the computational complexity, the number of 
additions and multiplications are calculated. This complexity 
metric is of interest for both hardware and software realization. 
The complexity for G(Z) is given by, 

where CosLdd and define the costs in having an 

addition and a multiplication operations respectively. Using the 
Binomial theorem, H(z) in eqn.6 can be expanded as follows, 

COmPleXIty (G)= COSf,dd + cOStm.//ip/y (9)  

where c" - m Analyzing eqn.10 gives that, 
k - $! (m-k) ! .  

Comp/exity (H)= (272 + I)Coif& + (H + ~)cost,,,,~~~~iy (1 1) 

In reconstruction, the complexities of .+), K ( z )  and L(z) 
need to be determined. H(z) can be obtained from eqn.10 

simply by replacing z with z-' . The complexity of K(i) thus 
equals to that of H ( z ) .  For K ( z ) ,  we expand the summations in 
eqn.7 as follows, 

where 

Eqn.12 shows that the complexity of K ( z )  equals to, 
Comp/exiy [ K ]  = (4n + l)Cost,dd + (2" + ~ ) C o s t ~ ~ l ~ ; ~ p r ~  (14) 

Employing the Binomial theorem, an expression for L ( z )  can he 
obtained through expanding eqn.8 as follows, 

where 

A one level forward transform involves filtering in both 
horizontal and vertical directions (cf. eqn.1 to eqn.3). 

Substituting filters expressions in eqn.7 and eqn.10 to eqn.1, 
eqn.2 and eqn.3, we obtain, 

2 c;n+I[z2fi-k, + Z2-n*k2-l ]xn(Zi ,z2 

Two multiplications are merged into one in eqn.18, thus the 
complexity in obtaining X ~ ( q , q )  equals to, 

Complexity [ X I ] =  (4n + Z)Cos~.dd + (2n + I ) C o s ~ ~ ~ l , ; ~ / ~  (19) 
The bandpass outputs can be obtained by substituting eqn.6 to  
eqn.2 and eqn.3, their complexities then equal to, 

(18) 
kr =O 

= cOS(add + COS/,,//;p/y 

The complexity of the forward transform can thus be calculated 
by summing up the complexities in eqn.19 and eqn.20, i.e., 

Complexity FB [Forward 1 
= (4n + 4)Cort,dd + (2n + 3)Cosrmulriply (21) 

Similarly, the complexity of the inverse transform is calculated 

by summing up the complexities in K ( z l ) L ( z 2 ) D f ( z l , q ) ,  

L ( Z I ) K ( Z ~ ) ~ ~ ( ~ I , Z ~ )  and F(z1)F(z2b'i(zt2z2).  The 

complexity of ~ ( ~ ) ~ ( ~ ~ ) X I ( Z I , Z ~ )  is same as that of 
H ( ~ I ) H ( z ~ ) X & I , Z ~ )  and is given in eqn.19. For either 

K(zl)L(z2)D,!(z1.~2) or L(zl)K(z2)Q2(21,22), the complexity 
equals to the sum of the complexities in K(z) and L(z )  

(8n + 3)Costa& + (4n + 2)Cost,,~tip,y 

Compiexiy FB [~nverse] 
= (20n + 10)Cost,dd + ( Ion + 5)C0s f , ,~~;~$  

1-ej22) 
Then the inverse complexity is found to be, 

(23) 

Comparing eqn.21 and eqn.23, the inverse transform has a 
significantly higher complexity (nearly five times) than the 
fonvard transform. This is undesirable and we need to reduce its 
computational complexity. 

3. The NEW FORMULATION 
The OCWR provides a redundant representation for an image. 
Correlation exists between the lowpass and the bandpass outputs 
which can he exploited in our calculation of the wavelet 
transform. Indeed, many applications, such as discontinuity- 
preserving surface reconstruction, contrast enhancement and 
denoising, have benefited from this correlation in solving their 
problems [1,3-61. In order to study the correlation, we consider 
the following expression from the ID study [7]. 
ID Formulation: The expression 

can be rewritten as. 
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Note that the last term in eqn.27 can be rewritten as, 

The lowpass output can then be expressed as, 

which completes the proof. The alternative implementation 
provides a way to relate the lowpass output, the original image 

and the two handpass outputs. It provides not only an alternative 
implementation scheme for the forward transform, but also 
simplifies the computation of the inverse transform. In 
particular, the inverse can be easily calculated as follows, 

I 
(30) xll(z1 3 2 2  ) = XI (.,.z2 ) - 22"12 x 

{ F,[D?(z13zd]+ F2[ 0% . z2) .Y,(z13z2)  1 } 
The proposed implementation for both the forward and the 
inverse transforms is shown in Figure I .  In analyzing the 
complexity, the complexities in Fj and Fz can be written as, 

(31) 
Comp/exity[F2] = (2n + Z)Cost,dd + (n + l ) C ~ s f , , ~ ~ ; ~ ~ ~  (32) 

Using eqn.31 and eqn.32, the forward and the inverse 
complexities are found to he, 

Complexity [4]= (Zn)Cost,dd + (n)Costmu/lip,ry 

Complexity s [Forward ] 
(33) = (4n + 6)Cost,dd + (2n + 4 ) C o ~ t , , , , ~ ~ ; ~ ~ ~  

and 
complexitys [~nverse]  

= (4n + 4)Cosr,dd + (2n + ~ ) C O S I , , ~ ~ ; ~ ~ ~  (34) 

4. ANALYSIS 
In the filtering approach, the complexity of the forward 
transform is much lower than that of the inverse transform 
(eqn.21 and eqn.23). In contrast, the complexity of the forward 
transform is slightly higher than that of the inverse transform in 
the proposed approach (eqn.33 and eqn.34). Comparing the 
filtering and the proposed approaches, we can see that the 
Complexity of the forward transform of the proposed scheme is 
slightly higher than that of the filtering approach. However, the 
complexity o f  the inverse transform of the proposed scheme is 
much lower than that ofthe filtering approach. 
In the proposed approach, no filtering is required for the 
reconstruction of the original image. Rather, a simple spatial 
implementation is used for the reconstruction. The 
computational complexity of the inverse transform is thus greatly 
reduced. It can be seen that the inverse transform using our 
proposed scheme is one multiplication less than the forward 
transform in the filtering approach. 
Figure 2 shows a comparison of the computational complexity 
between the filtering and the proposed spatial approaches for 
different n orders. The saving in computation is significant. For 
the quadratic Spline wavelet (n=l), the number of additions 
reduces from 30 to 8 whereas the number of multiplications 
reduces from 15 to 4. This gives a saving of 73.3% for both the 
additions and multiplications. For the cubic Spline wavelet 
(.n=2), the number of  additions reduces from 50 to 12 whereas 
the number of multiplications reduces from 25 to 6. This gives a 
saving of 76.0% for both the additions and multiplications. 
Besides the decrease in computational complexity, the proposed 
scheme handles the boundary in a nice way. Using the filtering 
approach, there are two ways to deal with the boundaq 
extension problem: the signal is either symmetrically extended 
before filtering or the boundary is corrected after the inverse 
transform. The former would increase the computational time 
especially for a large image while the latter involves the design 
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of non-trivial boundary correction rules and is filter dependent. 
However, using our proposed scheme, any arbitrary boundary 
extension scheme can be used without affecting the ease of the 
inverse transform. The prediction terms, Fj and F2,  always 
remain the same in both the forward and the inverse transforms. 
There is thus no need for boundary correction after 
reconstruction. The image can always be reconstructed 
perfectly. 

5. CONCLUSIONS 
By ’ deriving a general expression for the computational 
complexity of the over-complete wavelet representation, it is 
found, that the inverse transform is significantly more 
complicated than the forward transform using the filtering 
implementation StNCtUre. In order to reduce the computational 
complexity, a new spatial implementation is proposed. This 
implementation exploits the correlation between the lowpass and 
the bandpass outputs, It is shown that the new implementation 
can greatly simplify the computation, give an efficient inverse 
transform and allow the use of an arbitrary boundary extension 
method. 
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(b) 
Figure I: New spatial domain approach, (a) forward and (b) 
inverse. 

(b) 
Figure 2: Plots o f  (a) the number of addition and (b) the number 
of multiplication for different order n. The solid line is the 
filtering approach and the dotted line is the new spatial approach. 
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