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Abstract 

This paper addresses the design problem of a rail transit line located in a linear urban transportation corridor. The service 
variables designed are a combination of rail line length, number and locations of stations, headway and fare. Two profit 
maximization models, which account for the effects of different transit pricing structures (flat and distance-based fare regimes), 
are proposed. In the proposed models, the effects of passenger demand elasticity and population density along the urban corridor 
are explicitly considered. The solution properties of the proposed models are explored and compared analytically, and the 
indifference condition for the two fare regimes in terms of the operator’s net profit is identified. A heuristic solution algorithm to 
solve the proposed models is presented. Numerical examples are provided to show the effects of the fare regimes, rail capital cost 
and urban configuration (in terms of urban population distribution and corridor length) on the design of the rail transit line and 
the profitability of the rail transit operations. 
© 2011 Published by Elsevier Ltd. 
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1. Introduction 

1.1. Background and motivation 

Over the past few decades, rapid urban expansion due to urbanization and economic growth in some large Asian 
cities, including Shanghai and Hong Kong, has drastically increased the size of these cities. Traffic congestion has 
worsened due to the shortage of space for road expansion projects to accommodate the growing traffic demand in 
urban areas. To address this problem, the local authorities of these cities have launched rail transit development 
projects, which include extension of existing rail transit lines and construction of new rail transit lines. For instance, 
the Shanghai municipal government is currently extending Rail Line 11 about 5.76 km westwards and creating four 
new stations on the line, while the Hong Kong government recently approved a proposal to build a new metro line to 
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connect Shatin New Town to Central (i.e., the central business district (CBD) of Hong Kong), with a total length of 
17 km and 10 stations. The construction of this new metro project is expected to start in 2011 and be completed in 
2019. 

In principle, the basic parameters to be determined in planning a rail transit line project include the rail line 
length, number and locations of stations, headway and fare (see, e.g. Vuchic, 2005; and the references shown in 
Table 1). The design of these parameters depends very much on the population density in the planning area. This is 
because the urban population density directly influences the level of passenger demand. For instance, in a sparsely 
populated city (e.g. many Western cities), operators prefer to short rail transit lines in order to minimize their costs 
(Spasovic and Schonfeld, 1993; Spasovic et al., 1994). However, in a densely populated city, such as Hong Kong in 
which most people use transit services for their daily travel, a benefit-driven operator has an incentive to extend the 
rail transit line from the city’s CBD area into its outer areas so as to procure more profit. It is, therefore, important to 
address the relationship between the design parameters of the rail transit line and the urban population density. 

Obviously, there are various tradeoffs between the extension of a rail transit line and its associated costs. For 
instance, the length of a rail line is closely related to its service coverage and its capital and operating costs. A 
longer rail line provides greater service coverage but incurs higher capital and operating costs, whereas a shorter rail 
line has lower capital and operating costs but offers less service coverage. The station spacing along a rail line 
directly affects the train operating speed and train dwell time at stations, and thus passenger demand on that line. In 
general, shorter station spacing can decrease the average passenger access time to stations. However, it also 
increases the average passenger in-vehicle travel time and train operating costs because of higher acceleration and 
deceleration delays caused by frequent stops. Conversely, longer station spacing can increase the train operating 
speed and decrease the average passenger in-vehicle travel time, but also increases the average passenger access 
time to stations. Since these tradeoffs are directly related to the revenues and thus profits of the rail transit operations, 
all of these parameters – the rail line length, number and spacing of stations, headway and fare – should be carefully 
designed. The present study addresses this design problem for strategic planning purposes. 

1.2. Literature review 

Significant progress has been made in transit service design models since the pioneering work of Vuchic and 
Newell (1968) in developing an analytical continuum model to optimize rail station spacing. For the convenience of 
readers, we have summarized in Table 1 some principal contributions of various analytical models to transit service 
design, which include: decision variables, such as the location or spacing of transit routes and/or stations, headway, 
and fare; the objective function, which is typically the minimization of the total system cost (i.e., the sum of operator 
and user costs); the transit mode involved, such as rail, bus or feeder bus; the geometry of transit lines, such as a 
linear structure or rectangular grid; and demand characteristics, including fixed or elastic demand, uniform or non-
uniform demand distribution, and one-to-one, many-to-one, or many-to-many travel patterns. 

Most existing transit models, as shown in Table 1, usually aim to minimize the sum of operator and user costs. 
This can be attributed to the relatively low population densities within large Western cities leading to government 
subsidy to the transit industry. However, this is not the case in some Eastern Asian cities, particularly those with 
high-density population development, such as Hong Kong, in which the transit industry can operate profitably 
without government subsidy. This is because a large proportion of the population in Hong Kong uses transit services 
as the main mode of transportation, and over 90% of the 11 million daily person-trips are served by privately 
operated public transit modes (Transport Department, 2003). Under Hong Kong’s operating environment, the 
principal objective of private transit operators is neither welfare gain nor the efficient utilization of road space, but 
rather profit maximization (Lam and Zhou, 2000; Zhou et al., 2005; Li et al., 2009). It is thus important to address 
the interrelation between the population density and the transit operator’s profit.  

The literature review also reveals that the focuses of the previous related studies have mainly been on how to 
optimize the design variables of the transit services approximately and/or numerically. Little attention has been paid, 
however, to investigating the solution properties of transit design problems, such as the concavity of objective 
functions concerned with regard to their decision variables. In addition, there is scant research into the effects of 
different transit pricing structures. In reality, a flat fare regime and a distance-based one can have significantly 
different effects on the attractiveness of transit services and the level of passenger demand.  
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1.3. Problem statement and contributions 

To address the foregoing issues, this paper develops analytical models for designing the service variables of a rail 
transit line located in a linear transportation corridor of length B, as shown in Fig. 1. In this figure, the rail line 
designed extends from the CBD of the city outward, and is represented by an ordered sequence of stations 
{1,2, , 1}N . The symbol sD  represents the distance of station s from the CBD, and 1D  the length of the rail line. 

The service variables designed include the rail line length, 1D ; number of stations, 1N ; station locations, 

, 2, ,sD s N ; train headway, H; and fare for traveling from station s to the CBD, sf . For presentation purpose, 

all variables and parameters used throughout this paper are defined in Table 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. The rail line configuration along a linear transportation corridor. 

 
 

This paper makes three main contributions to the previous related studies. First, in order to examine the effects of 
different transit pricing regimes (flat and distance-based fare regimes), two profit maximization models are proposed. 
Second, the solution properties of the proposed models, particularly those with uniform population density and/or 
even (average) station spacing, are explored and compared analytically. The indifference condition of the operator’s 
net profits for the flat and distance-based fare regimes is also identified. Third, a heuristic solution algorithm to 
solve the proposed models is developed. With the proposed models and solution algorithm, effects of some key 
model parameters, such as population density, rail capital cost and corridor length, are examined and evaluated in 
this paper. 

The remainder of this paper is organized as follows. In the next section, some basic model assumptions are 
described and the passenger demand for each station is defined. Section 3 presents the profit maximization models 
for the flat and distance-based fare regimes, respectively. The solution properties of the two proposed models are 
then examined and discussed. In addition, the constraint conditions of the models are also presented. In Section 4, a 
heuristic solution algorithm is developed for jointly solving the design variables of the rail transit line. In Section 5, 
an example is used to illustrate the application of the proposed models and solution algorithm. Finally, conclusions 
are given in Section 6 together with recommendations for further studies. 

CBD 
N 1 s-1 s s+1 N+1 

1sD  

1D  

sD  
1sl  

sl  

B  
Corridor boundary  

1sL  

sL  

0L  
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Table 2 Notation 

Symbol Definition Baseline value 
B length of transportation corridor (km) - 

OC  train operating cost ($/h) - 

LC  rail line cost ($/h) - 

SC  rail station cost ($/h) - 

sD  distance of station s from the CBD; ( , 1,2, , )sD s ND  is corresponding vector (km) - 

ae  sensitivity parameter for access time (1/h) 0.98 

we  sensitivity parameter for wait time (1/h) 0.98 

te  sensitivity parameter for in-vehicle time (1/h) 0.49 

fe  sensitivity parameter for fare (1/$) 0.098 

sf  fare for traveling from station s to the CBD ($ for flat fare, $/km for distance-based fare) - 
F fleet size (or number of trains) on the rail line (vehicles) - 
( )g x  population density at distance x from the CBD (persons/km2) - 

0g  population density in the CBD (persons/km2) - 
G total number of population in the planning area (persons) - 
H train headway (h/vehicle) - 
K capacity of vehicles, including seated and standing passengers (pass/veh) 1800 

sL  distance of the passenger watershed line sl  from the CBD (km) - 
N + 1 total number of stations on the rail line - 

( )P x  potential passenger demand density at location x (pass/km-h) - 

0P  potential passenger demand density in the CBD; 0 0P g  (pass/km-h) - 

( , )q x s  density of passenger demand for station s at location x (pass/km-h) - 

sQ  passenger demand for station s (pass/h) - 

st  average passenger in-vehicle time from station s to the CBD (h) - 

1sT  non-stop line-haul travel time from station s to the CBD (h) - 

2sT  total train dwell time from station s to the CBD (h) - 

0T  constant terminal time on the circular line (h) 0.08 

( )su x  passenger access time to station s from location x (h) - 

tV  average train cruise speed (km/h) 40 

aV  average walking speed of passengers (km/h) 4.0 

sw  average passenger wait time at station s (h) - 

 net profit of operator (  for flat fare regime, and ˆ  for distance-based fare regime) ($/h) - 
 ratio of passenger waiting time to train headway 0.5 

0  average train dwell time at a rail station (h) 0.01 

0  fixed component of rail line cost ($/h) 750 

1  variable component of rail line cost ($/km-h) 300 

0   fixed component of train operating cost ($/h) 1350 

1  variable component of train operating cost ($/veh-h) 540 

0  fixed component of rail station cost ($/h) 1250 

1  variable component of rail station cost ($/station-h) 500 

 density gradient describing how rapidly the density falls as the distance increases (1/km) - 
 average number of trips to the CBD per person per day 1.0 
 peak-hour factor, i.e. the ratio of peak-hour flow to daily average flow 0.1 

 number of terminal times on the rail line 1.0 
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2. Basic considerations 

2.1. Assumptions 

To facilitate the presentation of the essential ideas without loss of generality, the following basic assumptions are 
made in this paper. 

A1 The corridor connecting the city’s CBD and suburb is assumed to be linear, following the previous related 
studies including those of Wang et al. (2004) and Liu et al. (2009) and some listed in Table 1. 

A2 The study period is assumed to be a one-hour period, such as the morning peak hour, which is usually the 
most critical period in a day. Therefore, this paper mainly focuses on a many-to-one travel demand pattern. 

A3 Passengers are assumed to board trains at the nearest rail station in terms of access time. Trains running along 
the rail line stop at each station on that line, and the average train dwell time at each station is assumed to be a 
constant. These assumptions have also been adopted in some previous related studies, such as those of Wirasinghe 
and Ghoneim (1981), Kuah and Perl (1988), Chien and Schonfeld (1997, 1998), and Chien and Qin (2004), but can 
be relaxed in further studies. 

A4 The population density along the corridor is specified as a negative exponential function (see, e.g. Anas, 1982; 
O’Sullivan, 2000). We represent the population density at distance x from the CBD as 0( ) exp(- )g x g x , 

[0, ]x B , where 0g  is the population density in the CBD and  ( 0 ) is the density gradient describing how 

rapidly the density falls as the distance increases (see Fig. 5 later). The larger the value of , the smaller the 
population density at the city’s edge and the more compact the city. That is, a smaller value of  means a more 
decentralized city. In particular, when  equals 0, the negative exponential population density function is reduced to 
a uniform one. With this assumption, the total number of population G  in the study area is then given by 

00
exp(- )

B
G g x dx . 

A5 An elastic demand density function is defined to capture the responses of passengers to the quality of the rail 
transit line service, which is measured by a generalized travel cost that is a weighted combination of the access time 
to stations, wait time at stations, in-vehicle time, and fare. The responses include the decision of switching to an 
alternative mode (e.g., auto, bus, or walk) and the decision of not making the journey at all (Li et al., 2009). 

2.2. Passenger demand for each station 

As both stations on any segment of the rail line are competing for passengers between those two stations, there 
exists a passenger watershed line that divides the line segment between two adjacent stations into two sub-
segments, as shown in Fig. 1. The passengers in the two sub-segments respectively use the upstream and 
downstream stations of the line segment. Let sl  be the passenger watershed line between stations s and s + 1, and 

sL  be the distance of the passenger watershed line sl  from the CBD. Based on A3, the watershed line sl  is located 

at the middle point of the line segment ( , 1)s s , which implies 

1 ,  1,2, ,
2

s s
s

D D
L s N , (1) 

where 1 0ND . 

Let ( , )q x s  denote the density of passenger demand (i.e. the number of passengers per unit of distance) for station 

s at location x. The total passenger demand for station s, sQ , is then given by 

1

( , ) ,  1, 2, ,
s

s

L

s L
Q q x s dx s N ,  (2) 
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where , 1,2, ,sL s N  can be given by Eq. (1). 0L  represents the maximum location that the residents between 

station 1 and the corridor boundary will use the rail service, as shown in Fig. 1. Beyond that location (i.e. 0x L ), 

no one will patronize the rail system. Thus, 0L  holds 

0 0 1( ,1) 0,  [ , ]q L L D B , (3) 

where 0( ,1)q L  is the density of passenger demand for station 1 at location 0L . 

In order to determine ( , )q x s , we first define the potential passenger demand density at location x, which is 

denoted by ( )P x . Define  as the average number of trips to the CBD per person per day within the study area, 

then ( )g x  is the potential passenger demand density at location x per day in terms of A4. Let  be the peak-hour 

factor, i.e. the ratio of peak-hour flow to the daily average flow. ( )P x  can then be given by 

0 0( ) exp(- )= exp(- ), [0, ]P x g x P x x B ,  (4) 

where 0P  is the (peak-hour) potential passenger demand density in the CBD and 0 0P g . The parameter  is 

used to convert the traffic volume from a daily basis to an hourly basis. 

Passenger demand for rail line service is usually sensitive to rail fare level and various time components 
(walk/access time to station, wait time and in-vehicle time) and thus is elastic. In order to model the effects of 
passenger demand elasticity, in this paper a linear elastic demand density function is used and specified as 

a w t f( , ) ( ) 1 ( ) ,  [0, ], 1,2, ,s s s sq x s P x e u x e w e t e f x B s N ,  (5) 

where ( )su x  is the passenger access time to station s from location x, which is related to the distance of location x 

from station s; sw  is the average passenger wait time at station s; st  is the passenger in-vehicle time from station s 

to the CBD; and sf  is the fare for traveling from station s to the CBD. ae , we , te  and fe  are the sensitivity 

parameters for the access time, wait time, in-vehicle time and fare, respectively.  

To ensure the non-negativity of the passenger demand, the following condition should be satisfied 

a w t f 10 1 ( ) 1,  [ , ], 1,2, ,s s s s s se u x e w e t e f x L L s N .  (6) 

It should be pointed out that the parameters ae , we , te  and fe  in the linear demand function (5) are not the 

actual measures of demand elasticities. The ratios a fe e , w fe e  and t fe e  determine the values of access time, 

wait time and in-vehicle time, respectively. The value of walking/access time is generally larger than the value of in-
vehicle time (Chang and Schonfeld, 1991), and thus a te e  holds.  

In addition, the linear demand function, as adopted here, has been extensively used in demand models due to its 
convenience for analytical tractability. Other alternative demand functions, such as exponential demand function, 
can also be adopted. However, it is usually difficult, if not impossible, to derive a closed-form solution. 
Alternatively, a non-linear demand function can be approximated as a linear demand function by using the first-
order Taylor series expansion. 

We now define the time components that are included in the linear demand function (5). The passenger access 
time ( )su x  depends on the walking distance between location x and station s and the walking speed of passengers, 

aV . It is expressed as 

a

a

,   
( ) ,  [0, ], 1,2, ,

,   

s s

s

s s

D x V x D
u x x B s N

x D V x D
.  (7) 
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The average passenger wait time at station s, sw , can be calculated by 

,  1,2, ,sw H s N ,  (8) 

where H is the headway of the rail service, and  is a calibration parameter that depends on the distributions of 
train headway and passenger arrival. The value 0.5  is commonly used to suggest a constant headway between 
trains and a uniform random passenger arrival distribution. 

The passenger in-vehicle time from station s to the CBD, st , comprises the non-stop line-haul travel time, 1sT , 

and train dwell time, 2sT , at rail stations, i.e., 

1 2 ,  1,2, ,s s st T T s N ,  (9) 

where 1sT  can be calculated by the in-vehicle length of the trip being made by the passengers divided by the average 

train cruise speed, tV , i.e., 

1
t

,  1,2, ,s
s

D
T s N

V
. (10) 

According to A3, the average train dwell time at each rail station is a constant. Consequently, the total train dwell 
time from station s to the CBD, 2sT , can be calculated by 

2 0 1 ,  1,2, ,sT N s s N ,  (11) 

where 0  is the average train dwell time at a station, which can be calibrated with observed data (Lam et al., 1998). 

Substituting Eqs. (5)-(11) into Eq. (2), sQ  can then be rewritten as 

1 1a

a

( ) ( ) ( ) ,  1,2, ,
s s s

s s s

L D L

s s s sL L D

e
Q P x dx P x D x dx P x x D dx s N

V
,  (12) 

where 

w t f1s s s se w e t e f   

w t 0 f
t

1 1 ,  1,2, ,s
s

D
e H e N s e f s N

V
.  (13) 

On the basis of Eqs. (3)-(13),  the maximum service coverage 0L  of the rail transit line can be given by 

a
0 1 1

a

V
L D

e
,  (14) 

where 1  can be determined by Eq. (13). 

3. Model formulation 

3.1. Profit maximization models 

As previously stated, the objective of the rail transit operator is to maximize its net profit. The net profit, denoted 
as , is the total revenue, R, which is generated from the passenger fares, minus the total cost, C. It is expressed as 

R C .   (15) 
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In the following, we first define the total cost C. As described in Chien and Schonfeld (1997, 1998), the total 
cost C is incurred by train operations, rail line, and rail stations, and thus consists of the following three cost 
components: train operating cost, OC ; rail line cost, LC ; and rail station cost, SC . It is represented as 

O L SC C C C .  (16) 

The train operating cost OC  comprises the fixed operating cost, 0 , and variable operating cost, 1F , where F is 

the fleet size (or the number of trains) on that line and 1  is the hourly operating cost per train. It is formulated as 

0 1OC F ,  (17) 

where F equals the vehicle round journey time, , divided by headway H, i.e., 

F
H

,  (18) 

where the round journey time  comprises the terminal time, line-haul travel time and train dwell time at stations, 
which is expressed as 

0 11 122( ),T T T  (19) 

where 0T  is the constant terminal time on the circular line and  is the number of terminal times on the line. 11T  and 

12T  are, respectively, the total line-haul travel time and total dwell time for train operations from station 1 to the 

CBD. From Eqs. (10) and (11), we have 11 1 tT D V  and 12 0T N . 

The rail line cost, LC , is the sum of the fixed costs, 0  (e.g., line overhead cost), and variable costs, 1 1D  (e.g., 

land acquisition, line construction, maintenance, and labor costs), proportional to the rail line length 1D ; i.e., 

0 1 1LC D ,  (20) 

where 1  is the hourly rail line operating cost per kilometer. 

The rail station cost, SC , includes fixed costs (e.g., station overhead cost) and variable costs (e.g., station land 

acquisition, design and construction, operating, and maintenance costs). The total variable cost is determined by the 
number of stations multiplied by the average unit station cost. SC  can thus be expressed as 

0 1( 1)SC N , (21) 

where 0  is the fixed cost for station operations and 1  is the hourly operating cost per station. 

We now define the total operating revenue R that appears in Eq. (15). It is the sum of the number of passengers 
boarding at each station multiplied by the corresponding fare, i.e., 

1

N

s s
s

R f Q ,  (22) 

where the passenger demand for station s, sQ , is given by Eq. (12). The transit fare sf  depends on the fare regimes 

adopted.  

Different transit fare regimes can lead to different levels of operating revenue and thus profit of the operator. In 
this paper, we consider two types of fare regimes: a flat fare regime in which all passengers are charged the same 
fare regardless of the length of their trips, and a distance-based regime in which the fares grow linearly with the 
distance travelled by passengers. Mathematically, the two fare regimes are, respectively, represented as follows. 

For the flat fare regime, 

,  1,2, ,sf f s N , (23) 

where f  is a constant. 
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For the distance-based fare regime, 

0
ˆ ,  1,2, ,s sf f fD s N ,  (24) 

where 0f  and f̂  are the fixed and variable components of the distance-based fare, respectively. 

In view of Eqs. (15)-(24), the profit maximization problems for the flat and distance-based fare regimes can, 
respectively, be formulated as 

1 1
0 0 0 0 1 1 0 1

1 t

2
max , , 2 ( 1)

N

s
s

D
H f f Q T N D N

H V
D ,  (25) 

and 

1 1
0 0 0 0 0 1 1 0 1

1 t

2ˆ ˆˆmax , , 2 ( 1)
N

s s
s

D
H f f fD Q T N D N

H V
D , (26) 

where the bolded symbol “ D ” is the vector of station locations, i.e. , 1,2, ,sD s ND . sQ  can be 

determined by Eq. (12). The decision variables include the rail line length 1D , station locations 2 , , ND D , train 

headway H, and fare f  for the flat fare regime or f̂  for the distance-based fare regime. 

 
The optimal solutions for the rail line length, station location (or spacing), headway and fare can be obtained by 

setting the partial derivatives of each objective function with respect to its decision variables equal to zero and 
solving them simultaneously. We then have the following proposition (the proof is given in Appendix A). 
 

Proposition 1. The optimal rail line length, station location (or spacing), headway and fare solutions for the flat 
and distance-based fare regimes satisfy the systems of equations as shown in Table 3, respectively. 

 

We now look at a special case with an even station spacing, which can be regarded as the average station spacing. 
The even (or average) station spacing solution can serve as a benchmark indicator for the planning and design of rail 
transit line service, particularly at the early stage of the design of the transit line.  

Let  represent the even (or average) station spacing of the rail line, one then obtains ( 1 )sD N s  and thus 

1
( )

2sL N s  in terms of Eq. (1). Substituting them into Eqs. (12)-(14) and (25)-(26), we can then derive the 

first-order optimality conditions of the optimization models (25) and (26) as follows (this proof is similar to 
Proposition 1 and omitted here). 

 

Proposition 2. The optimal even (average) station spacing, headway and fare solutions for the flat and distance-
based fare regimes satisfy the systems of equations as shown in Table 4, respectively. 
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Table 3 Optimal rail line length, station location, headway and fare solutions for different fare regimes 

Flat fare regime Distance-based fare regime 

1

1

1
1

1
1 t

1
1 0 0

t

w 1

1

f 1

2
0, 1, , ,

2
2

,
( )

,
( )

s

s

s

s

s
i

s
i ss s

LN

s L

N

ss
LN

s L

Q
f s N

D D HV

D
T N

V
H

e f P x dx

Q
f

e P x dx

 
1

1

1

1
1

0 1
1 t

1
1 0 0

t

w 01

0 f1 1

2
f 1

ˆ 2ˆ ˆ 0, 1, , ,

2
2

,
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s

s

s

s

s

s

s
i

s i s
i ss s
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ss L

LN N

s s ss s L

LN

ss L

Q
fQ f fD s N

D D HV

D
T N

V
H

e f fD P x dx

D Q f e D P x dx
f

e D P x dx

 

where 1s  if 1s , and 0 otherwise. i sQ D  can be given by 

0 1 0

1 1 1

1 a
1 1 1 1

a

a a1 1 1
1 0 1

1 1 a 1 a

a a a 1
1 1 1 1 0

a a a

1
( ) ( ) ,  2, , ,

2

1
( ) ( ) 1 ( ) ( ) ( )

2

1
         + ( )( ) ( ) 1

2

s
s s s s

s

L D L

L L D

Q e
P L D L s N

D V

V eQ
P x dx P L P L P x dx P x dx

D D e D V

e V V
P L D L P L

V e e

1 1

1

a
1

a

a
1 1

a

1 a
1 1

a

,

1
( ) ( ) ( ) ( ) ( )

2

         + ( )( ) ( )( ) ,  2, , ,
2

1
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2

s s s

s s s

L D L
s s

s s sL L D
s s

s s s s s s

s
s s s s

s
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Q e
P x dx P L P L P x dx P x dx

D D V

e
P L D L P L L D s N

V

Q e
P L L D s N

D V
,

 

where 
t t

t t f

,  for the flat fare regime
,  1,2, ,ˆ ,  for the distance-based fare regime

s

s

e V
s N

e V e fD
. 
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Table 4 Optimal even (average) station spacing, headway and fare solutions for different fare regimes 

Flat fare regime  Distance-based fare regime 

1

1

1
1

1 t

1 0 0
t

w 1

1

f 1

2
0,

2
2

,
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,
( )

s

s

s
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f N
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e f P x dx

Q
f

e P x dx
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1 t

1 0 0
t

w 01

0 f1 1
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ˆ 2ˆ ˆ1 1 0,
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f N s Q f f N s N
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T N

V
H

e f f N s P x dx

N s Q f e N s P x dx
f

e N s P x dx

 

where sQ  can be given by 

0 1 0

1 1 1

1

a a1 1 1
1 0 1

a a

a a a 1
1 1 0

a a a

1
( ) ( ) ( ) ( ) ( )

2

1
         ( ) ( ) ,

2 2

( )
s

s

L D L

L L D

L
s s
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V eQ
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2 2
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2 2 2
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where 
t t

t t f

1 ,  for the flat fare regime
,  1,2, ,ˆ1 ,  for the distance-based fare regime

s
N s e V

s N
N s e V e f

. 

 
 

3.2. Properties of models 

In this section, we examine the properties of the models (25) and (26) that are proposed in the previous section. 
On the basis of the first-order optimality conditions presented in Table 3, the second-order partial derivatives of ( )  

with respect to headway H and fare f  are, respectively, given by 

1 1

1

2
20 a1 1 1 1

w 0 0 0 w 0 0 02 3 3
t a t

2
20 a

f 0 f f 0 f2
1 1a

2

w
1

2 2 2 2
( ) 2 ( ) 2 ,

( ) 2 ( ) ( ) 2 ( ) ,

( )

s s

s s

s

s

N NL L

L L
s s

N L

L
s

L VD D
e fP L T N e fP L T N

H V e VH H H

L V
e fP L e P x dx e fP L e P x dx

ef f

e P x dx
H f

a
w f 0

a

( ) .
V

e e fP L
e

 (27) 
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For the distance-based fare regime, the second-order partial derivatives of ˆ ( )  with respect to H and f̂  can be 

derived as follows: 

1

1

2
2 a 1 1

w 0 1 0 0 02 3
a t

2
2 2

f 1 0 1 0 f2
1

2
a

w w f 1 0 1 0
1 a

ˆ 2 2ˆ ( ) 2 ,

ˆ ˆ ( ) 2 ( ) ,ˆ

ˆ ˆ( ) ( ) .ˆ

s

s

s

s

N L

s L
s

N L

s L
s

V D
e f fD P L T N

e VH H

e D f fD P L e D P x dx
f

V
e D P x dx e e D f fD P L

eH f

 (28) 

Eqs. (27) and (28) show that the signs of the second-order partial derivatives of ( )  and ˆ ( )  with respect to H 

and f (or f̂ ) are related to the maximum service coverage 0L  of the rail transit line and the city’s population 

density. All the second-order partial derivatives may be negative, positive, or zero. Therefore, given all other 

variables, the concavity of ( )  (or ˆ ( ) ) with respect to H and/or f (or H and/or f̂ ) and thus the uniqueness of the 

optimal headway and/or fare solutions cannot be guaranteed. In addition, from Eqs. (27) and (28), we have 
 
Proposition 3. Given the number N and location vector D of stations, the profit function ( )  (or ˆ ( ) ) is concave 

with respect to H and f  (or H and f̂ ) if and only if 
2

2
0

H
, 

2

2
0

f
 and 

22 2 2

2 2
0

H f H f
 (or 

2

2

ˆ
0

H
, 

2

2

ˆ
0

f̂
 and 

2
2 2 2

2 2

ˆ ˆ ˆ
0ˆ ˆH f H f

) hold simultaneously. 

 
However, when the population density follows a uniform distribution, i.e. 0( )g x g  (or, equivalently, the 

potential passenger demand density 0( )P x P . According to Eq. (4), both can be used alternately but not causing 

confusion), we have the following result. 
 

Proposition 4. For the flat fare regime, given the number N of stations, headway H and fare f , when the 

population density along the rail line is uniformly distributed, the profit function ( )  is concave with regard to the 

rail line length 1D  and station locations 2 3, , , ND D D . 

 
The proof of Proposition 4 is provided in Appendix B. Proposition 4 indicates that for the flat fare regime and a 

uniform population distribution, when other variables are given, the optimal solutions for the rail line length and the 
station location are unique. However, this property is not satisfied for the distance-based fare regime. For illustration 
purposes, here is an example. 
 
Example 1. Consider a rail line that extends from the city’s CBD outwards. There are three stations: one is located 
at the CBD area (i.e. 3 0D ), and the locations of other two stations (i.e. 1D  and 2D ) are unknown and need to be 

determined. Assume that the rail fare is a distance-based one and is given by ˆ ,  1,2s sf fD s . In the following, we 

show that for a given train headway H, a unit-distance fare f̂ , and a uniform population density (i.e. 0( )P x P ), 

the profit function ˆ ( ) , which is given by Eq. (26), may be non-concave with respect to 1D  and 2D . To do so, we 

need to check the negative definiteness of the following Hessian matrix: 
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2 2

22
1 21

2 2 2

2
2 1 2

ˆ ˆ
ˆˆ( )

ˆ ˆi j

D DD
H

D D

D D D

.  (29) 

According to Eqs. (12)-(14) and 0( )P x P , we have 

2 2a 0
0 1 1

a

,   1,2
2s s s s s s s s

e P
Q P L L D L L D s

V
,  (30) 

where t
w t 0 f

t

ˆ1 3 ,  1,2s s

e
e H e s e f D s

V
, and , 0,1,2sL s  are given by Eqs. (1) and (14).  

The second-order partial derivatives of ˆ ( )  with respect to ,  1,2sD s  can then be derived as follows: 

22
t a a a t

0 f 1 1 2 1 2 1 f 12
t a a a t1

2
t a

0 f 1 2 1 2 2 1
1 2 t a

2
t a

0 f 12
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fP e f D
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 (31) 

Let 
2

2
2

ˆ
0

D
, one then obtains 

a t
2 f 1

a t

1 2 ˆ
6 3

V e
D e f D

e V
.  (32) 

As a result, the second-order leading principle minor of 2 ˆ( )H  in Eq. (29) is always less than zero, i.e. 

22

2
1 2

ˆˆdet ( ) 0H
D D

.  (33) 

This implies that there is at least one feasible station location solution such that ˆ( 1) det ( ) 0s
sH  (a 

sufficient and necessary condition that a symmetric matrix is negative definite, see Strang, 2006) is not satisfied. 
Hence, ˆ ( )  may not be concave with respect to the station location vector D even for a uniform population density. 

Thus, given other variables, the uniqueness of the optimal rail line length and station location solutions cannot be 
guaranteed. 

However, the following proposition shows that the optimal even (or average) station spacing solutions for the 
both fare regimes are unique. The proof of this proposition is provided in Appendix C. 
 

Proposition 5. Given the number N of stations, headway H and fare f (or f̂ ), when the population density along 

the rail line is uniformly distributed, the optimal even (or average) station spacing solutions for both the flat and 
distance-based fare regimes are unique and given by Eqs. (C.5) and (C.13), respectively. 
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It should be pointed out that the concavity of the objective function ( )  or ˆ ( )  and thus the uniqueness of the 

model solutions cannot be guaranteed when the rail line length, station location (or spacing), headway and fare are 
jointly optimized because the negative definiteness of the resultant Hessian matrix cannot be ensured. 

3.3. Comparison of fare regimes 

In the previous section, we have discussed the solution properties for two profit maximization models with 
different fare regimes. It has been shown that the flat and distance-based fare regimes can lead to significant 
differences in the solution properties of the models. In this section, we further compare the net profits resulting from 
any two fare levels (not necessarily optimal solutions) for the two fare regimes, and identify the condition under 
which the two fare regimes are indifferent in terms of the net profit of the operator. 

For fair comparison, the rail line configuration (the rail line length and the number and locations of stations) and 

train headway are assumed to be identical for the two regimes. Let ˆ
sQ  and sQ  represent the resultant passenger 

demand for station s by the flat and distance-based fare regimes, respectively. From Eqs. (25) and (26), the 
difference in the net profits for the two regimes is given by  

0
1 1

ˆ ˆˆ
N N

s s s
s s

f fD Q f Q , (34) 

where ˆ
sQ  and sQ  can be determined by Eqs. (12)-(14), respectively. 

In order to gain some preliminary and valuable insights, we consider a special case with a uniform population 
density (i.e., 0( )P x P ) and an even (or average) station spacing , which leads to the passenger demand pattern as 

shown in Eqs. (C.1) and (C.2). Substituting Eqs. (C.1) and (C.2) into Eq. (34) yields 

0
1 1
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N N

s s s
s s

f fD Q f Q  

2 2 20 a 0 0 a 0 a
0 1 1 0 0

2a a a
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f f N f f N s P

e V V
 

2 2 20 a 0 0 a 0 a
1 1 0

2a a a2 2 8 4
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s
s

P V P P e P e
f f P

e V V
,    (35) 

where  

t
w f 0 f t 0

t

ˆˆ 1 1 ,  1,2, ,s

e
e H e f N s e f e s N

V
, and (36) 

t
w f t 0

t

1 1 ,  1,2, ,s

e
e H e f N s e s N

V
.                                                               (37) 

To identify the sign of ( ˆ ), we set Eq. (35) equal to zero and solve it. We then obtain  
 

Proposition 6. Given the number N of stations, train headway H, and fares f  and f̂ , the net profits for the flat 

and distance-based fare regimes are indifferent if and only if the (even or average) station spacing  satisfies the 
following cubic equation 

3 2
1 2 3 0a a a ,  (38) 

where the coefficients , 1,2,3ia i  are given by Eqs. (D.1)-(D.5) in Appendix D, respectively. 

 
For presentation purposes, the station spacing that satisfies Eq. (38) is referred to as “indifference station 

spacing” and denoted as * . The corresponding rail line length and net profit are referred to as “indifference rail line 
length” and “indifference net profit”, respectively. According to Eqs. (D.1)-(D.5), the indifference station spacing 
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*  is independent of the population density 0P . The solution expressions for Eq. (38) are shown in entry (ii) of 

Appendix D. For more details, the reader can refer to Spiegel et al. (2009, Page 13).  
For illustrating the application of Proposition 6, an example is provided as below. 

 
Example 2.  In this example, it is assumed that the uniform population density is 34,000 persons/km2, which is the 
average population density of Hong Kong. The number of stations is fixed as 15N  and the train headway is 3.0 
minutes. The fixed and variable components of the distance-based fare are assumed to be $0.25 and $0.15/km, 
respectively. The values of other input parameters are identical with those shown in Table 2. In the following, the 
indifference solutions between the flat fares of $1.30, $1.48 and $1.60 and the above specified distance-based fare 
are presented, respectively.  

By Eqs. (38) and (D.1)-(D.5), one can obtain the indifference station spacing solutions between the three flat 
fares and the specified distance-based fare, as shown in Table 5. It can be seen that there are two indifference station 
spacing solutions between the flat fare of $1.30 and the given distance-based fare, i.e. * 1.95  or 1.03 km (another 
negative root -0.12 is meaningless and thus discarded). They are associated with the indifference rail line lengths of 
29.25 and 15.45 km, respectively, which result in the indifference net profits of $27,358, and $19,246 per hour, 
respectively. When the flat fare is increased to $1.48, only one indifference station spacing solution exists, i.e. 

* 1.52  km. The resultant indifference rail line length and indifference net profit are 22.80 km and $31,281 per 
hour, respectively. When the flat fare is further increased to $1.60, no indifference station spacing solution exists. 
 

Table 5 The indifference solutions for three flat fares and a specified distance-based fare 

Flat fare ($) 
Indifference station 

spacing *  (km) 

Indifference rail line length 
*
1D  (km) 

Indifference net profit *  
($/h) 

1.30 (1.95; 1.03; -0.12) (29.25; 15.45; ×) (27,358; 19,246; ×) 

1.48 1.52 22.80 31,281 

1.60 × × × 

Note: “×” means that no appropriate (real) solution exists at the corresponding item. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Indifference station spacings between three flat fares and a distance-based fare. 
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In order to verify the correctness of the indifference solutions that are generated by Eq. (38), a graphical analysis 

approach is used to plot the profit curves for the above three flat fares and the above specified distance-based fare 
when the station spacing is changed from 0.6 to 3.0 km, as shown in Fig. 2. It can be seen in this figure that the 
intersections M0, M1 and M2 between these profit curves are really consistent with the indifference solutions that 
are obtained from Eq. (38).  

In addition, it can also be seen that, in contrast to the given distance-based fare, a flat fare of higher than $1.48 
can always lead to higher net profit and thus is a better option. However, when the flat fare is lower than $1.48, there 
is some station spacing such that the distance-based fare is better than the flat fare in terms of the net profit of the 
operator. For example, when the station spacing is in between 1.03 and 1.95 km, the specified distance-based fare 
can yield higher profit than the flat fare of $1.30. 

 

3.4. Constraints 

Thus far, the models proposed in the previous section have not taken into account the effects of constraint 
conditions. To make the models more realistic, in the following the capacity constraint and rail line length constraint 
are presented, respectively. The capacity constraint ensures that the supply of the rail transit service satisfies the 
passenger demand, i.e. 

1

N

s
s

K
Q

H
,  (39) 

where K is the capacity of vehicles (i.e. the maximum number of passengers allowed in a vehicle, both seated and 
standing). 

The capacity constraint (39) can further be represented as a bound constraint as below 

maxH H ,   (40) 

where max 1

N

ss
H K Q . 

On the other hand, the rail line length designed should not exceed the corridor length, i.e. 

1D B .   (41) 

Particularly, when addressing the even or average station spacing , constraint (41) can further be written as 

B

N
.   (42) 

Eq. (42) is actually a bound constraint on the station spacing. 

 In order to ensure that the capacity and rail line length constraints of the rail transit service are satisfied, the 
optimized values of the decision variables, such as the train headway, rail line length and station spacing, should be 
verified with Eqs. (40)-(42).  

 

4. Solution algorithm 

In this section, a heuristic solution algorithm is developed to solve the proposed models (25) and (26) with bound 
constraints (40)-(42). The solution algorithm developed below is directly based on the first-order optimality 
conditions of the proposed models (see Table 3 or Table 4). The step-by-step procedure is given as follows. 
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Step 1.  Initialization. Choose an initial value for each of the design variables of the rail line, including rail line 

length (0)
1D , station locations (0)

sD  ( 2, ,s N ), headway (0)H  and fare (0)f  or (0)f̂ . Determine the   

corresponding passenger demand for each station on the rail line, (0)
sQ  ( 1,2, ,s N ) by Eqs. (12)-(14) 

and the corresponding value of the objective function (25) or (26). Set iteration counter 1j . 

Step 2.  Updating of the design variables. Sequentially update the values of the headway, fare, rail line length and 
station location (or spacing) according to the first-order optimality conditions given in Table 3 or Table 4.  

Step 2.1. Update ( )jH  with fixed ( 1)j
sD  ( 1,2, ,s N ) and ( 1)jf  or ( 1)ˆ jf . Check whether the resultant headway 

( )jH  satisfies the capacity constraint (40) and the non-negative passenger demand constraint (6). If it 
exceeds some constraint bound, then it is set at the corresponding bound. 

Step 2.2. Update ( )jf  or ( )ˆ jf  with fixed ( 1)j
sD  ( 1,2, ,s N ) and ( )jH . Check the non-negative passenger 

demand constraint (6) for the resultant fare ( )jf  or ( )ˆ jf . If it exceeds the constraint bound, then it is set at 

the corresponding bound. 

Step 2.3. Update ( )j
sD  ( 1,2, ,s N ) with fixed ( )jH  and ( )jf  or ( )ˆ jf . Check the rail line length constraint (41) 

or station spacing constraint (42) and the non-negative passenger demand constraint (6) for the resultant  
( )j

sD  ( 1,2, ,s N ). If it exceeds some constraint bound, then it is set at the corresponding bound. 

Step 3.  Updating of the passenger demand and objective function. Update the passenger demand for each station 
on the rail line, ( )j

sQ  ( 1,2, ,s N ) by Eqs. (12)-(14), and the resultant value of the objective function (25) 

or (26). 
Step 4.  Termination check. If the resultant objective function values for successive iterations are sufficiently close, 

then terminate the algorithm and output the optimal solution * * * *ˆ, ,  or H f fD  and the corresponding 

objective function value *  or *ˆ . Meanwhile, the optimal fleet size *F  can also be obtained with Eq. (18). 
Otherwise, set j = j + 1, and go to Step 2. 

 
It should be mentioned that the above solution procedure is based on a fixed number of stations. Note that the 

number of stations is an integer variable, which makes it difficult to solve the resultant mixed integer programming 
problem. Fortunately, the number of stations on a rail transit line is a finite number. Therefore, a simple approach 
for finding the optimal number of stations is to compare the resultant objective function values with different 
numbers of stations. 

In Step 2, the values of the design variables – the train headway, fare, and the station location/spacing – are 
sequentially updated one at a time while holding the values of other variables fixed. The associated constraints 
should be immediately checked after the updating of each decision variable such that the resultant solutions at each 
iteration of the solution process always satisfy all the constraints. 

The equations with regard to the station location/spacing ( )j
sD  and the fare ( )jf  (or ( )ˆ jf ) contain the passenger 

demand variable ( )j
sQ  ( 1,2, ,s N ), which are a function of ( )j

sD  and ( )jf  (or ( )ˆ jf ), respectively. Thereby, the 

solving of ( )j
sD  and the fare ( )jf  (or ( )ˆ jf ) in Step 2 is equivalent to solving a fixed-point problem regarding that 

decision variable itself. This can be easily implemented by using the bisection method or Newton’s method 
(Epperson, 2007, Chapter 3). In this paper, the bisection method is adopted. It should be pointed out that when the 
objective functions are not concave with regard to some decision variable, both the bisection method and the 
Newton’s method may terminate at some local optimum. 

5. Numerical studies 

In this section, two test scenarios are used to illustrate the application of the proposed models and solution 
algorithm and the contributions of this paper. The first scenario aims to show the effects of the population density 
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and the rail capital cost on the rail line design. The second scenario is used to evaluate the effects of urban forms 
in terms of the population distribution and the corridor length. The alignment of the rail line concerned is shown in 
Fig. 1. In the following analyses, unless specifically stated otherwise, the length of the corridor is fixed as 30 km, 
the fixed component of the distance-based fare is $1.5, and the baseline values for other input parameters are the 
same with those as shown in Table 2. 

5.1. Scenario 1 

We first investigate the effects of the population density and the rail capital cost on the net profit of the operator. 
In reality, the rail capital (or fixed) cost usually changes over time and space dimensions and is thus uncertain. It is, 
thus, necessary for a revenue-driven investor to ascertain the minimum (average) population density requirement for 
different rail capital costs such that the investment project is profitable. To do so, we conduct numerical experiments 
by changing the population density from 4,000 to 36,000 persons per square kilometer and scaling the baseline 
values of the rail capital cost (i.e. the model parameters 0 , 0  and 0 ) by multiplied from 0.5 to 4.0.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Change in net profit with population density and rail capital cost. 
 

Fig. 3 shows the change in the optimized net profit for various combinations of the population density and the 
rail capital cost for the flat fare regime. It can be observed that different combinations of the population density and 
the rail capital cost can lead to three possible outcomes: surplus, break-even, or deficit. As the rail capital cost 
increases, the minimum population density required for making the rail project financially viable increases. For 
instance, at the level of the baseline value of the rail capital cost, the average population density to ensure the 
profitability of the rail line operations must exceed 8,600 persons per square kilometer. When the rail capital cost is 
3.0 times of the baseline value, the minimum viable population density reaches 12,100 persons per square kilometer. 
Fig. 3 also shows the profitability of the rail line operations for different rail capital costs for four cities with 
different average population densities. It can be seen that, as the rail capital cost changes from 0.5 time to 4.0 times 
of the baseline value, the rail transit services in Hong Kong can always operate profitably and those in Tokyo would 
require direct government subsidies. When the rail capital cost reaches 1.5 times of the baseline value, the rail 
operations in Taipei become break-even. For the Shanghai’s rail transit services, a deficit occurs at 4.0 times of the 
baseline value of the rail capital cost.  

We now look at the effects of population density on the optimal design of the rail transit line in terms of the net 
profit of the operator. We take Hong Kong and Taipei as examples. Their average population densities are 34,000 
and 9,650 persons per square kilometer respectively, as shown in Fig. 3. Fig. 4 shows the changes in the optimized 
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net profit with different numbers of stations and different fare regimes for the two cities, respectively. It can be 
seen that, for all cases, as the number of stations increases, the resultant net profit of the operator first increases and 
then decreases. The optimal numbers of stations for the flat and distance-based fare regimes are, respectively, 19 and 
15 for the Hong Kong case (shown in Fig. 4a), and 8 and 6 for the Taipei case (shown in Fig. 4b). This means that 
the higher the urban population density, the bigger the number of stations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a)                                                                                         (b) 

Fig. 4. Net profit of operator against number of stations: (a) Hong Kong case; (b) Taipei case. 
 

Table 6 Optimal solutions with different average population densities 
 

Optimal solution 
Hong Kong case Taipei case 

Flat fare 
Distance-based 

fare 
Flat fare 

Distance-based 
fare 

Number of stations 19 15 8 6 
Rail line length (km) 27.05 24.00 13.67 11.05 
Average station spacing (km) 1.42 1.60 1.71 1.84 
Fare* 3.46 0.26 3.61 0.36 
Headway (h) 0.06 0.05 0.14 0.14 
Fleet size (no. of vehicles) 31 30 7 6 
Total passenger demand (pass/h) 30,478 33,180 4,791 4,557 
Net profit ($/h) 64,346 48,273 1,665 -132 

* The flat fare and the distance-based fare are measured in $ and $/km, respectively.  
 

Table 6 displays the optimal solutions for the design variables of the rail line with two different average 
population densities. It can be seen that, for a given fare regime, a city with a higher population density requires a 
longer rail line, a higher station density (i.e. a shorter average station spacing), a lower fare, a smaller headway and a 
larger fleet size, and vice versa. In addition, for a given population density, in contrast to the distance-based fare 
regime, the flat fare regime can lead to a higher net profit, which needs an investment of a longer rail line, a larger 
fleet size, and a higher station density. In particular, for a low-density city the distance-based fare regime can induce 
a negative profit (-$132/h). 
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5.2. Scenario 2 

To explore the effects of the density gradient in the population distribution function (see A4 or Eq. (4)), Fig. 5 
shows different population distributions with the same number of population (G = 1,020,000) and the same corridor 
length (B = 30 km) for three different density gradients:  = 0, 0.05 and 0.1. It can be observed in this figure that a 
smaller -value implies a higher level of dispersion in population distribution along the corridor, whereas a larger 

-value indicates a more compact city. Particularly, when  equals 0, the inhabitants are uniformly distributed 
along the corridor. 
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Fig. 5. Urban forms with different values of density gradient . 

Table 7 Optimal solutions with different density gradients 
 

Optimal solution 
0.05  0.1  

Flat fare 
Distance-based 

fare 
Flat fare 

Distance-based 
fare 

Number of stations 19 14 19 14 
Rail line length (km) 20.59 17.17 16.31 13.40 
Average station spacing (km) 1.08 1.23 0.86 0.96 
Fare* 3.86 0.21 4.10 0.31 
Headway (h) 0.06 0.05 0.05 0.05 
Fleet size (no. of vehicles) 26 24 24 22 
Total passenger demand (pass/h) 31,145 34,511 33,636 38,284 
Net profit ($/h) 85,487 65,008 106,136 81,464 

* The flat fare and the distance-based fare are measured in $ and $/km, respectively.  
 

Table 7 indicates the optimal solutions with different values of density gradient  for the flat and distance-based 
fare regimes (the results with 0  are associated with the Hong Kong case as shown in Table 6). It is noted that, 
for a given fare regime, as the density gradient  increases (i.e. the city becomes more compact, see Fig. 5), the 
optimal rail line length, average station spacing and fleet size decrease, the optimal headway almost remains 
unchanged, and the optimal fare increases. As a result, the total passenger demand and the associated net profit rise, 
respectively. In addition, for a given value of the density gradient , compared to the distance-based fare regime, 
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although the flat fare regime has a lower attractiveness for passengers, it can still create a higher net profit at the 
cost of a longer rail line, a larger fleet size, and a higher station density (i.e. a shorter average station spacing). 

We now examine the effects of the urban forms on the rail line design by changing the value of the density 
gradient from 0 to 0.2 and the value of the corridor length from 9 to 14 km. For consistent comparison, the total 
number of population is fixed as 1,020,000. In the following, only the flat fare regime is taken as an example 
because the distance-based fare regime can yield the similar conclusion. Fig. 6 plots the change in the optimized net 
profit for different corridor lengths and different density gradients. It can be seen that for a given density gradient, as 
the corridor length decreases, the net profit of the operator increases, and vice versa. This means that a high-density 
and small-scale city is more profitable than a low-density and large-scale city from the perspective of a revenue-
driven operator. 
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Fig. 6. Change in net profit of operator with density gradient and corridor length. 

 
However, for a given corridor length, the change in the net profit of the operator with the density gradient 

exhibits diverse tendencies. Specifically, for an urban corridor with a length of less than 10 km, as the density 
gradient  increases from 0 to 0.2, the net profit of the operator always descends. The maximum net profit occurs at 
the case of 0 , which is associated with a uniform population distribution. This means that for a high-density and 
small-scale city, a decentralized urban form is more profitable for a benefit-driven operator than a compact urban 
form. However, for an urban corridor with a length of larger than 13 km, the net profit of the operator always 
ascends as the density gradient  increases. This implies that for a low-density and large-scale city, a compact 
urban form is more profitable than a decentralized urban form. When the corridor length is around 11-12 km, as the 
density gradient  changes from 0 to 0.2, the net profit of the operator first decreases and then increases. Therefore, 
there are two different density gradients, which are respectively associated with a compact urban form and a diffuse 
urban form, such that they can achieve the same profitability for profit-maximizing transit services. 

 

6. Conclusions and further studies 

In this paper, analytical models were proposed for optimizing the design variables of a rail transit line in a linear 
urban transportation corridor. The rail line length, number and locations of stations, headway and fare were 
optimized simultaneously. The effects of passenger demand elasticity, fare regimes and urban population 
distribution were explicitly considered in the proposed models. Two profit maximization models, based on the flat 
and distance-based fare regimes, were presented. The first-order optimality conditions for the two proposed models 
were derived (see Propositions 1 and 2) and their solution properties were investigated and compared (see 
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Propositions 3-6). A heuristic solution algorithm for jointly determining the optimal design variables was 
developed. The applications of the proposed models to the comparison of fare regimes and to the evaluation of rail 
capital cost and urban structure have contributed to some new insights and important findings. It has been shown 
that the fare regimes, rail capital cost, urban population density, density gradient and city’s length have significant 
effects on the design of the rail line and/or the profitability of the rail transit operations. The proposed models can 
serve as a useful tool for long-term strategic planning of rail transit services and urban development and for 
evaluation of various rail transit and land use policies. 

Although it has been shown that the models developed in this paper have well-defined properties, some 
important features of transit services were omitted and should be considered in future studies. Firstly, our models 
did not consider the effects of passenger crowding within train carriages and at railway stations. Previous studies 
have shown that crowding discomfort has an important effect on passenger’s choice of transit service (Huang, 2000; 
Li et al., 2009). Therefore, it will be useful to relax this assumption in future studies particularly for congested 
transit networks in Asia. Secondly, our models mainly focused on a many-to-one travel demand pattern during 
commuting period. In reality, individual trips take place at various origins and destinations. Thereby, there is a need 
to extend the proposed models to consider a many-to-many travel demand pattern (Wirasinghe and Ghoneim, 1981; 
Liu et al., 1996; Chien and Schonfeld, 1997; Wirasinghe et al., 2002). Thirdly, our models also assumed that 
passengers would get on the train at the nearest station. However, in reality, some passengers may have a preference 
for the upstream station particularly during the peak periods. This is because, at the upstream station, there is a 
greater possibility of obtaining a seat and/or a higher chance of getting on the train, and thus the risk of not being 
able to board the train is reduced (Sumalee et al., 2009). An investigation of the choice of upstream and downstream 
stations is interesting and important but outside the scope of this paper and thus left to future research. Fourthly, 
while the models developed in this paper focused on the transit operator’s interest, namely, profit maximization, an 
extension of the proposed models to consider the user’s perspective (i.e., minimization of total user cost) or society’s 
perspective (i.e., maximization of social welfare) could lead toward more comprehensive policy analysis. 
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Appendix A. Proof of Proposition 1 

We first look at the flat fare regime. To obtain the optimal solutions for the rail line length and station location, 
we set the partial derivative of the objective function ( )  with respect to sD  to zero. Then, we have 
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,  (A.1) 

where 1s  if 1s , and 0 otherwise. 

According to Eqs. (12)-(14), sQ  is a function of sD , s , 1sL , and sL , which are functions of 1sD , sD , and 

1sD  in terms of Eqs. (1)-(11); i.e., 

1 1, , ,   1,2, ,s s s s sQ Q D D D s N . (A.2) 

Hence, the following equation holds 
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Substituting Eq. (A.3) into Eq. (A.1), one immediately obtains 
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The partial derivative of the objective function ( )  with respect to headway H is 

1 1
0 02

1 t

2
2 0

N
s

s

Q D
f T N

H H VH
. (A.5) 

From Eq. (12), 1Q  is a function of 0L , which is a function of 1 , and thus a function of headway H in terms of 

Eq. (13). However, sL  ( 2, , )s N  is independent of headway H according to Eq. (1). Therefore, we have 

0 0 0

1 1 1

1 1

0 a 01 1 1
1 0 0 0 1 w

a

w

( ) ( ) ( )( ) ( ) ( ) ,

( ) ( ) ,  2, , .
s s

s s

L L L

L L L

L L
s s

L L

L e LQ
P x dx P L P L L D P x dx e P x dx

H H H V H H

Q
P x dx e P x dx s N

H H

 (A.6) 

Combining Eqs. (A.5) and (A.6) yields 

1

1
1 0 0

t

w 1

2
2

( )
s

s

LN

s L

D
T N

V
H

e f P x dx
. (A.7) 

The partial derivative of ( )  with respect to fare f  is 

1 1

0
N N

s
s

s s

Q
Q f

f f
, (A.8) 

where 
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0 0 0

1 1 1

1 1

0 a 01 1 1
1 0 0 0 1 f

a

f

( ) ( ) ( )( ) ( ) ( ) ,

( ) ( ) ,  2, , .
s s

s s

L L L

L L L

L L
s s

L L

L e LQ
P x dx P L P L L D P x dx e P x dx

Vf f f f f

Q
P x dx e P x dx s N

f f

 (A.9) 

Substituting Eq. (A.9) into Eq. (A.8), one obtains 

1

1

f 1
( )

s

s

N

ss
LN

s L

Q
f

e P x dx
. (A.10) 

In view of the above, the system of equations, which consist of Eqs. (A.4), (A.7) and (A.10), defines the optimal 
rail line length, station location, headway and fare for the flat fare regime. Similarly, one can derive the first-order 
optimality conditions for the distance-based fare regime. Its proof is omitted here due to the paper length constraint. 
 

Appendix B. Proof of Proposition 4 

We need to check the N N  Hessian matrix, 
2

( )
i jN D DH , of ( )  with respect to 1 2, , , ND D D . From Eq. 

(25) and Eqs. (A.1)-(A.3), the second-order partial derivatives of ( )  with respect to 1 2, , , ND D D  are given by 

2 22 22 2
11 2

2 2 2 2 2 2
1 1 1

2 2 22
1 1

2 2 2 2

2 22
1

1 1 1

2

,  and ,

,  2, , 1,

,  2, , ,

0,

N N

N N N

s s s

s s s s

s s

s s s s s s

s i

Q QQ Q
f f

D D D D D D

Q Q Q
f s N

D D D D

Q Q
f s N

D D D D D D

D D
  1, , 1.i s s s

 (B.1) 

According to i

s

Q

D
 ( 1,2, ,i N ) shown in Table 3 and (B.1), the Hessian matrix ( )NH  becomes 

2 2

2
1 21

2 2 2

2
2 1 2 322

2 2 2

2
1 2 11

2 2

2
1

0 0

0

( ) 0 0

0

0 0

N
i j

N N N NN

N N N

D DD

D D D DD

H
D D

D D D DD

D D D

.     (B.2) 
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When the population density is uniformly distributed (i.e., 0( )P x P ), the total passenger demand for station s, 

sQ  (see Eqs. (12)-(13)), can then be expressed as 

2 2

1 2 0 1a 01 2
1 1 0 0

a

2 20 a 0
1 1 1 1

a

,
2 8 2

,   2, , ,
2 8
s

s s s s s s s

D D L De PD D
Q P L

V

P e P
Q D D D D D D s N

V

 (B.3) 

where 0L  is determined by Eq. (14) and 

w t 0 f
t

1 1 ,   1,2, ,s
s

D
e H e N s e f s N

V
. (B.4) 

Combining Eqs. (14), (B.1), (B.3) and (B.4), we obtain 

22 2
t t a a t a a

0 02 2
t a t a a t a1

2
a

02
a

2
a

0
1 a

2 31 1
,  and ,

2 2 4

,  2, , 1,

,  1, 2, , 1.
2

N

s

s s

e e V e e V e
fP fP

V e V V e V VD D

e
fP s N

VD

e
fP s N

D D V

 (B.5) 

Substituting Eq. (B.5) into (B.2), the Hessian matrix ( )NH  can then be written as 

a
11

a

a a a

a a a

0

a a a

a a a

a

a

0 0
2

0
2 2

( )

0
2 2

0 0
2

N

NN

e
a

V

e e e

V V V

H fP

e e e

V V V

e
a

V

,  (B.6) 

where  

2

t t a a t a
11

t a t a a t

2 1 1

2 2

e e V e e V
a

V e V V e V
, and a

a

3

4NN

e
a

V
.  (B.7) 

In order to show the negative definiteness of the matrix ( )NH , one only needs to check the negative 

definiteness of the quadric form ( )T
NY H Y , where the superscript “T” denotes the transpose of a vector and Y is an 

N-dimensional column vector, i.e. 1 2, , ,
T

NY y y y .  The quadric form ( )T
NY H Y  can be expressed as 

2 2 2 2 2a a a a a a
0 11 1 1 2 2 2 3 3 1 1

a a a a a a

( )T
N N N N NN N

e e e e e e
Y H Y fP a y y y y y y y y y y a y

V V V V V V
  



Zhi-Chun Li et al. / Procedia Social and Behavioral Sciences 17 (2011) 82–112 109

2 2 22 2a a a a a
0 11 1 1 2 2 3 1

a a a a a2 2 2 2 2N N NN N

e e e e e
fP a y y y y y y y a y

V V V V V
.       (B.8) 

According to Eq. (B.7), one obtains 

a a a a

a a a a

3
0

2 4 2 4NN

e e e e
a

V V V V
, and  (B.9) 

2

a t t a a t a a t t a
11

a t a t a a t a t a t

2 1 1
1

2 2 2 2

e e e V e e V e e e V
a

V V e V V e V V V e V
.  (B.10) 

As previously stated, a te e  and the average walking speed of passengers aV  is less than the average train 

operating speed tV  (i.e. a tV V ). Accordingly, t a

a t

1
e V

e V
, and thus a

11
a

0
2

e
a

V
. 

Consequently, for any non-zero vector Y, the following inequality always holds 

( ) 0T
NY H Y .  (B.11) 

This means that the N N  Hessian matrix ( )NH  is negative definite (Strang, 2006), and thus ( )  is concave 

with respect to 1 2, , , ND D D . This completes the proof of Proposition 4. 

 

Appendix C. Proof of Proposition 5 

Let  represent the even (or average) station spacing of the rail line, then ( 1 )sD N s  and 

1
( )

2sL N s . Substituting them into Eq. (B.3), we then obtain the passenger demand for station s as below 

2 20 a 0 0 a
1 1 1

a a

20 a
0

a

,
2 2 8

,  2, , ,
4s s

P V P P e
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 (C.1) 

where  

t
w f t 0

t

t
w f 0 f t 0

t

1 1 ,  1,2, , ,   for flat fare regime,  

ˆ1 1 ,  1,2, , ,   for distance-based fare regime.
s

e
e H e f N s e s N

V

e
e H e f N s e f e s N

V

 (C.2) 
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Given the number N of stations, headway H and fare f (or f̂ ), and a  uniform population density (i.e., 

0( )P x P ), in the following we derive the optimal even (average) station spacing solution for the flat and distance-

based fare regimes, respectively. 
(i) For the flat fare regime, from Eq. (25) and ( 1 )sD N s , we have 

1
1

1 t

2
0

N
s

s

Q
f N

HV
, (C.3) 

where  

2

t a t a t a1
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2
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e e e V e VQ
P N N P e H e f e N N

V V V e e V

Q P e
N s P e P e H e f s N

V V

 (C.4) 

Substituting Eq. (C.4) into Eq. (C.3) and carrying out some algebraic operations, we obtain the even (average) 
station spacing solution as below 

1 1
1

2 t0 2

2A N

A HVfP A
, (C.5) 

where  

2t a
1 w f w f t 0 t 0

a t
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(ii) For the distance-based fare regime, we have 

1
0 1

1 1 t

ˆ 2ˆ 1 0
N N

s s
s

s s

Q Q
f f N s Q N

HV
, (C.7) 

where , 1,2, ,sQ s N  are determined by Eq. (C.1), and , 1, 2, ,sQ
s N  are given by 

2

2a t a t a t1
0 f f 0 w f 0 t 0 f

a t a t a t

t 0 a
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 (C.8) 

On the basis of Eqs. (C.7) and (C.8), one obtains 
2

1 2 3 0b b b , (C.9) 

where 
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2
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It can be shown that the extremal point 2
2 2 1 3 14 2b b b b b  of Eq. (C.9) leads to the minimum profit. 

Therefore, the optimal even (average) station spacing solution for the distance-based fare regime is 

2
2 2 1 3

1

4

2

b b b b

b
.  (C.13) 

This completes the proof of Proposition 5. 

 

Appendix D. Coefficients and solution of Eq. (38) in Proposition 6 

(i) The coefficients of Eq. (38)  
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where 
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a t t
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(ii) The solution of Eq. (38) 

 

Let 2
2 13 9a a , 3

1 2 3 19 27 2 54a a a a , 3 3 2
1 , and 3 3 2

2 . Then, 

the roots of Eq. (38) are as follows 

* 1
1 1 2 13

* 1
2 1 2 1 1 23

* 1
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1 3
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The above roots can be real or complex, which is dependent on the sign of 3 2 .  
(i) If 3 2 0 , then one root is real and two are complex conjugate. 

(ii) If 3 2 0 , then all roots are real and at least two are equal. 

(ii) If 3 2 0 , then all roots are real and unequal, and given as follows 

* 1 1
1 13 3

* 1 1
2 13 3

* 1 1
3 13 3

2 cos( ) ,

2 cos( 120 ) ,

2 cos( 240 ) ,

a

a

a

 (D.7) 

where 3cos . 

 


