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A combined method composing of the unscented Kalman filter (UKF) and the synchronization-based

method is proposed for estimating electrophysiological variables and parameters of a thalamocortical

(TC) neuron model, which is commonly used for studying Parkinson’s disease for its relay role of

connecting the basal ganglia and the cortex. In this work, we take into account the condition when

only the time series of action potential with heavy noise are available. Numerical results demonstrate

that not only this method can estimate model parameters from the extracted time series of action

potential successfully but also the effect of its estimation is much better than the only use of the UKF

or synchronization-based method, with a higher accuracy and a better robustness against noise,

especially under the severe noise conditions. Considering the rather important role of TC neuron in

the normal and pathological brain functions, the exploration of the method to estimate the critical

parameters could have important implications for the study of its nonlinear dynamics and further

treatment of Parkinson’s disease. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4867658]

To explore the time-varying dynamic properties of a tha-

lamocortical (TC) neuron model that could characterize

the Parkinsonian state, it is necessary to adapt some

undetermined coefficients of this nonlinear model to

observed data. Like other neural models, since some of

variables and parameters of TC model cannot be meas-

ured directly, the reliable reconstruction of variables and

parameters using only a small portion of noise-corrupted

observed data, such as the time series of action potentials,

is one of the most meaningful research topics in neurolog-

ical disease treatment. Currently, several algorithms

based on synchronization have been successfully applied

to determine the unfixed parameters. However, these

algorithms can only be used in models with weak nonli-

nearities or small amounts of noise. The unscented

Kalman filter (UKF) technique enables simultaneous

state and parameter estimation from data with relatively

large amounts of observation noise. However, it should

be noted that UKF considers unknown parameters as vir-

tual states of a joint system, so the accuracy of parameter

estimation will not be very high. Thus, this paper com-

bines the UKF and the synchronization-based estimation

approach to estimate the unknown parameters of the

nonlinear TC model from heavily noise-corrupted time

series of action potentials. It can be verified that such

combined estimation approach has beneficial effects in

reconstructing the entire set of TC parameters accu-

rately, rapidly and it is robust to strong observation

noise. The success must be related to the intrinsic inde-

pendence of ionic currents and time constants presented

in these equations, and in the real thalamocortical neuron

upon which they are based.

I. INTRODUCTION

Parkinson’s disease (PD)1,2 is a degenerative neurologi-

cal condition, which is caused by dopamine depletion in the

basal ganglia (BG)3–7 and characterized by a host of motor

and cognitive dysfunctions. In the Parkinsonian state, the

dynamics of thalamocortical neuron, a relay station whose

physiological role is to respond faithfully to incoming senso-

rimotor signals, is blocked. It has been demonstrated that the

deep brain stimulation (DBS)8–13 at high frequencies

between 130 Hz and 180 Hz is clinically effective in the

treatment of PD, by functionally restoring TC relay

activity.14–16 It is thus suggested that TC neurons is impor-

tant for investigating the underlying mechanism of normal

and PD behaviors in the brain.

By now, many computational models have been

proposed to investigate both the physiological role and path-

ological behavior of TC neurons. Recently, Rubin and

Terman have developed a TC model consisted of several

synaptic connections and ionic channels.17 Based on this

model, Feng et al. have proposed a novel closed-loop global

optimization algorithm which is more effective than the prior

high-frequency open-loop DBS counterparts.13 Moreover,

Liu et al. have investigated a BG network composed of

Hodgkin–Huxley (HH) spiking neurons and found that the

rhythmic/oscillatory patterns that characterize a dopamine-

depleted condition can be suppressed by a direct control of

BG neurons in the network.3 However, in all these studies,

the values of model parameters are set empirically, which is
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unrealistic. In fact, only the membrane potential of TC neu-

ron can be observed in physiological experiments, and noise

is inevitable and usually strong. In neural systems, the source

of noise is various, such as random opening and closing of

ionic channels, the synaptic connections to the neuron and

observation noise in the voltage-clamp experiment, and so

on. All these noise may lead to a dramatic effect on neuronal

behavior, inducing limit cycles on otherwise stable dynam-

ics. In order to further explore precise dynamics of the TC

neuron and achieve a DBS closed-loop control strategy, it is

a significant challenge to estimate the unknown parameter in

a nonlinear dynamical neural model with the strong observed

data.18–22

In previous works, we have investigated the parameter

estimation based on the synchronization and adaptive

control.23–31 The proposed method can rapidly and accu-

rately respond to the changes of undetermined parameters

via the synchronization of the experiment and auxiliary

systems. However, it can only robust against weak noise and

may lose control when the noise is strong enough for itself

nonlinear dynamics. The UKF32–38 method can exactly solve

this kind of noise problem by filtering the noises out. In addi-

tion, UKF removes the requirement to explicitly calculate

Jacobians, which may be a difficult task for complex func-

tions. Thus, UKF can complete the recursion and update of

the state and the errors by the covariance with less computa-

tional complexity through a nonlinear transformation. In this

work, we proposed a combined method composing of the

UKF technique and the synchronization-based method to

estimate the unknown parameters of the TC neuron model.23

The advantage of this control algorithm is guaranteeing a

high accuracy of parameter estimation even when the obser-

vations are noise-corrupted.

Accordingly, the subsequent parts of this paper are

organized as follows: in Sec. II, we give a brief description

of the TC model; in Sec. III, we formulate the

synchronization-based and the combined estimation method

in detail; numerical results of the TC model obtained by the

combined method from heavily noise-corrupted time series

of action potential are presented in Sec. IV, which is

followed by conclusions in Sec. V.

II. THE THALAMOCORTICAL MODEL

TC model can illustrate ionic channel properties and

synaptic connections, which is more to understand the physi-

ological mechanisms of PD characterized by loss of TC relay

neuron’s reliability. As shown in Fig. 1, the single TC neuron

receives inhibitory inputs from the basal ganglia as well as

periodic excitatory inputs from the cortex. The “þ” and “�”

in Fig. 1 indicate excitatory and inhibitory synaptic connec-

tions, respectively.

As shown in Fig. 2, the responses of the TC neuron to

the external afferent signals are different under the normal

state and Parkinsonian state. Under the normal state, the TC

relay neuron can respond to the excitatory periodic sensori-

motor input from the cortex faithfully, namely, a current

pulse can induce only a spike of TC neuron within a small

time window with a certain degree of confidence (Fig. 2(a)).

While under the Parkinsonian state, the fidelity of the TC

relay neuron is compromised by the enhanced inhibitory syn-

aptic connection from the basal ganglia. The TC neuron is

too over-inhibited to respond to the cortex input faithfully

anymore, sometimes along with spike failure and rebound

bursting (Fig. 2(b)). Thus, the TC neuron is not only a simple

relay center for signals anymore but also can be served as an

indicator to identify whether in Parkinsonian state or not.

The voltage of TC relay neuron is modeled via

Cm
dvTh

dt
¼ �IL � INa � IK � IT � IGi!Th þ ISM; (1)

where vTh represents the membrane potential. We assume

that the membrane capacitance Cm is unity. IL, INa, IK , and IT

represent the passive leak, sodium, potassium, and low-

threshold T-type Ca2þ current, respectively. IGi!Th is the syn-

aptic current from BG to TC neuron, and ISM is the periodic

excitatory input from the sensorimotor cortex. To reflect

more closely the actual signals from the cortex, we substitute

a periodic square wave with stochastic noise for the periodic

sensorimotor input employed in the TC neuron model in the

previous literature1,6,11,16

ISM ¼ASMH sin
2pt

qSM

� �� �
1�H sin

2ptþDSM

qSM

� �� �� �
þ noise; (2)

FIG. 1. The functional links of the thalamus, the basal ganglia, and the

cortex.

FIG. 2. Discharge properties of TC neuron in the input of the periodic senso-

rimotor current. (a) Discharge properties of the normal TC neuron. (b)

Discharge properties of TC neuron under Parkinsonian state.
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where qSM, DSM, and ASM are the period, duration, and am-

plitude of ISM, respectively. H is the Heaviside step function,

such that, H xð Þ ¼ 0 if x < 0 and H xð Þ ¼ 1 if x > 0.

The ionic currents are given by

IL ¼ gL vTh � ELð Þ;
INa ¼ gNam3

1 vThð ÞhTh vTh � ENað Þ;
IK ¼ gK 0:75 1� hThð Þ½ �4 vTh � EKð Þ;
IT ¼ gTp2

1 vThð ÞxTh vTh � ETð Þ;

(3)

where gi and Ei term with i 2 K;Na; L; Tf g are the maxi-

mum channel conductance expressed in mS=cm2 and rever-

sal potentials expressed in mV for the ion i, respectively.

p1 vThð Þ and xTh are the T-current gating variable and inacti-

vation variable, respectively. The underlying ionic mecha-

nism beyond the rebound behavior of the TC neuron in the

Parkinsonian state is relevant to the slow, low-threshold

T-type Ca2þ current in Eq. (3). X1 2 m1; h1; p1;x1f g
represents the voltage-sensitive steady-state function and

sx 2 sh; sxf g represents the time constant of channel, which

are expressed as follows:

m1ðvThÞ ¼
1

1þ exp � vTh þ 37

7

� � ;

h1ðvThÞ ¼
1

1þ exp
vTh þ 41

4

� � ;

p1ðvThÞ ¼
1

1þ exp � vTh þ 60

6:2

� � ;

x1ðvThÞ ¼
1

1þ exp
vTh þ 84

4

� � ;

shðvThÞ ¼
1

ah vThð Þ þ bh vThð Þ
;

(4)

where ahðvThÞ¼0:128 �exp �vThþ46
18

� �
;bhðvThÞ¼ 4

1þexp �vThþ23

5ð Þ.
Thus, the inactivation variables follow the Hodgkin-

Huxley formalism with first-order dynamics

dhTh

dt
¼

h1 vThð Þ � hTh

sh vThð Þ
;

dxTh

dt
¼

x1 vThð Þ � xTh

sx vThð Þ
:

(5)

In this nominal TC model, the parameters Ei and gi,

i 2 K;Na; L; Tf g are set as EK ¼ �90, gK ¼ 5, ENa ¼ 50,

gNa ¼ 3, EL ¼ �70, gL ¼ 0:05, ET ¼ 120, gT ¼ 5 similar to

the values proposed by Rubin and Terman.17 However, in

the individual TC neuron, some parameters are actually

undetermined. To simplify the problem, without loss of gen-

erality, we just assume parameter k as an unknown constant,

with the other parameters known. Similarly, the other

unknown parameters can be estimated with the same method.

In this research, we estimate parameters of the low-threshold

T-type Ca2þ channel in Eq. (3) using the combined method

proposed in Sec. III.

III. THE COMBINED METHOD FOR PARAMETER
ESTIMATION

A. The estimation method based on synchronization

Assuming that the number of independent variables and

the structure of underlying dynamical equations for a chaotic

system are known, it is proved rigorously that all unknown

parameters can be estimated dynamically from time series of

the experimental system by adopting the invariance principle

of differential equations.

First, we consider the noise-free experimental system as

_x ¼ Fðx; k; tÞ; (6)

where x ¼ ðx1; x2; :::; xnÞ 2 Rn is the state vector without

noise, Fðx; k; tÞ ¼ ðF1ðx; k; tÞ;F2ðx; k; tÞ; :::;Fnðx; k; tÞ; Þ is a

nonlinear vector function with Fiðx; k; tÞ ¼ giðx; tÞ
þ
Pm

j¼1 kijfijðx; tÞ; i ¼ 1; 2; :::n: Here, giðx; tÞ and fijðx; tÞ are

nonlinear functions, and k ¼ kij 2 U � Rnm are unknown

parameters to be estimated. U is a bounded set.

Furthermore, the form of this model satisfies two premises

assumptions which are necessary for the following estimation.

• Assumption 1: All parameters satisfy the requirement of

parameter linearization, which means for each parameter

the model can be described as _x ¼ g xð Þ þ k � f xð Þ.
• Assumption 2: g xð Þ and f xð Þ in functions _x ¼ g xð Þ þ k �

f xð Þ are Lipschitzian, which means there exists L1; L2 2 Rþ,

so that

kf ðx1Þ � f ðx2Þk � L
1
kx1 � x2k

kgðx1Þ � gðx2Þk � L2kx1 � x2k;

(
(7)

where L1; L2 2 Rþ refers to the uniform Lipschitz

constant.

It is assumed that time series for all variables of Eq. (6)

are available. To estimate all unknown parameters k from

these time series, we introduce an auxiliary system of varia-

bles y ¼ ðy1; y2; :::; ynÞ, whose evolution equations have the

identical form to that of x. But the corresponding parameters

are not the same, which will be set to arbitrary initial values,

that is, q ¼ qij; i ¼ 1; 2; :::; n; j ¼ 1; 2; :::;m: In contrast to

the experimental system (6), the auxiliary system can be con-

trolled by adding a simple linear feedback control input. The

auxiliary system is given by the following equation:

_y ¼ Fðx; q; tÞ þ u; (8)

where u is the external stimulus, which can be described by

the following equation:

ui ¼ ei � ei; (9)

where ei ¼ yi � xi is the synchronization error of systems (6)

and (8). The feedback strength e ¼ ðe1; e2; :::; enÞ will be

adaptively varied according to the following update law:

_ei ¼ �ai � e2
i ; i ¼ 1; 2; :::; n; (10)

where ai > 0; i ¼ 1; 2; :::; n are arbitrary constants.
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The equations governing the evolution of the parameters q
are chosen similar to the adaptive controller and have the form

_qij ¼�bij � ei � fijðy; tÞ; i¼ 1;2; :::;n; j¼ 1;2; :::;m; (11)

where bij > 0; i ¼ 1; 2; :::n; j ¼ 1; 2; :::;m are arbitrary con-

stants. Because the unknown parameter ki to be estimated is

a constant, under the more rigorous condition, the system (7)

can be rewritten as

_x ¼ Fðx; k; tÞ; _k ¼ 0: (12)

One of the central questions concerned with chaos syn-

chronization of the two systems is the strict stability of the iden-

tical behavior. In summary, in the restrictions of Eqs. (8), (9),

(11), and (12), we introduce the non-negative Lyapunov

function

V¼1

2

Xn

i¼1

e2
i þ
Xn

i¼1

Xm

j¼1

1

bij

ðqij�kijÞ2þ
Xn

i¼1

1

ai
ðeiþLÞ2

" #
; (13)

where L > nl. By differentiating the Lyapunov function V of

the system, we can obtain

_V ¼
Xn

i¼1

ei � _yi � _xið Þ þ
Xn

i¼1

Xm

j¼1

1

bij

ðqij � kijÞ � _qij þ
Xn

i¼1

1

ai
ðei þ LÞ � _ei

¼
Xn

i¼1

ei� Fi y; q; tð Þ � Fi x; k; tð Þ þ ei � ei

� �
�
Xn

i¼1

Xm

j¼1

ðqij � kijÞ � ei � fij yð Þ �
Xn

i¼1

ei þ Lð Þe2
i

¼
Xn

i¼1

ei� Fi y; q; tð Þ � Fi x; k; tð Þ
� �

�
Xn

i¼1

ei � Fi y; q; tð Þ � Fi y; k; tð Þ
� �

� L
Xn

i¼1

e2
i

¼
Xn

i¼1

ei� Fi y; q; tð Þ � Fi x; k; tð Þ
� �

� L
Xn

i¼1

e2
i

�
Xn

i¼1

ei�l � max
1�j�m

jejj � L
Xn

i¼1

e2
i � nl� Lð Þ

Xn

i¼1

e2
i

� 0:

It is obvious that _V ¼ 0 if and only if ei ¼ 0;
i ¼ 1; 2; :::; n. Therefore, the set E ¼ e ¼ 0; k� q ¼ 0;f
e ¼ e0 2 Rng is the largest invariant set contained in _V ¼ 0

for the system. In brief, the synchronization parameter esti-

mation method can be expressed as: starting with arbitrary

initial values, the undetermined parameters k of the experi-

mental system can be asymptotically approximated to the

fixed value q of the auxiliary system as soon as the two sys-

tems achieve synchronization, when applying an external

stimulus input to the auxiliary system.

This method which is able to estimate more than one pa-

rameter simultaneously can stay stable even when all param-

eters are undetermined. Besides, such estimation is quite

robust against the weak noise and able to respond rapidly to

changes in operating parameters of the experimental system.

However, the synchronization-based method is only ro-

bust against weak observation noise which can be seen as an

external disturbance. When the observation noise intensity

increases, it may lose efficacy in particular for the nonlinear

dynamics. Thus, in the heavily noise-corrupted TC system, it

is unsuitable to adopt the above method to estimate the

unknown parameters directly.

B. The combined method

Considering the strong noise of the TC neural system, the

combined parameter estimation method, which summarizes

the advantages of both the synchronization-based method

and UKF, is adopted to estimate unfixed parameters. The

proposed method can be depicted as follows: first, UKF is

employed to estimate all the state variables of the experi-

mental system from the noise-corrupted data observed.

Second, the estimated state variables x̂i tjtð Þ obtained through

the UKF method are used as the driven signals to drive the

auxiliary systems (8)–(11) to synchronize to experimental

system (6). Finally, the unknown parameters k may be

dynamically estimated from q in the auxiliary system pre-

cisely and rapidly. Thus, the linear feedback control input u
in Eq. (9) can be transformed into the following form which

is the key core of the combined method for the parameter

estimation:

u ¼ ei � yi � x̂i tjtð Þð Þ; (14)

where x̂i tjtð Þ is the estimation value of the membrane poten-

tial at time t, which is obtained from the membrane potential

at time t� Dt by the UKF updating formula.

In general, UKF works as follows. For a n-dimensional

estimated state x̂, the UKF generates 2n sigma points vif g2n
0

whose elements are vi ¼ x̂6
ffiffiffiffiffiffi
nP
p

, where P is the estimated

covariance matrix of estimation errors of the state x̂. Sigma

points can be regarded as sample points at the boundaries of

a covariance ellipsoid. The core computing of the UKF algo-

rithm can be described as follows:

013128-4 Wang et al. Chaos 24, 013128 (2014)



vi tj t� Dtð Þ
	 


¼ f vi t� Dtð Þj t� Dtð Þ
	 


; k; u
	 


;

ci tj t� Dtð Þ
	 


¼ h vi tj t� Dtð Þ
	 
	 


;
(15)

where f is the nonlinear function of the state, which can

make the sigma points vif g2n
0

estimated at t� Dt iterate for-

ward to the values estimated at t. Then the sigma points are

further transformed by the observation function h to generate

the estimation of the next measurement. Moreover, the nota-

tion X kj k � 1ð Þ
	 


indicates the value of the quantity X at

time k using information taken up to time k � 1. Likewise,

X kjkð Þ indicates the value of X computed at time k using the

information available up to and including time k.

The estimation of the system state x̂ tj t� Dtð Þ
	 


and the

system ŷ tj t� Dtð Þ
	 


can be obtained by weighing the result-

ing sample sets vi tj t� Dtð Þ
	 
� �2n

0 and ci tj t� Dtð Þ
	 
� �2n

0 ,

depicted as the following equation:

x̂ tj t� Dtð Þ
	 


¼
X2n

i¼0

Wi � vi tj t� Dtð Þ
	 


;

ŷ tj t� Dtð Þ
	 


¼
X2n

i¼0

Wi � ci tj t� Dtð Þ
	 


;

(16)

where Wi ¼ 1
2 nþjð Þ ; i ¼ 1; 2; :::; 2n is the weight.

Then we define the prior covariance matrix of the

ensemble members Pxxðtjðt� DtÞÞ, Pyyðtjðt� DtÞÞ,
Pxyðtj t� Dtð ÞÞ as follows:

Pxx tj t� Dtð Þ
	 


¼
X2n

i¼0

Wi vi tj t� Dtð Þ
	 


� x̂i tj t� Dtð Þ
	 
� �

� vi tj t� Dtð Þ
	 


� x̂i tj t� Dtð Þ
	 
� �T

;

Pyy tj t� Dtð Þ
	 


¼
X2n

i¼0

Wi ci tj t� Dtð Þ
	 


� ŷi tj t� Dtð Þ
	 
� �

� ci tj t� Dtð Þ
	 


� ŷi tj t� Dtð Þ
	 
� �T

;

Pxy tj t� Dtð Þ
	 


¼
X2n

i¼0

Wi vi tj t� Dtð Þ
	 


� x̂i tj t� Dtð Þ
	 
� �

� ci tj t� Dtð Þ
	 


� ŷi tj t� Dtð Þ
	 
� �T

: (17)

In Eq. (17), the covariance matrix P depicts the estima-

tion errors of the state x̂. Taking Pxx, for example, minimiz-

ing the trace of the matrix Pxx minimizes the sum variances

of the individual components of the state x, and this will gen-

erate the best Kalman gain matrix K.

So the clean state x̂i tjtð Þ can be obtained from the noise-

corrupted state x̂i tj t� Dtð Þ
	 


by using the UKF updating

formula

K tð Þ ¼ Pxy tj t� Dtð Þ
	 


� P�1
yy tj t� Dtð Þ
	 


;

x̂ tjtð Þ ¼ x̂ tj t� Dtð Þ
	 


þ K tð Þ � y tð Þ � h x̂ tj t� Dtð Þ
	 
	 
� �

;

P tjtð Þ ¼ P tj t� Dtð Þ
	 


� K tð Þ � Pyy tj t� Dtð Þ
	 


� KT tð Þ; (18)

where K is the Kalman gain matrix. However, the unknown

parameters are considered as extra state variables which may

decrease the accuracy in the UKF.

Obviously, the combined estimation approach is quite

robust against the observation noises. In comparison to other

parameter estimation methods, the distinguishing characters

of this method are as follows: (i) it can be applied to the non-

linear TC neuron which is heavily corrupted with noise; (ii)

it is analytical and rigorous because it does not require one

to numerically determine any additive parameters; (iii) it is

systematic because the control technique in the form of Eqs.

(8)–(10) and (16) can be applied to all chaotic systems satis-

fying the uniform Lipschitz condition.

IV. RESULTS

Assuming we have known the nominal functional form

of the TC model, we can consider the unknown parameters

as virtual states in need of estimation. The joint system can

be written in the following forms:

x tð Þ ¼ f x t� Dtð Þ; k t� Dtð Þ
	 


ðDt > 0Þ;
k tð Þ ¼ k t� Dtð Þ;
y tð Þ ¼ h x tð Þð Þ þ r tð Þ;

(19)

where x tð Þ ¼ x1; x2; x3ð Þ, k tð Þ ¼ k1; k2; k3ð Þ, Dt ¼ 0:01, r tð Þ
is the observation noise injected in the voltage which can

improve the computational efficiency. f denotes the TC

model equation which is solved by the four-order Runge-

Kutta method. Because only the membrane potential can be

measured, h is set as h ¼ ð 1 0 0 Þ. The observations are

generated by adding white Gaussian noise whose intensity is

D ¼ 0:1 to the membrane potential

Under the assumption that TC model functional form

and observation noise are known, we first adopt the

UKF method to estimate the state of the joint system by

filtering the noise out. The initial state is set to be

x̂ ¼ �65 0:1 0:1
	 


, and the initial guess for parameter val-

ues is chosen as ki ¼ �150 0 30 0 �100 0 100 0
	 


with

i 2 EK gK ENa gNa EL gL ET gT

� �
. The membrane poten-

tial corrupted with noise and the noise-free state are drawn in

Fig. 3(b) by blue and red lines, respectively. It is assumed

that the noise-free state can be obtained under the ideal

observation condition as a reference value. Compared to the

differences between noise-free data and noisy data with the

maximum amplitude about 2mV in Fig. 3(b), the differences

between the estimated and the noise-free states as shown by

blue and red traces in Fig. 3(d) are nearly one tenth, which

proved the validity of the UKF estimation algorithm. Shown

in Fig. 3(a), the trajectory of the noise-free attractor in the

phase-space indicates the dynamic characteristics of the fast

and slow variables, which corresponds to the noise-free time

series of the action potential in Fig. 3(b), while Fig. 3(c) is

the trajectory of the estimated attractor in the phase-space,

corresponding to the periodic discharge of the estimated

time series in Fig. 3(d).

Then, the time series estimated by the UKF above are

brought into the synchronization-based estimation system in

order to estimate the unknown parameters of the TC model.

The various parameters of all ion channels in Eq. (3) have

been estimated. We just take the reversal potentials and the

maximum channel conductance of the low-threshold T-type

013128-5 Wang et al. Chaos 24, 013128 (2014)



Ca2þ channel as examples. The low-threshold T-type Ca2þ

reversal potentials are shown in Fig. 4, where the blue, red,

and black lines indicate the combined method, the UKF, and

the synchronization-based method, respectively.

Fig. 4(a) describes the estimation dynamic results when

the noise intensity D ¼ 0:1. It should be noticed that although

in the combined method, the response speed may be slightly

slower than the synchronization-based method owing to the

iteration process of the UKF algorithm, the parameters esti-

mated can converge to the true values more smoothly and

precisely than that in the other two estimation methods.

While only using the UKF method will result in fluctuations

in the convergence process, which means the accuracy is low,

and in the convergence progress, the synchronization method

shows a noticeable decreasing trend. The detailed dynamic

description after convergence in the last 50 ms of the simula-

tion can be clearly observed in the inset chart.

In order to further quantitatively compare the dynamic

convergence process of these three methods, we calculate the

average value and variance after converged, represented as

the histograms and the error bars in Fig. 4(b). It is noted that

the average value estimated by the combined method is the

closest to the true value 120, and the error bar is the shortest

corresponding to the minimum fluctuation. The difference

between the estimated value and the expected value in the

synchronization-based method is the maximum, and the fluc-

tuation is dramatic. The results of UKF are intermediate.

For the purpose of studying the influence of the observa-

tion noise intensity D on the accuracy of the parameter esti-

mation, we introduce the normalized absolute error of k as

Ai ¼ jki � qij=ki, i 2 ET gT

� �
. The observation noise in-

tensity D will follow a uniform distribution on �D;D½ �. Fig.

4(c) illustrated that the normalized absolute error of the pa-

rameter ET estimated by the combined method is relatively

low. When D is small, the ET normalized absolute errors

estimated by the combined method and the UKF are about

the same, slightly larger than the errors estimated by the

synchronization-based method. While the noise intensity

increases and over the period from 0:06 to 0:1, the normal-

ized absolute error estimated by the combined method grows

down distinctly and becomes the lowest one, which repre-

sents the robustness to the increased noise intensity and the

high estimation accuracy. While the normalized absolute

error of the UKF method fluctuates within a certain small

band 0:006; 0:008½ � and remains nearly unchanged broadly

except at zero noise intensity where the error reaches up to

0:016, because the UKF works in a noisy environment, it

cannot perform well without noise. Conversely, the normal-

ized absolute error ET of the synchronization-based method

increases sharply, meaning that it may fail to estimate the pa-

rameters well while noise grows strong.

Fig. 5 shows the estimation results of the low-threshold T-

type Ca2þ maximum channel conductance. Apparently, in Fig.

5(a), when D ¼ 0:1 the convergence of the combined method

is slower than the synchronization-based method, and less

smooth, although some spike fluctuations which are caused by

the effects of the noise and the external periodic current stimu-

lus occurs in the inset chart of the synchronization-based

convergence. Besides, it is much more rapid and smooth than

the UKF.

FIG. 3. (a) Clean attractor for TC model. (b) Noisy-free (red) and noisy observation (blue) for this limit cycle. (c) Estimated attractor for TC model. (d) Noisy-

free (red) and estimated observation (blue) for this limit cycle.
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The quantitative comparison of the three methods after

convergence shown in Fig. 5(b) illustrates that the estimated

average value of the combined method is the nearest to the

fixed value with the shortest length of the error bar. So we

can make a conclusion similar to Fig. 5(a), that among the

three estimation methods, the accuracy of the combined

method is the highest and the fluctuation range is minimum.

Fig. 5(c) illustrates the normalized absolute errors along

with the increased observation noise D. When D rises, the

normalized absolute error of the combined method is lower

than the synchronization-based method except near D ¼ 0,

and its upward trend is far less dramatically, showing a high

estimation accuracy and good robustness. When D varies

from 0:08 to 0:1, the normalized absolute error of the com-

bined method is slightly larger than the UKF method, the

error of which remains in general unchanged when D
increases.

In summary, three conclusions can be drawn from

Figs. 4 and 5. First, undetermined parameters of the com-

bined method can converge to the true values rapidly with a

higher accuracy, and the dynamic performance of this com-

bined method is better than the other two estimation meth-

ods. Second, quantitative index shows that the accuracy of

FIG. 4. The results of the unknown parameter ET estimated from the noise-

corrupted time series. (a) The comparison of the results estimated by the

three methods when the noise intensity for D ¼ 0:1. The inset chart is the

enlargement of the estimated results in the last 50 ms. (b) The quantitative

comparison after convergence of the three methods. (c) The normalized

absolute error of the three methods when the observation noise intensity D
changes from 0 to 0:1.

FIG. 5. The results of the unknown parameter gT estimated from the noise-

corrupted time series. (a) The comparison of the results estimated by the

three methods when the noise intensity for D ¼ 0:1. The inset chart is the

enlargement of the estimated results in the last 50 ms. (b) The quantitative

comparison after convergence of the three methods. (c) The normalized

absolute error of the three methods when the observation noise intensity D
changes from 0 to 0:1.
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the combined method is the highest and the fluctuations in

the estimation process are the smallest. Finally, the robust-

ness against the increased noise intensity of the combined

method is the strongest.

The estimation results of other ionic channels have simi-

lar performance to the estimation of the low-threshold T-type

Ca2þ channel (data not shown), which confirms the validity

of the combined method for TC model parameter estimation.

V. CONCLUSIONS

The TC neuron model is an important component of

Parkinson’s disease, but it is worthwhile to note that not all

states and parameters of the model could be measured.

In this paper, we have adopted an effective estimation

method combined the UKF and the synchronization-based

adaptive feedback method to estimate the undetermined key

parameters of the TC model, such as the maximum ionic

conductance and equilibrium reversal potential of the low-

threshold T-type Ca2þ channel. In the combined method,

the noises are first filtered out and state variables without

noise are estimated through the UKF algorithm. Then

the estimated states are brought into the synchronization-

based estimation system to drive the auxiliary system in

order to estimate the unknown parameters, so the undeter-

mined parameters can converge to the expected value fast

and precisely by adjusting the adaptive rate. Numerical sim-

ulations demonstrate that the combined method of which

the higher accuracy of parameter estimation and the better

robustness to noise can be guaranteed is more effective than

only the strategy of the UKF or the synchronization-based

method.

Using the combined method to estimate the undeter-

mined parameters of the neuronal model may be considered

as a good foundation of further exploring the model dynam-

ics of the Parkinsonian state, especially when a critical pa-

rameter characterizing Parkinsonian brain may be

immeasurable. Then the critical parameter estimated will be

used as the feedback variable in DBS closed-loop strategy.

We expect our estimation results will be helpful for further

Parkinson’s disease analysis.
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