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A 268 cm section of sediment core from Liangzhi Lake in Hubei province in central 

China was used to assess the use and accumulation of metals in the lake in the past 

7,000 years. The concentrations of trace metals, including Cu, Pb, Ni and Zn, and 

major elements, Ca, Fe and Mg, in a 14C- dated segment of sediment core were 

analysed. Historical trends on the input of metals to Liangzhi Lake from around 5000 

BC to the present were recorded in the sediments, representing about 7,000 years of 

history on the mining and utilisation of metals in central China. The concentrations of 

Cu, Ni, Pb and Zn increased gradually from about 3000±328 BC, indicating the start 

of the Bronze Age in ancient China. During the period 467±257 – 215±221 AD, there 

was a rapid increase in the concentrations of these metals in the sediments, indicating 

enormous inputs of these metals at that time. This era corresponded to China’s 
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Warring States Period (475 - 221 BC) and the early Han dynasty (206 BC – 220 AD), 

during which copper and lead were extensively used in making bronze articles such as 

vessels, tools and weapons. From 1880±35 AD to the early 1900s, there was also a 

significant increase in the concentrations of metals such as Cu, Ni, and Pb, which 

probably reflected the metal emissions and utilisation during the early period of 

industrial development and weapon manufacture during the wars in China. The Pb 

isotopic analysis showed that the surface and subsurface sediments had lower 

206Pb/207Pb and 208Pb/207Pb ratios than the deeper layers, reflecting the additional input 

of Pb from mining activities that took place during the Bronze Age era and in modern 

times. This study provides direct evidence of the environmental impact of the mining 

and utilisation of metals in the last 7,000 years in one of the important regions of 

Chinese civilisation. 

 

Introduction 

Humans have a long history of utilising metals since the discovery of techniques for 

their mining and recovery thousands of years ago. Metals are released into the 

atmosphere from various activities, such as coal and oil combustion, mining, the 

pyrometallurgical production of iron and non-ferrous metals, and other human 

activities (1, 2, 3). Copper was first used about 7,000 years ago, and has been 

produced in substantial amounts since the Bronze Age (4000- 5,000 years ago) (4, 5). 

During the period of the Roman Empire, large quantities of metals were produced, 
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especially Pb (80,000 to 100,000 metric tons per year), Cu (15,000 tons/year), Zn 

(10,000 tons/year), and Hg (>2 tons/year) (6, 7), to meet a significant increase in 

demand for metals for military and civilian purposes, such as for tools and coinage. 

However, Roman-era mines were small-scale operations. It was not until the 

Industrial Revolution in the eighteenth century, when industrial production increased 

on a massive scale, that the demand for metals grew exponentially, as did the intensity 

of metal emissions with the use of large furnaces with tall smokestacks (8, 9, 10). 

Sedimentary records are widely used to reconstruct the historical inputs of metals 

and other pollutants in the environment. Lakes and their sediments change rapidly in 

response to the sedimentation process in the drainage basin, which provide a detailed 

record of the transformation of the terrestrial environment (11). The study of sediment 

cores allows historical inputs of many pollutants in the ecosystem to be determined, 

and provides an estimate of the variability of the natural climate (12, 13, 14). Metals 

can enter the drainage system through atmospheric deposition and be conserved in the 

sediment bed. If the sediment accumulation rate is known, the depth profiles of trace 

metals in the sediments may be used to evaluate the rate of influx of metals in the past. 

Previous studies have demonstrated that a record of past depositions of metal can be 

obtained from lake sediments (15-21). The history of atmospheric lead pollution in 

Europe has been constructed by studying lead concentrations and lead isotopic ratios 

in lake sediments and peat deposits (22-25). Renberg et al. (25) showed that the first 

indication of the atmospheric deposition of lead pollution dates to between 2000 and 

1500 BC. The concentration profiles of lead in the lake sediments and peat cores were 

found to follow the pattern of the history of world lead production: an initial increase 

at about 2000 BC; an early peak during the Greco-Roman period at around 0 AD; an 

increase from about 1000 AD; a decline sometime between 1300 and 1700 AD; an 
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increase during the Industrial Revolution; a peak in the 1970s; and a decline thereafter 

(3, 23, 25).  

Some studies have been conducted using lake sediments to investigate the human 

impact on lakes in China. Heavy metals, nutrients and spheroidal carbonaceous 

particles in several lakes in the Jianghan Plain and the Taihu region of China were 

analysed (17, 26). These studies have shown that the sediment cores were 

significantly enriched in heavy metals with fossil fuel-derived carbonaceous particles 

due to the influence of urbanisation and industrial development in the surrounding 

region in the past few decades. However, high resolution studies have been limited to 

the recent one hundred years of sedimentary records.  

For the present study, in order to determine the historical record on the utilisation 

of metals in ancient China, a sediment core of about 268 cm long in depth was 

collected from Liangzhi Lake in Hubei province in central China. There is a long 

history of human habitation in the area around Liangzhi Lake, an important region in 

the development of Chinese civilisation. Liangzhi Lake is relatively undisturbed from 

known local discharges of wastewater; hence it is an ideal site to study ecological 

changes and the impact of past human activities, such as mining and the uses of 

metals (including the manufacturing of various tools and weapons during the Bronze 

Age), on the aquatic ecosystem in ancient China. This is probably the first study on 

7,000 years of sedimentary records of metals in China.  

 

Experimental Section 

Study Area. Liangzhi Lake is located at 30o14’60”N and 114o29’01E [see Figure S1 

in supporting information (S.I)]. The lake is situated at the middle reaches of the 

Yangtze River. It is a permanent freshwater lake, covering an area of approximately 
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230 km2

Sampling Description. A sediment core with a depth of 268 cm was collected at 

the centre (the deepest part) of Liangzhi Lake in June 2002 using a piston coring 

device. The diameter of the core was 6 cm. The sediment core was sectioned at 1 cm 

intervals in situ, which were immediately stored in pre-washed polyathylen bags. The 

samples were then transported to the laboratory and stored at 4 - 6 °C prior to 

analysis.  

Radiocarbon Dating. The sediment chronologies used in this study were 

determined at the China Seismological Bureau based on conventional 14C dating 

method using Accelerator Mass Spectrometry. The 14C ages were then calibrated 

using the calibration programme CALIB-4.3 (29). All of the dates described in this 

paper were obtained by interpolation (polynomial) based on the calibrated 

radiocarbon age, and the bulk radiocarbon and calibrated ages by depth are given in 

Table S1 and Figure S2 in the supporting information (S.I.).  

 and with an average water depth of 2.8 meters. Liangzhi Lake is one of the 

many lakes within the Jianghan Plain. Thousands of years ago, the Jianghan Plain was 

a huge area of marshland known as the Yunmengze (Yunmeng marsh). However, the 

marshland gradually shrank and was replaced by a fluvial area studded with thousands 

of lakes and small marshes (27). Liangzhi Lake has a great ecological value, as it is 

the habitat of many lacustrine species, such as fish and crabs. The water quality in 

Liangzhi Lake has been deemed to be of a Grade 2 or 3 levels, according to the 

standards set up by the State Environmental Protection Agency of China 

(GB3838-2002). This means that the water in Liangzhi Lake is low in nutrients and 

toxic pollutants (28).  Compared to other lakes in the alluvial plain, there has been 

relatively less influence on this lake from local human activities in the last few 

decades.  
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Heavy Metal Analysis. The sediment samples were oven dried at 60 °C for 24 h, 

and subsequently ground to fine particles. They were digested using the strong acid 

digestion method (see ref. 30 for details.). The concentrations of metals were 

determined using Inductively Coupled Plasma-Atomic Emission Spectrometry 

(ICP-AES; Perkin Elmer Optima 3300DV). Reagent blanks, replicates and standard 

reference material (NIST SRM 1646a Estuarine Sediment) were used as the QA/QC 

protocols in the analysis. The precision and bias assessed by the reagent blanks and 

replicate samples were <5 % of the mean analyte concentrations for all of the 

elements in the analysis. The recovery rates in the standard reference material (NIST 

SRM 1646a) for all of the measured elements were around 80% - 105%. 

Analysis of Pb Stable Isotopic Compositions. The Pb isotopic compositions of 

25 selected sediment samples were determined to study the natural and anthropogenic 

origins of Pb in the lake sediments. The Pb isotopic ratios (204Pb/207Pb, 206Pb/207Pb, 

and 208Pb/207Pb) of the sediments were measured using Inductively Coupled 

Plasma-Mass Spectrometry (ICP-MS; Perkin Elmer Elan 6100DRCplus) (30). The Pb 

counts of the procedural blanks were <0.5% of that of the samples, and the precisions 

(%RSD) of the Pb isotopic ratios were <0.5%. International standard reference 

material (NIST SRM 981 Common Pb Isotopic Standard) was used for quality control. 

The measured 204Pb/207Pb, 206Pb/207Pb, and 208Pb/207

 

Pb ratios of NIST SRM 981 were 

0.0645±0.0001, 1.0936±0.0008, and 2.3703±0.0021, which were in good agreement 

with the standard reference values of 0.0646, 1.0933, and 2.3704, respectively. 

Results 

Metal Concentrations in the Sediment Profile. The vertical profiles of major 

elements, including Ca, Fe, and Mg, and trace metals, including Cu, Ni, Pb, and Zn in 
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the sediment core are shown in Figure 1, 2 and 3. The concentrations of metals in 

different historical times are summarised in Table 1. In general, the concentrations of 

these metals decreased with depth. Before 3000±328 BC, the concentrations of Cu, Ni, 

Pb and Zn in the sediments were relatively low and constant (see Figure 2). From 

about 3000 – 2700 BC, these elements showed a gradual increase in concentration. 

There was a rapid increase of elements such as Cu, Ni, and Zn in 76±237 BC, and Pb 

in 467±257 BC, reflecting an abrupt input of these metals into the sediments. 

Subsequently, the concentrations of Cu, Ni, Pb, and Zn were relatively constant, with 

some occasional variations. The Ca concentrations were observed to peak at about 

1500±102 AD, and to decrease gradually towards modern times. The concentrations 

of Fe in the sediment profile exhibited a highly varied pattern and those of Mg 

concentrations showed a general trend of increasing towards the surface. 

Pb Isotope Compositions in the Sediment Profile. The results of detailed stable Pb 

isotope compositions in the Liangzhi Lake sediments are given in Table S1 in the 

supporting information (S.I.). The vertical profiles of 206Pb/207Pb and 208Pb/207Pb 

ratios, and the concentrations of Pb are shown in Figure 4. The concentrations of Pb 

increased towards recent times, while decreasing trends were observed in 

the 206Pb/207Pb and 208Pb/207Pb ratios from 4940±347 BC to 1040±280 BC, 

the 208Pb/207

 

Discussion 

Pb ratio in the last 2000 years (see Figure 4). 

Chronology of Metal Inputs in the Sediments. The literature indicates that the 

Bronze Age emerged in China at around 2000 BC, during the Xia dynasty (31). For 

the chronology of Chinese dynasties, the systems described by Ma (31) were used in 

the present study (see Table S3 in S.I.). Bronze was widely used for tools, weapons, 
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and ritual vessels in China since about 2000 BC until the Han dynasty (206 BC - 220 

AD). The enrichment of Cu, Pb, Ni, and Zn in the Liangzhi Lake sediments is 

illustrated in Figure 2. These patterns may be attributed to the use of these metals in 

central China in ancient times. As shown in Figure 2 and the enrichment factor chart 

(Figure S3 in S.I.), there were two noticeable increases in the concentrations of Pb, Ni, 

and Zn, in 3000 (± 328) - 2700 (± 323) BC, and later in 467 (± 257) – 76 (±237) BC 

The increase in concentration of these metals possibly marks important changes, in 

mining practices and in the use of these metals that occurred during these periods. The 

distribution of metals differed in the sediment core which led to its division into 

discrete stratigraphic phases (see Figure 2). The following discussion will focus on 

primarily on the anthropogenic metals, including Cu, Pb, Ni, and Zn, which are 

important indicators of past metal pollution from various human activities. The 

distribution patterns of these metals along the sediment core were observed to fall into 

the following five phases, 1) Phase I – the pre-mining phase (before 3000±328 BC); 2) 

Phase II – the early Bronze Age (2890±326 to 549±260 BC); 3) Phase III – the late 

Bronze Age (467±257 BC to 168±224 AD); 4) Phase IV – the post-Bronze Age (215± 

221 – 1360±122 AD); and 5) Phase V – the modern period in China (after 1370 ±120 

AD) 

Pre-mining Phase (Phase I). Before 3000±328 BC, the concentrations of Cu, Pb, 

Ni, and Zn were at their lowest and were generally constant in the whole profile, 

which had average values of 16.8, 15.7, 34.1, and 46.7 mg/kg, respectively (Table 1 

and Figure 2). These values may represent the natural background concentrations of 

metals from the parent bedrocks in the surrounding area. This period probably 

represented the time before large-scale human activities began to take place in this 

region. 
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Early Bronze Age in China (Phase II). There was a gradual increase in the 

concentrations of Cu, Ni, and Zn starting at around 3000±328 BC (Figure 2). The 

concentrations of Cu, Ni, and Zn increased from background values of 16.8, 34.1, and 

46.7 mg/kg to 18.3, 39.4, and 58.0 mg/kg in 2520±319 BC (increased by 9.0%, 16%, 

and 24%, respectively). The concentration of Pb increased gradually from a 

background value of 15.7 mg/kg to 20.3 mg/kg in 2720±260 BC (an increase of 29%). 

The increase in the concentrations of these metals in the sediments probably indicates 

an increase in the mining and utilisation of these metals in China during the early 

Bronze Age. Several copper mining sites which can be traced back to 1310 BC have 

been reported in the east Hubei province (32). 

Late Bronze Age in China (Phase III). From 467±257 BC to 168±224 AD, there 

was a rapid increase in the concentrations of Cu, Ni, and Zn in the sediments, to 36.7, 

59.0, and 98.2 mg/kg (increased by 120%, 73%, and 110% from background values of 

16.8, 34.1, and 46.7 mg/kg, respectively) (see Figure 2). This period corresponded to 

the Warring States (475-221 BC) and Han dynasty (206 BC – 220 AD) A nearby 

ancient copper mining site, Tonglushan, which is located in Daye in Hubei province, 

had been in operation from the Spring and Autumn Period and throughout the Han 

Dynasty (about 770 BC – 220 AD) (31). It is estimated that about 10,000 tons Cu 

were produced in this site (33). The enrichment of Cu, Ni, and Zn in the sediments 

can perhaps be attributed to the mining activities that occurred in this region since the 

early Bronze Age, and which subsequently peaked during the Han dynasty (206 BC - 

220 AD)   

The concentration of Pb increased rapidly from 467±257 BC to 168±224 AD to 

about 28.5 mg/kg (increased by 82% from a background value of 15.7 mg/kg) (see 

Figure 2). In ancient China (3000 BC to 200 AD), copper was alloyed with lead to 
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make various bronze articles (31). The input of Pb to sediment was found to increase 

gradually since the start of the early Bronze Age until about the Warring States Period 

(475 - 221 BC) in China. After that, a rapid increase was observed in the use of Pb 

until the Han dynasty (206 BC – 220 AD)  

Moreover, during the Han dynasty (206 BC – 220 AD), there was an expansion in 

agricultural activities due to a rapid increase in population (34). The government 

introduced the “tai-tian” method in 85 BC, which involved growing crops in 

well-regulated alignments to achieve optimum space-saving conditions and good 

irrigation methods. At that time, better tools made of iron came into use, such as the 

weeding hoe, ox-drawn plough, and a seed box attached to a light oxen-drawn plough, 

which increased crop yields. The intensive agricultural activities that took place 

during the Han dynasty caused a large-scale exploitation of uncultivated land. This 

may have also led to an increase in the leaching and accumulation of trace metals, 

such as Cu, Ni, Pb, and Zn, and some major elements (Fe, Mg and Ca) in the 

sediments as a result of intensive agricultural practices (see Figure 1 and 2). 

Post-Bronze Age in China (Phase IV). At the end of Eastern Han dynasty (25 - 

220 AD), ceramics played a more important role than before, and iron tools and 

vessels began to be used in place of bronze ones (35). The sediment records show that 

there was a decrease in the concentrations of Cu, Ni, and Zn after a peak in 215±221 

AD (Figure 2). The decrease in the concentrations of these metals coincided with the 

end of the Bronze Age in China. After 215±221 AD, the concentration of Pb 

continued to increase at a lower rate, indicating that after the Bronze Age the mining 

and use of Pb in China was still increasing, particularly in the Jianghan Plain region.  

Modern Period in China (Phase V). The concentrations of Cu, Ni, Pb, and Zn 

from 1300 – 1900 AD (Phase V) are shown in Figure 3. During the period 
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1370±120 – 1470±106 AD, there was an increase in the concentrations of Cu, Pb, and 

Zn in the sediments (see Figure 3). This period coincided with the end of the Yuan 

dynasty and with the early Ming dynasty. During this period (1334 – 1487 AD), there 

was social instability across the country due to famine, adverse climatic conditions, 

and poverty, which eventually led to peasant rebellions (36). There was an average of 

2.15 – 3.46 instances of warfare per year in the country. These wars may have led to 

an increase in the utilisation of metals for the manufacturing of weapons and tools. 

Thereafter, the concentration of Zn remained relatively constant. The concentrations 

of Cu and Pb continued to increase from 1370±120 AD, but showed a decreasing 

trend from about 1600±88 AD (during the Ming Dynasty) until about 1830±46 – 

1880±35 AD (the Qing dynasty). There were years of severe drought for about 40 

years, from 1601 to 1644 AD, during the Ming dynasty (37). The dry climate may 

have led to a reduction in human activities, which was reflected in a decrease in the 

concentration of metals in the sediments. From 1830±46 – 1880±35 AD to the early 

1900s, there was a significant increase in the concentrations of Cu, Pb, and Ni (see 

Figure 3). During the 1860s and 1870s, the Qing government promoted a 

“self-strengthening” movement to utilise Western technology to develop China’s 

industrial and defence systems (38, 39). At that time, various railroads, textile 

factories, arsenals, and a modern army and navy were built, and mining activities (for 

coal and metals) were initiated to support the manufacturing industry and the army. In 

subsequent years, several wars broke out in China, such as the first Sino-Japanese 

War in 1894 and the 1911 Revolution that led to the fall of the Qing Dynasty. 

According to Zhang et al. (36), the frequency of warfare reached a high level of 1.93 

times per year during the period 1806 – 1912. The small increase in the concentrations 
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of Cu, Ni, and Pb in the sediments around 1830±46 – 1880±35 AD probably reflects 

the impact of industrial and military developments and wars during the late 1800s. 

From 1930±21 to 1960±14 AD, the concentration of Pb increased significantly 

from 29.1 mg/kg to 33.1 mg/kg, an increase of 13.6% (see Figure 3). This period 

corresponded to the second Sino-Japanese War during World War II (1937 – 1945 

AD) and to the post-war industrial period (following the establishment of the People’s 

Republic of China in 1949). The noticeable increase in the concentrations of Pb in the 

surface sediments can be attributed to the massive use of Pb alkyl additives in 

gasoline (40).  

Temporal Variations in 206Pb/207Pb, and 208Pb/207Pb Ratios. Before 3000±328 

BC, the 206Pb/207Pb and 208Pb/207Pb ratios were relatively constant, probably reflecting 

the background Pb isotopic signatures from natural parent materials. Subsequently, 

the Pb isotopic ratios decreased, reaching a low at about 978±277 BC when the 

concentration of Pb reached a maximum. The Pb isotopic ratios then showed a 

remarkable increase from 978±277 BC to 467±257 BC. This coincided with a 

corresponding decrease in the concentration of Pb. After 467±257 BC, the 206Pb/207Pb 

and 208Pb/207Pb ratios generally decreased as the concentration of Pb increased in the 

sediments.  

Origins of Pb in the Sediments. To further investigate the possible sources of Pb 

in the sediments, the Pb isotopic compositions of the sediments were compared to 

ancient mining ores and bronze materials in China and other environmental samples 

(see Table S2 and S3 in S.I.).  

Figure 5 shows the plot of the 206Pb/207Pb vs 208Pb/207Pb ratios of the sediments, 

representing the Pb isotopic compositions at different historical periods. Before 

3000±328 BC, the 206Pb/207Pb and 208Pb/207Pb ratios were at their highest, representing 



 13 

background values during the prehistoric era, with average values of 1.1930 

(206Pb/207Pb) and 2.4958 (208Pb/207Pb) (see Figure 5). From 3000±328 to 467±257 BC, 

the 206Pb/207Pb and 208Pb/207Pb ratios decreased, and more closely resembled those of 

ancient mining materials (at Tonglushan) and bronze articles (at Daye) (the end 

member A in Figure 5). Copper mining activities at the Tonglushan site took place 

from the Spring and Autumn Period (770 - 476 BC) and throughout the Han dynasty 

(306 BC – 220 AD) (31), and lead was used in making bronze articles. The changes in 

the Pb isotopic compositions in the sediments may indicate the influence of mining 

activities during the early Bronze Age era. After 500±201 AD, the Pb isotopic 

compositions of the sediments were observed to have shifted indicating the 

prominence of other regional sources (the end member B in Fig 6), including those 

mining areas in Hunan, Jiangxi, Yunnan and Guangdong (see Figure S1 in S.I.). The 

Pb isotopic signatures in this period may indicate that there were inputs of Pb from 

major mining operations in the south China region.  
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radiocarbon age, and the enrichment factors of Cu, Ni, Pb and Zn over the background 



 14 

concentrations (the sediments before 3000±328 BC) along the sediment profile are 

presented in Figures S1 – S3 of SI. This information is available free of charge via the 

Internet at http://pubs.acs.org. 

 

Literature Cited 

(1) Nriagu, J. O.; Pacyna, J. M. Quantitative assessment of worldwide contamination 
of air, water and soils by trace metals. Nature 1988, 333, 134-139. 

(2) Shotyk, W.; Cheburkin, A. K.; Appleby, P. G.; Fankhauser, A.; Kramers, J. D. 
Two thousand years of atmospheric arsenic, antimony, and lead deposition 
recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland. Earth 
Planet. Sci. Lett. 1996, 145, E1-E7. 

(3) Kylander, M. E.; Weiss, D. J.; Cortizas, A. M.; Spiro, B.; Garcia-Sanchez, R.; 
Coles, B. J. Refining the pre-industrial atmospheric Pb isotope evolution curve in 
Europe using an 8000 year old peat core from NW Spain. Earth Planet. Sci. Lett. 
2005, 240, 467-485. 

(4) Patterson, C. C. Native copper, silver, and gold accessible to early metallurgists. 
American Antiqui. 1971, 36, 286-321.  

(5) Darling, A. S. Non-ferrous metals. In An Encyclopaedia of the History of 
Technology, McNeil I., ed.; Routledge, London and New York. 1990; 47-145. 

(6) Healy, J. F. Mining and Metallurgy in Greek and Roman World. Thames and 
Hudson, London, 1978. 

(7) Nriagu, J. O. A history of global metal pollution. Science 1996, 272, 223-224. 

(8) Nriagu, J. O. Global inventory of natural and anthropogenic emissions of trace 
metals to the atmosphere. Nature 1979, 279, 409-411. 

(9) Weiss, D.; Shotyk, W.; Appleby, P. G.; Kramers, I. D.; Cheburkin, A. K. 
Atmospheric Pb deposition since the industrial revolution recorded by five Swiss 
peat profiles: Enrichment factors, fluxes, isotopic composition, and sources. 
Environ. Sci. Technol. 1999, 33, 1340-1352. 



 15 

(10) Shotyk, W.; Weiss, D.; Heisterkamp, M.; Cheburkin, A. K.; Appleby, P. G.; 
Adams, F.C. New peat bog record of atmospheric lead pollution in Switzerland: 
Pb concentrations, enrichment factors, isotopic composition, and organolead 
species. Environ. Sci. Technol. 2002, 36, 3893-3900. 

(11) McLane, M. Sedimentology. Oxford University Press, New York, 1995. 

(12) Battarbee, R. W.; Thompson, R.; Catalan, J.; Grytnes, J. A.; Birks, H. J. B. 
Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the 
MOLAR project. J. Paleol. 2002, 28, 1-6. 

(13) Lotter, A. F.; Appleby, P. G.; Bindler, R.; Dearing, J. A.; Grytnes, J. A.; 
Hofmann, W.; Kamenik, C.; Lami, A.; Livingstone, D. M.; Ohlendorf, C.; Rose, 
N.; Sturm, M. The sediment record of the past 200 years in a Swiss high-alpine 
lake: Hagelseewli (2339 m a.s.l.) J. Paleol. 2002, 28, 111-127. 

(14) Gallon, C.; Tessier, A.; Gobeil, C.; Beaudin, L. Sources and chronology of 
atmospheric lead deposition to a Canadian Shield lake: Inferences from Pb 
isotopes and PAH profiles. Geochimica et Cosmochimica Acta 2005, 69, 
3199-3210. 

(15) Dominik, J.; Mangini, A.; Prosi, F. Sedimentation rate variations and 
anthropogenic metal fluxes into Lake Constance sediments. Environ. Geol. 1984, 
5, 151-157. 

(16) Bollhöfer, A.; Mangini, A.; Lenhard, A.; Wessels, M.; Giovanoli, F.; Schwarz, B. 
High-resolution 210

(17) Boyle, J. F.; Rose, N. L.; Bennion, H.; Yang, H.; Appleby, P. G. Environmental 
impacts in the Jianghan Plain: evidence from lake sediments. Water, Air, Soil 
Pollut. 1999, 112, 21-40. 

Pb dating of Lake Constance sediments: stable lead in Lake 
Constance. Environ. Geol. 1994, 24, 267-274. 

(18) Kober, B.; Wessels, M.; Bollhöfer, A.; Mangini, A. Pb isotopes in sediments of 
Lake Constance, Central Europe constrain in the heavy metal pathways and the 
pollution history of the catchment, the lake and the regional atmosphere. 
Geochimica et Cosmochimica Acta 1999, 63, 1293-1303. 

(19) Ǻström, M.; Nylund, K. Impact of historical metalworks on the concentrations of 
major and trace elements in sediments: a case study in Finland. Appli. Geochem. 
2000, 15, 807-817. 



 16 

(20) Mecray, E. L.; King, J. W.; Appleby, P. G.; Hunt, A.S. Historical trace metal 
accumulation in the sediments of an urbanised region of the Lake Champlain 
watershed, Burlington, Vermont. Water, Air, Soil Pollut. 2001, 125, 201-230. 

(21) Outridge, P.M.; Hermanson, H.H.; Lockhart, W.L. Regional variations in 
atmospheric deposition and sources of anthropogenic lead in lake sediments 
across the Canadian Arctic. Geochimica et Cosmochimica Acta 2002, 66, 
3521-3531. 

(22) Renberg, I.; Wik-Persson, M.; Emteryd, O. Pre-industrial atmospheric lead 
contamination detected in Swedish lake sediments. Nature 1994, 368, 323-326. 

(23) Brännvall, M. L.; Bindler, R.; Emteryd, O.; Nilsson, M.; Renberg, I. Stable 
isotope and concentration records of atmospheric lead pollution in peat and lake 
sediments in Sweden. Water, Air, Soil Pollut. 1997, 100, 243-252. 

(24) Shotyk, W.; Weiss, D.; Appleby, P. G.; Cheburkin, A. K.; Frei, R.; Gloor, M.; 
Kramers, J. D; Reese, S.; Van der Knaap, W. O. History of atmospheric lead 
deposition since 12,370 C-14 yr BP from a peat bog, Jura Mountains, 
Switzerland. Science 1998, 281, 1635-1640.  

(25) Renberg, I.; Brännvall, M. L.; Bindler, R.; Emteryd, O. Atmospheric lead 
pollution history during four millennia (2000 BC to 2000 AD) in Sweden. Ambio 
2000, 29, 150-156. 

(26) Rose, N. L; Boyle, J. F.; Du, Y.; Yi, C.; Dai, X.; Appleby, P. G.; Bennion, H.; 
Cai, S.; Yu, L. Sedimentary evidence for changes in the pollution status of Taihu 
in the Jiangshu region of eastern China. J. Paleol. 2004, 32, 41-51. 

(27) Zhang, J. Environment, market, and peasant choice: the ecological relationships 
in the Jianghan Plain in the Qing and the Republic. Modern China 2006, 32, 
31-63. 

(28) Hubei Environmental Protection Department. Environmental Assessment Report 
2004. 2005.  

(29) Stuiver, M.; Reimer, P.J. Extended 14C database and revised CALIB 3.0 14

(30) Ip, C. C. M.; Li, X.D.; Zhang, G.; Wai O.W.H.; Li, Y.S. Trace metal distribution 
in sediments of the Pearl River Estuary and the surrounding coastal area, South 
China. Environ. Pollut. 2007, 147, 311-323. 

C age 
calibration program. Radiocarbon 1993, 35, 215-230. 



 17 

(31) Ma, C. Y. Ancient Chinese Bronzes. Shih H.Y., ed.; Oxford University Press, 
Hong Kong, 1986. 

(32) Li, T.Y. The extension of Chu dynasty to the east and the exploration of ancient 
copper mining. In Jianghan Archaeology. Vol. 2, Wang H.X., ed.; Wuhan, Hubei 
Province, 1988; 109-114. (in Chinese)  

(33) Zhou, B.Q. The productive capacity of ancient Tonglushan copper mining site. In 
Jianghan Archaeology. Vol. 4. Wang H.X., ed.; Wuhan, Hubei Province, 1984; 
67-73. (in Chinese)  

(34) Hsü, C. Y. Agricultural intensification and marketing agrarianism in the Han 
dynasty. In Ancient China: Studies in Early Civilization. Roy D.T., Tsien T.H., 
eds.; The Chinese University Press, Hong Kong, 1978; 253-268. 

(35) Li X. The Wonder of Chinese Bronzes. Foreign Languages Press, Beijing, 1980. 

(36) Zhang, D.; Jim, C. Y.; Lin, C. S.; He, Y. Q.; Lee, F. Climate change, social 
unrest, dynastic transition in ancient China. Chinese Sci. Bull. 2005, 50, 137-144. 

(37) Hsu, K. J. Sun, climate, hunger, and mass migration. Science in China (Series D) 
1998, 41, 449-472. 

(38) Xia, D. Y. Yang Wu Yun Dong Shi. 

(39) Grasso, J.; Corrin, J.; Kort M. Modernization and revolution in China: from the 
Opium Wars to world power. M.E. Sharpe, Armonk, New York, 2004. 

Hua Dong Shi Fan Da Xue Chu Ban She, 
Shanghai, 1992 (in Chinese). 

(40) Nriagu, J. O. The rise and fall of leaded gasoline. Sci. Total Environ. 1990, 92, 
13-28. 

(41) Peng, Z.; Liu, Y.; Liu, S.; Hua, J. A preliminary study on Shang dynasty bronzes 
and their Cu-Pb ore sources in Jiangxi, Hubei and Henan Provinces. Studies 
History Natural Sci. 1999, 18, 241-249 (in Chinese with English abstract). 

(42) Zhu, B.Q. The mapping of geochemical provinces in China based on Pb isotopes. 
J. Geochem. Explor. 1995, 55, 171-181. 



 18 

TABLE 1. Concentrations (mg/kg) of Heavy Metals and Major Elements in 
Sediments of Liangzhi Lake. 

Time Concentrations Cu         Ni       Pb Zn       Ca         Fe          Mg  

Phase V 

1370±120 

AD – 

1960±14 

AD 

Min 31.3  49.5  27.5  87.0  2910  37700  5160  
Max 40.2  59.3  34.0  120  11800  49600  7290  
Mean 35.8  53.3  30.3  98.0  4650  42800  6310  

Median 36.1  53.2  30.4  98.0  3910  41800  6290  
Std. Dev. 2.1  2.1  1.8  5.5  1760  2880  5400  

        

Phase IV 

215±221 

AD  – 

1360±122 

AD 

Min 31.7  51.6  25.8  83.5  3070  39300  5130  
Max 37.6  65.4  31.5  102  8440  49100  6590  
Mean 34.0  56.4  27.9  91.8  3980  44100  5750  

Median 33.6  56.9  27.6  92.1  3840  43700  5770  
Std. Dev. 1.5  3.0  1.2  4.2  879  2690  395  

        

Phase III 

467±257  

BC - 

168±224 

AD 

Min 20.6  39.1  17.6  68.3  3220  36500  3630  
Max 36.7  57.2  28.7  93.8  4810  53500  6060  
Mean 25.5  44.4  24.0  77.5  3950  44800  4380  

Median 24.2  41.9  24.0  73.2  3990  46500  3920  
Std. Dev. 5.0  5.2  3.8  9.8  543  5620  865  

        

Phase II 

2890±326 

BC – 

549±260 

BC 

Min 14.7  34.6  14.0  54.2  2700  29000  2790  
Max 23.8  45.2  22.3  117  3710  55900  3920  
Mean 18.8  39.0  18.2  68.5  3380  41000  3480  

Median 18.8  38.6  18.3  67.6  3450  41100  3630  
Std. Dev. 2.3  2.2  1.6  11.6  278  6730  379  

        
Phase I 

4940±347 

BC – 

3000±328  

BC 

Min 15.0  32.2  14.5  42.5  1700  23800  2500  
Max 18.3  37.9  17.3  50.6  2430  33200  2990  
Mean 16.8  34.1  15.7  46.7  2040  28900  2760  

Median 17.0  33.7  15.5  46.1  2070  29300  2760  
Std. Dev. 0.8  1.6  0.8  2.4  203  2700  134  
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FIGURE 1. The vertical profiles of Ca, Fe, Mg in sediments of Liangzhi Lake.  
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FIGURE 2. The distribution of metals in different stratigraphic phases 
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FIGURE 3. The distribution of trace metals during 1300 to 1900s AD (Phase V)  
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FIGURE 4. The vertical profiles of Pb concentration, 206Pb/207Pb and 208Pb/207

 

Pb 
ratios of Liangzhi Lake sediments. 
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FIGURE 5.Comparison of the Pb isotopic ratios of Liangzhi lake sediments with other known anthropogenic sources (aref. 41; b
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