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Mercury (Hg) is listed as a priority pollutant by many international agencies 

because of its persistence, bioaccumulation, and toxicity (PBT) in the environment. 

With the development of agriculture and industry, Hg has been extensively used in the 

manufacture of pesticides, fungicides, electrical goods, paper, batteries and other 

items, which has caused large amounts of Hg to be emitted to the environment. 

The ocean is an important sink in the global Hg cycling. In recent years, the 

biogeochemistry of Hg in coastal and estuarial environments has received particular 

attention (Mason et al., 1996; Horvat et al., 1999; Hines et al., 2000; Conaway et al., 

2003). Mercury enters the marine environment through various pathways, including 

wastewater discharges and atmospheric deposition. Two important processes are 

involved in the cycling of Hg in coastal and ocean environments. The first is the 

methylation of inorganic Hg to organomercury in water and sediment systems. This 
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will affect the toxicity and bioavailability of Hg. The second is the bioaccumulation of 

Hg in aquatic organisms through the food chain. This will result in higher 

methylmercury (MeHg) concentrations in seafood, and may ultimately threaten 

human health.  

Hong Kong is located on the southern coast of China and is made up of Hong 

Kong Island, the Kowloon Peninsula, the New Territories, and surrounding islands. 

The population of Hong Kong, about half of whom live on Hong Kong Island and in 

the Kowloon Peninsula, exceeded 6.9 million in 2005 (HK CSD, 2006). Hong Kong 

is also one of the busiest port-cities in the world. In the past few decades until recently, 

it had a thriving manufacturing industry. Because of the uncontrolled disposal of 

domestic and industrial wastewater, especially from the 1960s to the 1980s, the 

coastal waters of Hong Kong have become seriously contaminated (Morton, 1989; 

Wong and Tanner, 1997; Blackmore, 1998).  

Victoria Harbour is a major port of Hong Kong and lies between the highly 

urbanized and industrial areas of Hong Kong Island and the Kowloon Peninsula. The 

length and area of the harbour are 12 km and about 5000 ha, respectively (Morton, 

1989). In the past, the wastewater from both sides was discharged directly into the 

harbour after simple screening (HK EPD, 2004). According to the government of 

Hong Kong, the harbour received an estimated 1.5 Mt of sewage and industrial 

wastewater per day in 1995 (Hong Kong Government, 1995). In 1997, about 340 t of 

total biochemical oxygen demand (BOD), 280 t of total suspended solids, and 3 t of 

toxic metals were discharged into the harbour every day (Yung et al., 1999). As a 



 3 

result, the harbour is heavily contaminated with bacteria (Yung et al., 1999), heavy 

metals (Tanner et al., 2000), and organic pollutants (Connell et al., 1998). Although 

some efforts at controlling the pollution have been made and the water quality has 

improved in recent years, high concentrations of Hg (8 μg/g) were still found in 

sediment from Victoria Harbour in 2004 (HK EPD, 2004). In addition, the distribution, 

especially the historical changes and species, of Hg in Victoria Harbour has thus far 

received little research attention. 

The aim of this work was to study the spatial distribution and historical changes 

of Hg in sediments from Victoria Harbour. The concentration of MeHg in selected 

sediment samples was also be investigated. 

 

   A map of the study area and the locations of the sampling sites are shown in Fig. 1. 

Five sampling sites from east (B1) to west (B5) of Victoria Harbour were selected to 

provide good coverage of the harbour area and avoid regions with known sediment 

disturbances (e.g., dredged areas and environments adjacent to intensive reclamation 

activities). The geographic positions and depths of water in the sampling sites are 

shown in Table 1. The grab sediment samples were collected every two months from 

August 2004 to October 2005 with a Van Veen Grab Sampler. A single set of sediment 

cores were collected in October 2004 using a Kajak gravity corer. The corer was 

driven into the sediment by gravity and the sediment core was retained in a 70 mm 

PVC tube. Each core was sliced into thin sections at 2 cm intervals using a plastic 

cutter. All samples were stored in polyethylene bags and frozen at –20℃ immediately 
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after collection. Before being analyzed, the sediments were freeze-dried at –45℃ for 

3 days and then ground in an agate grinder until fine particles were obtained. 

For total Hg (THg) analysis, ~0.25 g of sediment was digested with 5 mL of aqua 

regia in a water bath at 95℃ for 2 h and shaken frequently. After cooling, the solution 

was diluted to 25 mL with Milli-Q water and centrifuged at 3000 rpm for 15 min. The 

THg was determined by cold vapor atomic fluorescence spectrometry (CVAFS, 

AF-620, Beijing Raleigh Analytical Instrument, China) using KBH4 for the reduction 

step. The detection limit (3σ) obtained for THg was 0.5 ng/g. The method was 

validated by analyzing the certified reference materials (CRMs). The results of the 

analysis are shown in Table 2. 

For the MeHg analysis, ~4 g sediment was weighed into a 40-mL glass 

centrifuge tube. About 5 mL Milli-Q water and 4 mL of acidic KBr-CuSO4 solution 

(3:1) were added. The tube was mechanically shaken overnight. Then, 6 mL of 

CH2Cl2 was added and shaken for another 1h to extract organomercury compounds 

into the CH2Cl2 phase. After centrifuging at 3000 rpm for 15 min, the CH2Cl2 phase 

(4 mL) was transferred into a 10 mL glass tube and extracted with Na2S2O3 solution 

(0.01M, 1 mL). The solution was shaken for 45 min in order to hasten the extraction 

speed. After setting for a few minutes for phase separation, the aqueous phase was 

pipetted into a clean 1-mL vial. The MeHg was determined by a 

laboratory-established HPLC (P680 HPLC Pump, DIONEX, USA) and AFS 

(AF-610A, Beijing Raleigh Analytical Instrument, China) hyphenation system, which 

has been described previously (Liang et al., 2003). An Xterra MS C18 column 
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(3.9×150 mm, 5 μm, Waters Corporation, USA) was used to separate MeHg in 

solutions. The detection limit for MeHg was 0.1 ng Hg/g. The method was validated 

with NIST 2796 and the result was in good agreement with the certified value (see 

Table 2). Due to the lack of sediment CRMs for MeHg in our laboratory, two 

sediment samples were spiked with 10 ng of MeHg standard, and the recoveries of 

MeHg were between 85-110%. 

The 210Pb radiometric technique was used to estimate the chronology of the 

sediment cores. The 210Pb activities of the samples were determined by measuring the 

alpha-radioactivity of its granddaughter nuclide 210Po. The 210Po was extracted, 

purified, and self-plated onto a silver disc at 70-80℃ in 0.5 M HCl, and 209Po was 

used as the yield monitor and tracer in quantification. The alpha-activity was counted 

by computerized multi-channel alpha spectrometry with gold-silicon surface barrier 

detectors. The supported 210Pb was determined by the alpha activity of the supporting 

parent, 226Ra, via the co-precipitation of BaSO4. 

 

The THg concentrations in surface sediments of Victoria Harbour ranged from 

0.047 to 0.855 μg/g (dry wt.) with an average concentration of 0.247 μg/g (Fig. 2). B1 

is located at the junction of Victoria Harbour and the South China Sea, which is less 

effected by the discharge of waste from Hong Kong. The concentrations of THg in the 

sediments at this site were the lowest among all of the sampling stations, ranging from 

0.047 to 0.127 μg/g (average: 0.07 μg/g). In contrast, because B2 and B3 are near 

industrial areas and urban zones, the concentrations of THg in sediments from B2 and 



 6 

B3 were much higher than those from other sites. The concentrations of THg in 

sediments from B4 and B5 were lower than those from B2 and B3, but still higher 

than those from B1.  

Compared with the background level of THg in marine sediments (0.05-0.08µg/g, 

Fujii, 1976; 0.02-0.1µg/g, Lindqvist et al., 1984), the central part of the harbour was 

apparently contaminated with Hg, and it is speculated that industrial discharges from 

Hong Kong Island and the Kowloon Peninsula are the main source of Hg in Victoria 

Harbour.  Table 3 shows the THg and MeHg in sediments from some estuaries and 

coasts. Although the THg concentrations in sediments from Victoria Harbour were 

lower than those from the Anadyr Estuary (Russia) and Seine Estuary (France), they 

exceeded those from other coastal areas, such as the South Florida Estuaries, San 

Francisco Bay, the Polish coast and the nearby East China Sea and Malaysian coast. 

However, according to the criteria for sediment quality in Hong Kong, the THg 

concentrations in all sediments were still under the Upper Chemical Exceedance 

Level (UCEL, 1 μg/g for THg; HK ETWB, 2002). 

The seasonal variations of THg concentrations in sediments are shown in Fig. 2. 

In B1, B4, and B5, the effects of seasonal changes on the THg contents are 

insignificant. The amounts of THg in the sediments collected from B2 and B3 in 

February 2005 were much higher than in the other sites. This was probably influenced 

by the discharge of waste and the low discharges of fresh water from the Pearl River. 

Sediment cores collected in October 2004 and radiometrically dated revealed 

irregular unsupported 210Pb activities in samples from B2, B3 and B5 due to 
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physical/biological mixing processes. The unsupported 210Pb activities in cores B1 

and B4 decreased linearly with depth, which allowed the CIC (constant initial 

concentration of unsupported 210Pb) model to be used to calculate the average 

sedimentation rate (Robbins and Edgington, 1975). The CIC model assumes a 

constant initial concentration of unsupported 210Pb and a constant sedimentation rate 

over the period of time for which the unsupported 210Pb is measurable. The average 

sedimentation rates estimated by CIC model in B1 and B4 were 0.33 cm/y and 1.2 

cm/y, respectively.  

The vertical distribution of THg in the sediment cores is shown in Fig. 3. No 

significant changes in THg concentrations were found in the B1 core, corresponding 

to the period from 1840 to the present. This result demonstrated that B1 was less 

affected than the other areas from human activity in the past 160 years. In the B4 core, 

the changes in the amount of THg in the sediment were obviously correlated with the 

urbanization and industrialization of Hong Kong. The development of industry in 

Hong Kong started in the early 1960s and increased rapidly in the 1970s. During this 

period, a large number of factories were established that produced basic industrial 

chemicals, paints, electroplating, enamelware and batteries etc. As a result, the 

concentrations of THg in the sediment were low before 1972 (38 cm in depth), but 

increased significantly after 1972 and peaked in 1976. The amount of THg contained 

in the sediment declined after 1982 because many factories were moved to mainland 

China in the early 1980s, and industrial activities in the territory decreased 

accordingly. In the 1990s, the government made some effort to control pollution, and 
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the THg concentrations in sediment become lower than 0.2 μg/g. Although no dating 

information exists for B2, B3 and B5 sediment cores, the relatively high THg levels 

found in the deeper layers at all three sites likely reflect past industrial discharges.  

Cores from B4 and B5 contained relatively low concentrations of THg in the upper 18 

cm sections suggesting recent mercury inputs were substantially diminished in these 

areas. In contrast, levels recorded in surface sediments from B2 and B3 were 

indicative of recent increase in mercury pollution. Such findings may be attributed to 

increase sewages discharges into the areas and/or the resuspension of older sediments.   

MeHg is the most toxic and the most common species of organomercury in the 

environment. In an aquatic system, sediment is an important Hg sink and the main 

production site of MeHg as a result of biotic and abiotic methylation processes 

(Ullrich et al., 2001). The MeHg concentrations in sediments typically contain only 

about 1-1.5% of THg, and tend to be lower (<0.5%) in estuarine and marine 

environments (Gilmour and Bloom, 1995; Ullrich et al., 2001). Even so, MeHg is 

always of particular concern because of its high toxicity and tendency to accumulate 

in the food chain. 

MeHg in surface sediments from B1, B4 and B5 were lower than the analytical 

detection limit (0.1 ng Hg/g, dry wt.). Detectable levels (0.2 to 1.5 ng Hg/g) were 

found in 70% of B2 and B3 samples (including sediment cores) and accounted for 

0.03-0.4% (average: 0.14%) of the THg contents. The proportions of MeHg to THg 

agreed with the values reported in other works (Bloom et al., 1999; Sunderland et al., 

2004; Canário et al., 2005). As shown in Table 3, the MeHg concentrations in 
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sediments from Victoria Harbour were comparable to those from the Polish coast and 

San Francisco Bay, but still higher than those from the South Florida Estuaries, the 

Malaysian coast and the Anadyr Estuary.  

The variations in the amount of MeHg in sediment cores from B2 and B3 are 

shown in Fig. 4. In the sediment core from B2, the amount of MeHg declined with 

depth and was undetectable (<0.1 ng Hg/g) under a depth of 18 cm. However, the 

variations in the concentrations of MeHg were irregular in the sediment core from B3. 

The concentrations of MeHg in surface sediments from both sites were generally 

higher than those in deeper layers. This reflects physical and chemical conditions that 

are more conductive to mercury methylation in the upper sediment zone (Stein et al., 

1996). 

    The present study showed Hg contamination in sediments of Victoria Harbour, 

mainly attributed to past industrial development and urbanization in Hong Kong.  

The concentrations of MeHg in sediments were generally low, accounting for < 0.4% 

of THg. Further studies on the uptake and transformation of Hg in benthic 

communities, particularly on the seasonal changes, will be of interest in the 

understanding of the geochemical cycling of Hg in subtropical coastal regions.   
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Table 1  The geographic positions and depths of water in the sampling sites 

 

Sampling site Latitude Longitude Depth of water (m) 

B1 22º14.800' N 114º16.000' E 20 

B2 22º17.500' N 114º13.500' E 19 

B3 22º17.471' N 114º11.183' E 14 

B4 22º18.400' N 114º06.500' E 11 

B5 22º18.142' N 114º03.051' E 8 
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Table 2  Results of THg and MeHg in certified reference materials (CRMs) 

 

CRMs 
THg (μg/g) MeHg (ng/g) 

Certified Determined * Certified Determined * 

NIST 1646a (sediment) 0.04 0.036 ± 0.002   

NIST 2709 (soil) 1.40 ± 0.08 1.425 ± 0.016   

GBW07310 (sediment) 0.28 ± 0.04 0.282 ± 0.008   

NIST 2976 (mussel tissue)   27.8 ± 1.1 29.7 ± 3.5 

  

 * Mean ± s, n = 4 
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Table 3  Comparison of THg and MeHg in sediments from different estuaries and 

coasts 

 

Location THg (μg/g) MeHg (ng/g) Reference 

South Florida Estuaries, USA 
0.02 

(0.001-0.219) 

0.078 

(< 0.001-0.49) 

(Kannan et al., 

1998) 

East China Sea, China 
0.037 

(<0.001-0.08) 

2.7  

(<0.2-5.5) 
(Shi et al., 2005) 

Malaysian coast, Malaysia 
0.061 

(0.02-0.127) 

0.04  

(0.01-0.05) 

(Kannan and 

Falandysz, 1998) 

Polish coast, Poland 
0.164 

(0.037-0.88) 

0.64 

(0.04-2.0) 

(Kannan and 

Falandysz, 1998) 

San Francisco Bay, USA 
0.2  

(0.02-0.7) 

0.4  

(0.1-1) 

(Conaway et al., 

2003) 

Anadyr Estuary, Russia 
0.339 

(0.077-2.1) 

0.24 

(0.06-0.62) 

(Kannan and 

Falandysz, 1998) 

Seine Estuary, France 
0.46  

(0.3-1.0) 

2.3  

(0.1-6) 
(Mikac et al., 1999) 

Victoria Harbour, Hong Kong 
0.247 

(0.047-0.855) 
 <0.1-1.5 This work 
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Figure legends 

 

Fig. 1  The map of the study area 

Fig. 2  The seasonal changes in the amounts of THg in surface sediments. 

Fig. 3  The vertical distribution of THg in sediment cores 

Fig. 4  The vertical distribution of MeHg in sediment cores from B2 and B3 



 18 

 

 

 

 

 

 

 

Fig. 1  The map of the study area 
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Fig. 2  The seasonal changes in the amounts of THg in surface sediments 
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Fig. 3  The vertical distribution of THg in sediment cores 
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Fig. 4  The vertical distribution of MeHg in sediment cores from B2 and B3 
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