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“Capsule”: Relative high concentrations of Cd were found in crab, shrimp and 

shellfish samples, while high concentration of Pb was found in fish, particularly from 

the anthropogenic inputs.  

 

Abstract 

 

The accumulation of trace metals in aquatic organisms may lead to serious 

health problems through the food chain. The present research project aims to study the 

accumulation and potential sources of trace metals in aquatic organisms of the Pearl 

River Estuary (PRE). Four groups of aquatic organisms, including fish, crab, shrimp, 

and shellfish, were collected in the PRE for trace metal and Pb isotopic analyses. The 

trace metal concentrations in the aquatic organism samples ranged from 0.01 to 2.10 

mg/kg Cd, 0.02 to 4.33 mg/kg Co, 0.08 to 4.27 mg/kg Cr, 0.15 to 77.8 mg/kg Cu, 0.17 

to 31.0 mg/kg Ni, 0.04 to 30.7 mg/kg Pb, and 8.78 to 86.3 mg/kg Zn (wet weight). 
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High concentrations of Cd were found in crab, shrimp and shellfish samples, while 

high concentration of Pb was found in fish. In comparison with the baseline reference 

values in other parts of the world, fish in the PRE had the highest elevated trace 

metals. The results of Pb isotopic compositions indicated that the bioaccumulation of 

Pb in fish come from a wide variety of food sources and/ or exposure pathways, 

particularly the anthropogenic inputs.  

 

Keyword: Heavy metals, Pb isotope, aquatic organism (fish), Pearl River Estuary, 

China. 

 

1. Introduction 

 

The mixed regime of the Pearl River Estuary (PRE), with fresh and oceanic 

water, provides a suitable habitat for a wide variety of aquatic organisms (Chen, 1995; 

Wang et al., 1995). However, rapid economic development in the Pearl River Delta 

(PRD) region in the last few decades has led to the excessive discharge of pollutants 

into the PRE (Li et al., 1997). Hence, great concern has arisen in recent years over 

environmental pollution in this coastal region. Elevated concentrations of Cu, Pb, and 

Zn in the sediments of the PRE have been found (Chen and Zhou, 1992; Zheng, 1992; 

Li et al., 2000a, 2000b and 2001; Liu et al., 2003). Trace metal contamination of the 

PRE may have a significant impact on aquatic organisms, disturbing the area’s 

delicate ecological balance and potentially contaminating the marine food chain. 

Trace metal analysis of aquatic organisms from the PRE can provide important 

information on the degree of environmental contamination, and potential impact of 
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seafood consumption. In addition, the Pb isotopic compositions of aquatic organisms 

may further assist the identification of possible sources of contamination and 

biological pathways.  

Aquatic organisms accumulate trace metals from various sources in the 

environment. The possible sources of trace metals include sediments (Labonne et al., 

2001; Goodwin et al., 2003), soil erosion and runoff (Gelinas and Schmit, 1997), air 

depositions of dust and aerosol (Gelinas and Schmit, 1997; Labonne et al., 2001), 

discharges of wastewater (Labonne et al., 2001; Goodwin et al., 2003), and so forth 

(Bryan, 1979; Blackmore et al., 1998; Hoven et al., 1999; Goodwin et al., 2003). The 

accumulation of trace metals in aquatic organisms can pose a long-term burden on 

biogeochemical cycling in the ecosphere. Once trace metals enter the food chain, they 

may accumulate to dangerous levels and be harmful to human health (Manahan, 

2000). 

Stable Pb isotopic studies have been commonly applied to assess the sources 

of Pb in various ecosystems, including sediments (Farmer et al., 1996; Ritson et al., 

1999; Liu et al., 2003), soils (Sugden et al., 1993; Semlali et al., 2001; Wong et al., 

2002), suspended matters (Hinrichs et al., 2002), and atmospheric depositions 

(Bollhöfer and Rosman, 2000 and 2001; Wong et al., 2003). However, only a few 

studies have focused on stable Pb isotopes in biological samples to trace the 

anthropogenic origins of Pb (Kurkjian and Flegal, 2003). Previous studies have 

proven that the Pb isotopic composition of biological samples can provide a 

fingerprint for sources of Pb (Rabinowitz, 1995; Spencer et al., 2000; Manahan, 2000; 

Kurkjian and Flegal, 2003). 

Aquatic organisms in the PRE are one of the most important sources of 

seafood for people in the Pearl River Delta (PRD) region (Fu et al., 1995). Extensive 
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studies on the ecosystem in the PRE, such as on sediments (Li et al., 2000a, 2000b 

and 2001) and water (Ho and Hui, 2001), have recently been carried out. However, 

only a few of the studies have focused on the aquatic organisms in the PRE (Chen, 

1995; Fu et al., 1995), and none on the potential pathway of metal contaminants in 

this region.  

Studies have recently been conducted on the stable Pb isotopic compositions 

of various ecosystems in the PRD region, such as agricultural soils (Wong et al., 

2002), air depositions (Wong et al., 2003), and sediments (Liu et al. 2003; Ip et al., 

2004). These environmental media have distinctive ranges of stable Pb isotopic ratios. 

According to these studies, automobile emissions and industrial discharges are the 

major sources of anthropogenic Pb in the PRD region. These research projects have 

provided an important database on Pb isotopic signatures in the PRD region. This 

database may help in efforts to evaluate the accumulation and biological pathways of 

heavy metals in aquatic organisms in the PRE. Trace metal accumulation in aquatic 

organisms depended on several factors, including (i) the environmental concentrations 

of metals in water and sediments; (ii) the species of organisms; (iii) body size and age 

of organisms. Different concentrations of trace metals can also be found in different 

organs in the same biological sample. However, this study mainly focused on the 

general trace metal burden in aquatic organisms, and the potential major pathways for 

metal contaminants in the estuarine environment. The common species of seafood in 

the PRE were collected in the present study. The whole meat tissue of the samples 

was used in this study in order to examine the general situation of trace metal 

contamination of aquatic organisms in the PRE. Therefore, the present study aims (1) 

to assess the accumulation of trace metals in several groups of common aquatic 

organisms in the PRE, and (2) to identify possible Pb sources for aquatic organisms 
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using the Pb isotopic signature in aquatic organisms and various environmental media 

in the region.   

 

2. Materials and Methods 

 

A total of 58 samples of aquatic organisms were collected at seven sampling 

sites in the PRE in April 2003 with the assistance of the South China Sea Institute of 

Oceanology under the Chinese Academy of Sciences. The seven sampling locations 

are depicted in the Fig. 1. The samples include four common estuarine groups: fish, 

crab, shrimp, and shellfish. Sixteen species of fish, one species of crab, two species of 

shrimp, and three species of shellfish were sampled in the present study. The details 

of the sampled species are summarized in Table 1. 

All of the samples of aquatic organisms were individually stored in 

polyethylene bags at 4-6°C immediately after collection prior to the laboratory 

analysis. After washing with tap water and distilled and deionised water (DIW), the 

samples were stored frozen at -20°C prior to freeze-drying. The samples were freeze-

dried at -45°C for 3 days. Whole tissues of the samples were grounded 

homogeneously. All of the freeze-dried and grounded samples were stored in a 

dessicator prior to undergoing further chemical analyses. 

The samples of aquatic organisms were digested using strong acid digestion 

according to the method from the USEPA (1999) with some modifications. About 

0.500g of grounded aquatic organism samples were weighed and placed in Pyrex test 

tubes pre-cleaned with high purity nitric acid. The nitric acid used in the present study 

was in high purity grade, which contained usually less than 0.1 ppb trace metals 
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(except Al, Ca, Mg and Zn in less than 0.5 ppb). Five ml of high purity nitric acid was 

added to each tube, and the tubes were left overnight to be slowly digested. Another 3 

ml of high purity nitric acid and 1 ml of perchloric acid were added to each tube the 

next day. Each mixture was gently shaken using a vortex and then placed in an 

aluminium heating block (FOSS TECATOR 2000). The heating process for the 

digestion was set up according to the following temperature scheme: 50°C for 8 hrs, 

75°C for 2 hrs, 100°C for 2 hrs, 125°C for 3 hrs, and 150°C until complete dryness 

was achieved. After the test tubes were removed from the heating block and cooled 

down, 10 ml of 5% high purity nitric acid were added to the residue. The mixture was 

then heated at 70°C for 1 hr. The heated mixture was shaken gently and poured into 

polyethylene tubes. The tubes were centrifuged with centrifugal force around 150 N 

for 10 minutes prior to determining the concentration of metals. The concentrations of 

Al, Ca, Cu, Fe, Mg, Mn, and Zn were measured by inductively coupled plasma-

atomic emission spectrometry (ICP-AES; Perkin Elmer Optima, 3300DV) (Li and 

Thornton, 1992; USEPA, 1999; Li et al., 2001). Due to the low concentrations of Cd, 

Co, Cr, Ni, Pb, and V, the concentrations of these elements were determined by 

inductively coupled plasma – mass spectrometry (ICP-MS; Perkin Elmer Sciex Elan 

6100 DRC plus). Selected samples of aquatic organisms were also analysed for Pb 

isotopic composition by ICP-MS. All of the analytical solutions for Pb isotopic 

composition were diluted to about 30 µg/L Pb using 5% high purity nitric acid. 

The quality controls for the strong acid digestion method included reagent 

blanks, duplicate samples, and standard reference materials (NIST SRM 1566a and 

DORM-2). The QA/QC results showed no sign of contamination in all the analysis.  

The recovery rates for most of the trace metals in the reference materials were around 

80% - 115%, except for Al and Ni (62% and 147%, respectively). To detect whether 
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there was any contamination and drift during the measurements, quality control 

standards were used during the determination of elemental concentration and isotopic 

compositions at every 10 samples for the ICP-AES analysis and every 4 samples for 

the ICP-MS analysis. For the Pb isotopic analysis, an international standard reference 

material (NIST SRM 981, common lead) was used for calibration and analytical 

control. The relative standard deviation of each sample measurement was < 0.3%. The 

average measured ratios of 204Pb/207Pb, 206Pb/207Pb, and 208Pb/207Pb of the SRM 981 

were 0.0645 ± 0.0003, 1.0931 ± 0.0023, and 2.3718 ± 0.0045, respectively. These 

values were very close to the certified standard values (0.0646, 1.0933, and 2.3704, 

respectively).  

 

3. Results and Discussion  

3.1. Trace metal concentrations of the aquatic organisms  

The trace metal concentrations of the fish, crab, shrimp, and shellfish collected 

in the PRE are summarized in Table 2. A comparison between the data of the present 

study and those of previous studies conducted in Hong Kong (Tam and Mok, 1991) 

and China (Wei et al., 2002) is presented in Table 3, together with the guidelines for 

assessing the aquatic organisms in China and the baseline reference values in Norway 

(Green and Knutzen, 2003). The mean and median concentrations of Cd and Cu in 

crab, shrimp, and shellfish; and Cr in shellfish exceeded the threshold values 

recommended by China’s assessment guidelines, suggesting that the concentrations of 

these trace metals in these species from the PRE were elevated. In addition, the mean 

Pb concentrations in fish also exceeded the China’s assessment guidelines, while the 

median concentration of Pb in fish was below the guidelines. This indicated that a 
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small number of fish samples accumulated high concentrations of Pb in their bodies. 

The highest concentration of Pb was found in fish, Siganus oramin (30.7 mg/kg wet 

weight). This value was about 30 times higher than the recommended values in the 

Food Assessment Guidelines of China. According to the present results, the 

concentrations of Pb in 20% fish samples were above the guideline level. Furthermore, 

the concentrations of Pb in fish were considerably higher than in the other organisms. 

This group of aquatic organisms needs to pay special attention for their Pb 

accumulation. Although the mean concentrations of other metals in these species were 

below the guideline values, some samples also had high concentrations of one or more 

metals due to the wide ranges of metal concentrations in these aquatic organisms.  

Among the four groups of aquatic organisms, the concentrations of Cd in 

shrimp were the highest. The highest concentration of Cd was 2.10 mg/kg wet weight 

in shrimp, Metapenaeus ensis. This value was more than 40 times higher than the 

assessment standard of China. The concentrations of Cd were also noticeably elevated 

in both crab and shellfish. However, the concentration of Cd was significantly lower 

in fish in comparison with other species. Among the species studied, the highest 

concentrations of Co, Cr, Cu, Ni, V, and Zn were observed in shellfish. The 

concentrations of these elements in shellfish were 3 to 20 times higher than that in 

other species. These findings suggest that shellfish could accumulate trace metals 

more efficiently from water and sediment.  

In general, the average concentrations of trace metals in aquatic organisms in 

the PRE were higher than the reported values in other parts of China (see Tables 2 and 

3). In addition, the concentrations of trace metals in the present study were higher 

than those in previous studies of the same region. According to Wei et al. (2002), the 

concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in fish collected in 2000 were 0.03, 0.16, 
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0.18, 0.28, 0.51, and 1.01 mg/kg, respectively; while those in the fish samples in the 

present study were 0.0409 ± 0.0289, 0.667 ± 0.756, 1.81 ± 1.74, 0.653 ± 0.550, 2.202 

± 6.02, and 18.4 ± 6.25 mg/kg, respectively. These figures represent increases of 1.4 

to 18 times between the two studies. The results might indicate that concentrations of 

trace metals in fish in the PRE increased in the last few years.  

The concentrations of trace metals in fish from the PRE were generally over 

200 times higher than the reference values in Norway (see Table 2 and 3). The 

concentrations of Cd, Cu, Pb, and Zn in shellfish in the PRE were generally enriched. 

The enrichment factors for fish in the PRE were 409, 240, 73, 333, and 780 for Cd, 

Cu, Pb, and Zn, respectively. For shellfish in the PRE, the enrichment factors of the 

mean Cd, Cu, Pb, and Zn concentrations were 2.9, 22, 1.6, and 2.0, respectively.  

At low concentrations, Zn and Cu are essential elements for the growth of 

organisms (WHO, 1996). They are normally the most abundant trace elements in 

aquatic organisms (Parsons, 1998; Chien et al., 2002; Wei et al., 2002; Usero et al., 

2003). At low concentrations, Co, Ni, and V are probably elements essential to 

organisms. Cd and Pb are non-essential elements and are toxic even at low 

concentrations. Cd is usually present in low concentrations in different environmental 

media; for example, in sediments (Li et al., 2000a, 2000b and 2001; Lin et al., 2002), 

in soils (Wong et al., 2002), and in atmospheric depositions (Wong et al., 2003).  

The four groups of aquatic organisms collected in the PRE showed quite 

different patterns of metal accumulation, although the metal concentrations of the 

aquatic organisms showed large variations within the same group. Crab and shrimp 

showed similar ranges of metal concentrations and relative orders of mean trace metal 

concentrations: Cu> Zn> Cd> Ni> Cr> V> Pb> Co for crab and Cu> Zn> Cd> Ni> 
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V> Cr> Pb> Co for shrimp. This exemplified the common feeding habits and living 

behaviours of these two aquatic organisms. However, fish and shellfish had different 

patterns of trace metal accumulation. The accumulations of trace metals in fish were: 

Zn> Pb> Cu> Cr> Ni > V > Co> Cd, while those in shellfish were: Zn> Ni> Co> Cu> 

Cr> Cd> Pb. The accumulation of Pb in fish was particularly significant in these 

samples. 

The different feeding habits and living modes of shellfish, shrimp, crab, and 

fish as well as the different aquatic geochemistry of the trace metals significantly 

affect the intake, bioassimilation, and subsequent bioaccumulation of trace metals in 

these organisms. Although the trace metal concentrations in different species of 

aquatic organisms in the same group were in a wide range of variations, the aquatic 

organisms in different group also showed significant metal accumulation patterns (see 

Table 2). This demonstrated that aquatic organisms in different groups had different 

accumulation mechanisms for trace metals. Shellfish is a filter feeder and mainly 

filters fine suspended matter as its source of food. Furthermore, shellfish are benthic 

organisms, and are usually relatively immobile or sessile. Based on the feeding mode 

and living habits of shellfish, the trace metal content of shellfish most likely reflects 

the quality of the water and sediment in the aquatic environment, including the 

accumulation of both dissolved and suspended trace metals. The significantly elevated 

concentrations of Co, Cr, Cu, Ni, V, and Zn found in shellfish likely resulted from the 

fact that their primary source of food is suspended matter, in particular, suspended 

fine sediment near or on the sea floor. It might also be partly attributed to the 

solubility of these trace metals in an aquatic environment. This is because the ratio of 

the dissolved metal concentration to the total metal concentration (dissolved/total) 

generally increases in the following order: Pb < Cd < Cr < Ni < Cu < Zn (Foster and 
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Charlesworth, 1996). Hence, in an aquatic environment, Cr, Ni, Cu, and Zn are more 

soluble and bioavailable than Pb and Cd. 

Similar to shellfish, crab and shrimp are also benthic organisms that generally 

live on or near the sea floor and are capable of travelling in distance. As scavengers, 

crab and shrimp have similar feeding patterns. They tend to feed on detritus and, 

sometimes, small crustaceans and fish on or near the sea floor as well as on floating 

materials. Among the different aquatic organisms, fish are probably the most mobile 

and capable of travelling a long distance. However, the fish samples collected in this 

study were mainly live near the sea floor, and with short travelling distance (e.g. 

Collichthys lucidus, Platycephalus indicus, Nibea albiflora, Zebrias zebra, 

Cynoglossus macrolepidotus). Furthermore, fish is also on a high trophic level in the 

food chain as compared to the other three types of organisms; hence, their diet is 

probably the most diverse of the species studied here.  

Moreover, the comparatively low bioaccumulation of Pb in shellfish, crab, and 

shrimp showed that the bioassimilation and bioavailability of Pb is limited in an 

aquatic environment, especially near the sea floor. Pb generally becomes immobile or 

bound to organic complexes shortly after its deposition in water. Based on the Pb 

concentrations of the different aquatic organisms (see Table 2), the direct intake and 

subsequent bioassimilation of Pb by shellfish and even crustaceans, in the form of 

suspended matter and detritus near or on the sea floor, might be of secondary 

importance in the PRE. The results suggest that the primary importance of the 

bioaccumulation of Pb in aquatic organisms could be bioassimilation in the food chain 

and/ or exposure in water. As mentioned previously, fish is situated at a higher trophic 

level in comparison with other three groups of organisms. Not only are their sources 

of food the most diverse, they also require a large quantity of food compared to the 
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other organisms. These factors could lead to the bioassimilation and bioaccumulation 

of Pb in fish over time (Manahan, 2000; Jacobson et al., 2000). The particularly high 

Pb concentrations in fish might be due to the bioaccumulation of Pb in some species 

of fish, such as Siganus oramin (spinefoot), Collichthys lucidus (croaker), and 

Cyneglossus macrolepidotes (large scaled tongue sole) found in the present study. The 

major food sources of the abovementioned species are small shrimps and fish. A 

number of studies also revealed that fish have a tendency to accumulate trace metals 

at high levels (Allen, 1994; Karadede and Unlu, 2000).  

 

3.2. Stable Pb isotope compositions in aquatic organisms  

The means and ranges of the 206Pb/207Pb and 208Pb/207Pb ratios in the aquatic 

organisms collected from the PRE are presented in Table 4. The 206Pb/207Pb and 

208Pb/207Pb ratios of the aquatic organisms ranged from 1.161 to 1.193 and 2.438 to 

2.494, respectively. The Pb accumulated in aquatic organisms can result from Pb 

derived from natural processes of weathering, erosion, and transport of bedrocks, as 

well as from a range of anthropogenic activities in the aquatic environment. 

According to Zhu (1995), the Pb isotopic ratios of the background geological 

materials in the PRD region ranged from 1.183 to 1.199 for 206Pb/207Pb and 2.468 to 

2.497 for 208Pb/207Pb ratios. From the present results, a large proportion of the 

206Pb/207Pb ratios of the aquatic organisms were lower than those of the geological 

materials. The mean 206Pb/207Pb ratios of the aquatic organisms descended in the 

following order: shellfish > crab > shrimp > fish. This is possibly related to their 

habits, food sources, and trophic level.  
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Aquatic organisms are exposed to at least four sources of trace metals in the 

aquatic system, including water, sediments, plankton, and detritus in the water 

columns (Kneip and Lauer, 1973; Stokes, 1979; Hare, 1992; Roy and Hare, 1999; 

Barata et al., 2002). In order to identify the potential pathways of the anthropogenic 

Pb that had accumulated in the aquatic organisms, the relationship between the 

206Pb/207Pb and 208Pb/207Pb ratios of the selected aquatic organisms in the PRE and the 

major sources for the input of Pb in the PRD are shown in Fig. 2. The possible 

sources of Pb include surface sediments in the PRE (Ip et al., 2004), atmospheric 

deposits (Wong et al., 2003), natural soils (Wong et al., 2002), and some other known 

anthropogenic sources in the PRD (Zhu et al., 2001). The atmospheric deposition in 

the PRD was taken into account in the assessment because atmospheric deposition is 

one of the principal pathways of transport for anthropogenic Pb (Jikells, 1995; Neff, 

2002; Reuer and Weiss, 2002). Therefore, the Pb isotopic signature of the 

atmospheric deposition was used to represent the anthropogenic Pb in the water 

columns. Lead is usually weakly associated with air particles and can be easily 

dissolved in water (Foster and Charlesworth, 1996).  They are therefore highly 

reactive and biologically available (Gelinas and Schmit, 1997). The Pb isotopic 

signature of natural soil is used to represent the Pb derived from natural weathering, 

erosion, and different processes of transport. In order to examine the significant 

differences between the 206Pb/207Pb ratios of the geological materials and aquatic 

organism samples, a paired sample t test was preformed. The factors of the paired 

samples t test for the 206Pb/207Pb ratios of fish, crab, shrimp and shellfish samples 

compared with those of the geological materials were 5.844 (degree of freedom, df = 

4), 3.913 (df = 4), 8.262 (df = 4), and 4.819 (df = 2), respectively. Therefore, the Pb 

isotopic signatures of these biological samples had significant differences (p < 0.05) 
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in comparison with the geological materials, and provided a useful tool for 

distinguishing the relative contributions from various natural and anthropogenic 

sources.  

As shown in Fig. 2, all of the Pb isotopic ratios of the aquatic organisms 

ranged between those of the surface sediments and those of the atmospheric 

depositions. The Pb isotopic ratios of a small number of aquatic organisms were 

similar to those of the surface sediments. The Pb accumulated in these aquatic 

organisms might be derived from the sediments. A large proportion of the aquatic 

organisms had lower 206Pb/207Pb ratios than the surface sediments, indicating that 

most of the aquatic organisms received contributions from anthropogenic Pb.  

In general, three groups of aquatic organisms could be categorized on the basis 

of their Pb isotopic signatures in the present study. The aquatic organisms in Group 1 

possessed Pb isotopic compositions similar to those of the air depositions of the PRD 

region. Fish were the dominant species in this group. The result indicated that some 

fish had very similar Pb isotopic signatures as the anthropogenic sources. The aquatic 

organisms in Group 2 had Pb isotope signatures similar to those of the PRE 

sediments. The Pb isotopic ratios of the aquatic organisms in Group 3 were in 

between those of the two groups. Most of the Pb isotopic compositions of shrimp, 

crab, and shellfish belonged to Group 3, indicating that these aquatic organisms 

accumulated Pb inputs from various sources, with the Pb being derived from 

anthropogenic sources (e.g., air depositions) and surface sediments, or food sources. 

Fish generally received more contributions from Pb derived from anthropogenic 

sources (e.g., air depositions) than shrimp, crab, and shellfish in the PRE, possibly 

because their dominant habitat is the water and also because of their position in the 

food chain.  
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In general, a significant linear relationship between the 206Pb/207Pb and 

208Pb/207Pb ratios possibly suggests the binary mixing of two end-members with 

different isotopic compositions (Farmer et al., 1996; Wong and Li, 2004). The Pb 

isotopic data in this study do not form a single linear correlation (Fig. 2), suggesting 

that more than two end-members were involved. The different Pb isotopic signatures 

were mainly due to the different uptake efficiencies of Pb from various sources by the 

organisms. The 206Pb/207Pb and 208Pb/207Pb ratios in fish were significantly correlated 

(r2 = 0.764), and those in shrimp and crab were not correlated (r2 = 0.126). Fish can 

bioaccumulate particle Pb through their gills (Tao et al., 1999). As fishes are more 

mobile in water columns, they are likely to be more exposed to weakly soluble and 

potentially bioavailable Pb originating from anthropogenic atmospheric depositions 

and/or from the inputs derived from the discharges of wastewater. The present study 

indicated that fish might be bioassimilating Pb from anthropogenic sources such as 

atmospheric deposits suspended in water columns. Previous studies have also reported 

that the highest trace metal concentrations in fish were found in their gills (Eisler, 

1979; Wang and Fisher, 1996; Barata et al., 2002). This issue can be further 

investigated in the future by examining the differences in the Pb isotopic composition 

in the gills, livers, stomachs and fleshes of fish.  

 

4. Conclusions 

 

High concentrations of trace metals were generally found in shellfish, while 

the highest concentrations of Pb were found in the fish of the Pearl River Estuary. The 

highly comparable concentrations of Cd and Cu in shellfish, crab, and shrimp were 
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partly attributed to their consumption of detritus materials. The differences in the 

patterns of accumulation of Pb in these aquatic organisms were mainly attributed to 

the solubility of the metal in an aquatic environment. In addition, the differences in 

the feeding habitats of these organisms also affected their physiological responses to 

different trace metals. The significantly elevated concentrations of Pb and low 

206Pb/207Pb ratios in fish compared with other organism samples could be attributed to 

the bioaccumulation of Pb from weakly soluble and potentially bioavailable Pb 

originating from anthropogenic sources and a wide variety of food sources. 
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TABLE 1. Aquatic organisms analysed in this study 

Groups of aquatic 
organisms 

Common name Scientific name of species No. of samples Sampling locations Sample ID 

Fish Chinese herring Iisha elongata 2 A, F AY1, FY3 
 flat head fish Platycephalus indicus 3 A, F, G AY2, FY5, GY7 
 ray-finned fish Odontamblyopus rubicundus 2 A, C AY4, CY7 
 ponyfish Leiognathus bin 5 A, B, E, F, G AY5, BY5, EY2, FY4, 

GY6 
 white flower croaker Nibea albiflora 1 B BY2 
 common mullet Mugil cephalus 3 B, C, F BY3, CY3, FY7 
 zebra sole Zebrias zebra 1 B BY4 
 large scaled tongue sole Cynoglossus macrolepidotus 2 C, D CY2, DY8 
 croaker Collichthys lucidus 5 C, D, E, F, G CY5, DY2, EY1, FY2, 

GY1 
 golden sardine Sardinella aurita 1 C CY6 
 white sea bass Lates calcarifer 1 D DY3 
 hilsa herring Macrura reeuesii 1 D DY4 
 - Collicchthys gunther 2 D, F DY7, FY6 
 sea horse Syngnathus linnaeus 1 F FY1 
 spinefoot Siganus oramin 1 G GY8 
 - Ambassidae, siganus forskal 1 G GY4 
 - - 3 C, D, G CY4, DY6, GY2 
Shrimp Mantis shrimp Dictyosquilla foveolata 7 A to G AX1, BX2, CX1, 

DX2, EX1, FX1, GX1 
 sand prawn Metapenaeus ensis 6 A to F AX2, BX1, CX2, 

DX1, EX2, FX2 
Crab redspot swimming crab Portunus pelagicus 7 A to G AP1, BP1. CP1, DP1, 

EP1, FP1, GP1 
Shellfish - Scapharca subcrenata 1 A AB1 
 - Turritella bacillum keener 1 B BB2 
 - Murex ttrapa 1 B BB4 
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TABLE 2. Summary of trace metal concentrations (mg/kg, wet weight) in 
different sub-groups of aquatic organisms collected in the PRE 
 

Metals Concentrations 
(mg/kg) 

Fish (n=35) Crab (n=7) Shrimp (n=13) Shellfish (n=3) 

Cd Mean ± standard 
derivation (S.D.) 

0.0409 ± 0.0289 0.795 ± 0.506 0.835 ± 0.637 0.725 ± 0.305 

 Median 0.0306 0.871 0.851 0.791 
 Median of 

absolute 
deviations (mad) 

0.0165 0.322 0.516 0.267 

 Range 0.01 ~ 0.13 0.2 ~ 1.61 0.04 ~ 2.10 0.39 ~ 0.99 
      
Co Mean ± S.D. 0.100 ± 0.101 0.128 ± 0.065 0.0775 ± 0.0372 1.51 ± 2.44 
 Median 0.0595 0.132 0.0583 0.105 
 mad 0.0546 0.0299 0.0300 1.42 
 Range 0.02 ~ 0.48 0.05 ~ 0.26 0.03 ~ 0.53 0.09 ~ 4.33 
      
Cr Mean ± S.D. 0.667 ± 0.756 0.411 ± 0.065 0.201 ± 0.131 1.17 ± 0.86 
 Median 0.381 0.403 0.152 1.07 
 mad 0.347 0.146 0.07512 0.809 
 Range 0.11 ~ 4.27 0.14 ~ 0.76 0.08 ~ 0.53 0.37 ~ 2.08 
      
Cu Mean ± S.D. 1.81 ± 1.74 26.1 ± 24.4 28.0 ± 11.0 28.7 ± 42.6 
 Median 0.381 24.4 27.8 6.08 
 mad 1.01 6.89 3.38 26.4 
 Range 0.15 ~ 7.55 16.3 ~ 41.8 15.2 ~ 56.2 2.28 ~ 77.8 
      
Ni Mean ± S.D. 0.653 ± 0.550 0.616 ± 0.359 0.560 ± 0.220 10.9 ± 17.4 
 Median 0.428 0.529 0.493 0.890 
 mad 0.309 0.124 0.182 10.1 
 Range 0.17 ~ 2.08 0.26 ~ 1.39 0.26 ~ 0.99 0.73 ~ 31.0 
      
Pb Mean ± S.D. 2.20 ± 6.02 0.177 ± 0.062 0.135 ± 0.064 0.424 ± 0.234 
 Median 0.405 0.176 0.103 0.298 
  1.86 0.0299 0.0525 0.144 
 Range 0.09 ~ 30.7 0.09 ~ 0.29 0.04 ~ 0.23 0.28 ~ 0.69 
      
V Mean ± S.D. 0.616 ± 0.451 0.315 ± 0.089 0.252 ± 0.102 0.967 ± 1.44 
 Median 0.428 0.289 0.268 0.158 
 mad 0.308 0.0631 0.0821 0.852 
 Range 0.15 ~ 1.93 0.17 ~ 0.42 0.07 ~ 0.41 0.12 ~ 2.63 
      
Zn Mean ± S.D. 18.4 ± 6.25 16.3 ± 2.92 15.8 ± 2.81 41.2 ± 39.0 
 Median 18.8 17.7 16.0 19.1 
 mad 4.53 1.68 1.85 23.0 
 Range 8.78 ~ 30.26 12.2 ~ 19.9 11.0 ~ 20.0 18.3 ~ 86.3 
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TABLE 3. Trace element concentrations in some aquatic organisms (mg/kg, wet 
weight) in other regions in China, reference concentrations from Norway, and 
the assessment guidelines in China 

Commodity (city/ country) Cd Cr Cu Ni Pb Zn 
Shellfish (Hong Kong)a 0.49 0.21 - - 0.254 - 
Shellfish (Yangtze River 
Estuary), 1982 – 1983 b 

0.42 - 14.9 - 2.08 37.8 

Crab (Hong Kong) a 0.58 <0.05 - - 0.04 - 
Shrimp (Hong Kong) a 0.12 <0.05 - - 0.08 - 
Shrimp (Zhanjiang Harbour 
Bay), 1990 – 1994 b 

0.04 - 1.56 0.11 0.42 13.48 

Shrimp (PRE), 2000 b 0.04 0.15 1.28 0.27 0.50 2.60 
Marine fish (Hong Kong) a <0.02 <0.05 - - 0.03 - 
Fresh-water fish (Hong Kong) a <0.02 <0.05 - - 0.03 - 
Fish (Yangtze River Estuary), 
1982 – 1983 b 

0.14 - 2.29 - 1.68 18.3 

Fish (Yellow River Estuary), 
1984 b 

0.13 - 0.31 - 0.81 12.0 

Fish (Zhanjiang Harbour Bay), 
1990 – 1994 b 

0.08 - 0.68 0.09 0.67 13.1 

Fish (Guangdong Coastal 
waters), 1986 – 1988 b 

0.03 - 0.77 0.14 0.22 6.26 

Fish (PRE), 2000 b 0.03 0.16 0.18 0.28 0.51 1.01 
       
Reference values:       
Fish, Cod (Norway), 2003 d 

(n=1184) 
0.10 - 7.5 - 0.03 23.6 

Shellfish, Blue Mussels 
(Norway), 2003 d (n=291) 

0.25 - 1.30 - 0.26 20.29 

       
Assessment Guidelines:       
Assessment Standard in China b 0.05 1.00 5.00 - 1.00 - 
Action level for fish in Canada e - - - - 0.5 - 
a Tam and Mok, 1991 
b Wei et al., 2002 
c Fang et al., 2001 
d Green and Knutzen, 2003 
e Canadian Food Agency, 2004 
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TABLE 4. The means (± standard derivations) and ranges of 206Pb/207Pb 
and 208Pb/207

Commodity 

Pb ratios in the aquatic organisms collected from the PRE 
 

 206Pb/207Pb 206Pb/207Pb 
Fish (n = 35) Mean 1.1789 ± 0.0017 2.4662 ± 0.0123 
 Range 1.1610 ~ 1.1933 2.4383 ~ 2.4889 
Shrimp (n = 13) Mean 1.1796 ± 0.0022 2.4842 ± 0.0066 
 Range 1.1715 ~ 1.1908 2.4754 ~ 2.4942 
Crab (n = 7) Mean 1.1808 ± 0.0021 2.4766 ± 0.0049 
 Range 1.1730 ~ 1.1875 2.4691 ~ 2.4861 
Shellfish (n = 3) Mean 1.1826 ± 0.0034 2.4748 ± 0.0111 
 Range 1.1791 ~ 1.1894 2.4645 ~ 2.4865 
 

 



 25 

List of Figure Captions 

Fig. 1. The location of sampling sites in the Pearl River Estuary (PRE) 

Fig. 2. The correlation between the 208Pb/207Pb and 206Pb/207Pb ratios of aquatic 

organisms in the PRE 
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Fig. 1. The location of sampling sites in the Pearl River Estuary (PRE)  
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Fig. 2. The correlation between the 208Pb/207Pb and 206Pb/207

 

Pb ratios of aquatic 
organisms in the PRE 
a Wong et al., 2003; b Wong et al., 2002. 
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