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New Approaches Without Postprocessing to
FIR System Identification Using Selected Order

Cumulants
Wei Li and Wan-Chi Siu, Senior Member, IEEE

Abstract—In this paper, we address the problem of identifying
the parameters of the nonminimum-phase FIR system from the
cumulants of noisy output samples. The system is driven by an
unobservable, zero-mean, independent and identically distributed
(i.i.d) non-Gaussian signal. The measurement noise may be white
Gaussian, colored MA, ARMA Gaussian processes, or even real
noises.

For this problem, two novel methods are proposed. The methods
are designed by using higher order cumulants with the following
advantages. i) Flexibility: Method 1 employs two arbitrary adja-
cent order cumulants of output, whereas Method 2 uses three cu-
mulants of output: two cumulants with arbitrary orders and the
other one with an order equal to the summation of the two orders
minus one. Because of this flexibility, we can select cumulants with
appropriate orders to accommodate different applications. ii) Lin-
ear ity: Both the formulations in Method 1 and Method 2 are linear
with respect to the unknowns, unlike the existing cumulant-based
algorithms. The post-processing is thus avoided.

Extensive experiments with ARMA Gaussian and three real
noises show that the new algorithms, especially Algorithm 1,
perform the FIR system identification with higher efficiency and
better accuracy as compared with the related algorithms in the
literature.

Index Terms—FIR system identification, higher order cumu-
lants, parameter estimation.

I. INTRODUCTION

F INITE IMPULSE response (FIR) system identification
based on higher order cumulants of system output has

received great attention in recent years. Tools that deal with
problems related to either nonlinearities, non-Gaussianity, or
nonminimum-phase (NMP) systems are available, and they
are of great value in applications, such as radar, sonar, array
processing, blind equalization, time-delay estimation, data
communication, image and speech processing, and seismology.

Consider an unknown FIR system (i.e., the MA process)
given by

(1)
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where
system output;
non-Gaussian, th-order white independent and
identically distributed (i.i.d) signal with zero-mean;
impulse response sequence with ;
order of the model.

The received signal in the real world is not in general
but is contaminated by some noises. Let us denote this received
signal as

(2)

where is a measurement noise, which may be any
of the white Gaussian, colored MA Gaussian, or colored
ARMA Gaussian noises and is independent of . The
identification problem requires the estimation of parameters

from the real output and its higher
order cumulants.

Based on the model in (1), a number of algorithms have been
proposed that have been summarized in the survey paper written
by Mendel [1]. According to this paper, the algorithms men-
tioned belong to three broad classes:

1) closed-form solutions;
2) linear algebra solutions;
3) optimization solutions.

Recently, the linear algebra solutions have received great
attention because they have simpler computations and are free
of the problems of local extreme values that often occur in the
optimization solutions. Although the closed-form solutions
have similar features, they usually do not smooth out the noises
caused from observation and computation. Therefore, while
these solutions are interesting from the theoretical point of
view, they are not recommended for practical applications [2].

The key in linear algebra solutions is to establish a linear
relationship between parameters (sometimes including

) and higher order statistics of . Applying a certain
criterion (for example, the least-square principle), we can get the
estimates of . The pioneering work of using higher order
statistics of the output for identifying FIR system was done by
Giannakis in [3]. No doubt, this method provides a new way for
FIR system identification, but it cannot smooth out the effect
of additive noise arising from the computation of higher order
cumulants. To overcome the deficiency, Giannakis and Mendel
first proposed the linear algebra solution by using the correla-
tion functions and the third-order cumulants in [4], which is now
known as the GM approach. This method, however, does not
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work well when measurement noise, even if it is white Gaussian
noise, is present. Since the correlation functions are not blind to
Gaussian noise, some equations affected by the measurement
noise have to be removed, resulting in a set of underdetermined
equations. In addition, numerical ill conditioning may exist in
the GM approach when( , where and de-
notes the second- and the third-order statistics, respectively.) is
“small.” To avoid the above problems, some modified versions
[5]–[7] of the GM approach and some new algorithms in [2],
[6], and [8] have been suggested. For example, in [5], a new
method called the T-approach was proposed by Tugnait, which
also makes use of the correlation functions and the third-order
cumulants. The main difference between the T and the GM-
approaches is that different lags in third-order cumulants are
taken. Two modified GM-based algorithms developed by Tug-
nait called the GMT1 and the GMT2 have been suggested in [6],
and [7]. The aims are to make the GM approach able to deal with
noisy observations. The common point is that both algorithms
remove the equations corrupted by the measurement noise from
the corresponding GM equations. The difference is that some
equations derived from bispectral are used as auxiliary equa-
tions in the GMT1 approach, whereas some equations derived
from T approach are used as auxiliary equations in the GMT2
approach. Extensions from the third-order to the fourth-order
cumulants have also been suggested by Tugnait in [6] and [7],
in order to accommodate the signal with symmetrical distribu-
tion. The R-GM approach as shown in [5] succeeded in averting
the numerical ill conditioning due to smallin the GM approach
with . Note that all algorithms in [3]–[7] make use of
the correlation and the third-order (or fourth-order) cumulants,
which are known as the R-C algorithms. Although some of them
considered the measurement noise, they are designed only for
i.i.d. non-Gaussian noise or white Gaussian noise.

For cases with relatively complicated measurement noise
such as the ARMA Gaussian noise, using cumulants with
orders greater than two may be a good choice for FIR system
identification. A few algorithms in [2] and [9], which make use
of the third- and the fourth-order cumulants, have achieved FIR
system identification under the ARMA Gaussian noise envi-
ronment. However, almost all the above-mentioned algorithms
dealt with cases on resolving nonlinear equations due to the
unknown parameters and for . A
commonly used treatment is to find the least-square solutions
by supposing that and are independent at
the beginning, although this assumption is not reasonable and
may generate a larger estimation error, and then to obtain final
estimate for each unknown by considering the estimates
of and together, which is generally called
postprocessing. Postprocessing is, to some extent, just a com-
pensating means for the fault resulting from misunderstanding

and being independents.
To avoid the additional step, i.e., the postprocessing, and,

meanwhile, to accommodate a complicated noisy environment,
we will make use of output cumulants with arbitrarily selected
orders and propose two newlinear formulations, namely,
Method 1 and Method 2. By selecting different orders of
cumulants, the formulations in the two methods lead to a series
of algorithms. To demonstrate how to derive the algorithms

from the formulations, we conduct two particular algorithms,
namely, Algorithm 1 and Algorithm 2, by using two sets of
fixed orders. Our methods have the following features:

1) Flexibility: Method 1 employs two cumulants of
with arbitrary adjacent orders, whereas Method 2 uses
three cumulants of : two cumulants with arbitrary or-
ders and one with an order equal to the summation of the
two orders minus one. For clarity, we select a set of or-
ders in each method as an implementation of the corre-
sponding method. They form Algorithm 1, for using the
third- and the fourth-order cumulants, and Algorithm 2,
for using the second-, third-, and fourth-order cumulants.

2) Suitability: As we have mentioned, by selecting different
orders, Methods 1 and 2 can lead to a number of al-
gorithms. These algorithms can be applied in different
situations such as the systems with minimum phase
(MP) or nonminimum phase (NMP) and the systems
with white Gaussian noise or colored (MA or ARMA)
Gaussian noise. For example, Algorithm 1 can serve for
NMP system even under ARMA Gaussian noise, and
Algorithm 2 is available for NMP system under white
Gaussian noise only. This, however, does not imply
that Method 2, from which Algorithm 2 is derived by
selecting the second-, third-, and fourth-order cumulants,
is largely confined. We can actually select other orders in
Method 2 instead of the second- , third-, and fourth-order
shown in Algorithm 2 to accommodate certain compli-
cated situations.

3) Linearity: Both the formulations in Method 1 and Method
2 are linear with respect to the unknowns. The postpro-
cessing step is thus avoided.

II. TWO NEW METHODS FORFIR SYSTEM IDENTIFICATION

Let us recall (1) and (2)

Before we elaborate on our approach, let us make the following
assumptions.

1) The driving signal is unobservable i.i.d.
non-Gaussian process with zero-mean.

2) The system is of nonminimum phase, where
and for and . The

system order is known or may be measured bya priori
knowledge [14]–[16].

3) The measurement noise is white Gaussian noise or
Gaussian ARMA process with unknown statistics and is
independent of ; hence, it is also independent of the
output .

A. New Formulation

In order to use higher order cumulants of the output for iden-
tifying the system described by (1) and (2), or particularly esti-
mating those coefficients in (1), we need to establish a relation-
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ship between the output higher order cumulants and the coeffi-
cients.

Consider (1) and the assumption of i.i.d on . The
th-order and th-order cumulants of may be

expressed in terms of the FIR coefficients [12] as

(3)

and

(4)

where and are two positive integers, and denotes the
th-order cumulant of .
Let in (3), which gives

(5)

Similarly, for , (4) becomes

(6)

where we have used for .
Combining the last two equations and setting

, we obtain the following ratio:

(7)

Obviously, the relationship between the unknown coefficients
and the output cumulants are now expressed by this equation.
Because the cumulants of at a fixed lag on the left-hand
side of the equation can be computed by the sample average, all
the unknowns involved on the right-hand side of the equation
can be solved by some linear or nonlinear methods that depend
on whether nonlinear terms related to exist. By selecting
appropriate values for and , that is, by using different order
cumulants, we are able to attain different expressions derived
from (7). Therefore, this equation provides a basic relationship
to identify the FIR system by using arbitrary order cumulants.
Based on this formulation, we will present two methods.

B. Method 1

Let us consider a simple case by selecting so that only
one is preserved on the right-hand side of (7) and two
cumulants with adjacent orders are left on the left-hand side of
the equation. Equation (7) thus becomes

and (8)

Equation (8) is in a form similar to the solution in [4]. However,
they are, in fact, inherently different. Giannakis and Mendel [4]
provide an algebraic solution by using one equation that cannot
smooth out the effect of the additive noise generated from esti-
mating the cumulants. However, from (8), we may obtain a set of
equations by choosing different values for .
To estimate all the coefficients and to make the
cumulants meaningful, we may naturally let be
in the sequence and take the range (for

) for every . For a fixed , and
(for , (8) yields a system with only

a single unknown and linear equations. The linear
least-square solutions for unknownand
could thus be obtained one after another.

For clarity, we take as an example. For , (8)
becomes

(9)

Accordingly, fixing and taking from 0 to , we have
equations with only one unknown for each. Applying the
least-square principle, and for are ob-
tained. For this particular situation, let us call it Algorithm 1.
We summarize Algorithm 1 as follows.

1) Initially, let and take ; this leads to
equations. In matrix form, we have

where

and we have used the assumption that .
The least-square estimationof can easily be ob-

tained by .
2) Let , and take . The unknown

in matrix form can be written as

where

We can then estimate of by applying the least-
square principle.
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3) Similarly, repeating step 2) for , respec-
tively, we can solve other unknowns
with the least-square solutions.

It is easy to see that Algorithm 1 makes use of the fixed
slices of the third-order cumulants at one lagas well as the

slices of the fourth-order cumulants at lagsand
in each step. These slices form the vectorsand

. As long as a nonzero element exists in, we can
obtain an unique lest-square solution for every unknown pa-
rameter. In fact, from the first assumption and the well-known
Brillinger–Rosenblatt formula in [12], these cumulants should
be nonzero. Generally, the cumulants are needed to be calcu-
lated by output sample averagea prior. In theory, if the length

of samples is very large, i.e., , the sampled cumu-
lants converge with probability one to the true cumulants [6].
In practice, only some samples of the output are known, and
we have to make use of these finite samples to estimate its cu-
mulants to replace the “true” cumulants. This certainly leads to
some errors (or noises) on computing the cumulants.

Algorithm 1 is derived without considering the measurement
noise. In the presence of the measurement noise, the obser-
vations are considered to be noisy. As we know,th-order
cumulants of Gaussian processes vanish for . If the
measurement noise is white Gaussian or even colored (MA
or ARMA) Gaussian noises, Algorithm 1 is still available by
directly replacing and with and

, respectively, without any changes.
Algorithm 1, by taking , is an example of Method 1.

Of course, we can assign other values for. A number of al-
gorithms are therefore generated. However, a special solution
occurs when , which is a closed-form solution that is
very similar to the approach in [4] and is obtained by
following the above steps. Obviously, this is not a solution and,
hence, cannot smooth out the additive noise generated by cal-
culating the cumulants. We suggest that the value ofshould
be larger than 2 for actual implementation. Similarly, Method 1,
which makes use of two adjacent-order cumulants, is the sim-
plest case of (7) by taking . If we take other values for
in (7), the orders of the two cumulants will not be adjacent, and
nonlinearity will appear on the right side of the corresponding
equation. For the sake of simplicity, we suggest that .

The novelty of Method 1 lies in that only one unknown is es-
timated via the linear least-square principle in every step. It, on
one hand, avoids the postprocessing procedure due to nonlin-
earity. On the other hand, it is not only able to smooth out the
noises due to calculating the cumulants but is also able to avoid
the error propagation due to the inaccuracy of the other estima-
tions. However, the estimates of for are
dependent on the estimate of. It implies that if the estimation
of is incorrect, the estimates of are certainly not
accurate. This problem is also present in almost all related algo-
rithms.

C. Method 2

We have derived Algorithm 1 by evaluating and
in (7). Of course, if we take different values forand ,

a large number of algorithms can also result. In addition, the
common point of these algorithms is that only the cumulants

with two adjacent-order (the case of ) or two arbitrary
order (other values for) are used to perform the estimation of
the FIR system. Additionally, only one unknown is estimated
in every step for this algorithm. For comparison purposes, we
attempt to design another algorithm by using more cumulants
to obtain the estimates of all the unknowns simultaneously. To
do this, the th-order cumulant of is suggested as

(10)
Our idea is to try to express
by certain quantities that may be known or may be computed to
leave alone. Let us set

, and substitute them into (7); we then have

(11)

Combining (10) and (11), we obtain

(12)

Another form of (12) is

(13)

where

With , we rewrite (13) as

(14)

Equation (14) has, when it is viewed as a linear equation,
unknowns involving and . By selecting
appropriate values for and and taking all meaningful values
for and ( and ), a set of
overdetermined equations is formed. The least-square solution
to the unknowns can then be obtained. Similar to Algorithm
1, let us clarify our approach by giving a simple example with

and for Algorithm 2.
Evaluating (14) at and , we have

(15)
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...
...

...
...

...
...

Obviously, three cumulants with different orders appear in this
equation. Let us set and in (15). We
have unknowns, i.e., , , and
equations. We rewrite (15) in matrix form as (for
and )

(16)

where

a -column vector

a matrix

a -column vector.

The symbol “ ” denotes the transpose of the matrix or the
vector. is a matrix, and is a
column vector for and

, shown in the expression at the top of the page,
where for and .

and are expressed as in the equations at the bottom of
the page. We can find that matrixesand utilize all mean-
ingful autocorrelation functions of and all third-order and
fourth-order cumulants of at a fixed lag . As we have
pointed out in Algorithm 1, as long as we have enough output
samples, we can get very accurate estimation of these statistics.
From (16), it is easy to see that and constitute a set of
overdeterminedlinear equations. Naturally, we adopt the linear
least-square principle to solve it. Because matrixhas full rank

, the above overdetermined equations have a unique and
accurate least-squares solution as in

(17)
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Note that all cumulants in and are expressed in noise-free
output . In the presence of the measurement noise, matrix
and vector have to be written in terms of the cumulants of .
If the noise is white Gaussian, it is true that
for and for any as well as

for any , where only is
corrupted by the noise. Removing the rows that include
in and , Algorithm 2 is readily available to estimate the un-
knowns.

From (17), the unknowns are simultaneously obtained,
and we refer it to as Algorithm 2. In addition, there also exist
other least-square solutions by using subsystems . We
describe one of these possible solutions as follows.

Step 1) Let for the subsystem consisting of
equations with only one unknown. The least-

squares solution is then easily obtained.
Step 2) Let (or ). Since has been estimated

in step 1, the subsystem or
consisting of equations involves one unknown

[or ] only. We can then obtain the least-
squares solution of [or ].

Step 3) Similarly, let (Note that for
the noisy case, is not included) or

, respectively. Utilizing the
estimated parameters and repeating step 2, the least-
squares solutions of the other unknowns can also be
obtained recursively.

It should be emphasized that Algorithm 2 is just an example
of Method 2 by taking and , and it is only avail-
able for the white Gaussian noise due to using the second-order
statistics. To accommodate a harsh environment, we can select
other values for and and thus obtain a number of algo-
rithms. For example, setting and in (14), the third-
and fifth-order cumulants will be employed. The produced al-
gorithm can be applied to the environment with the ARMA
Gaussian noise.

We have proposed two methods. One is based on (8), re-
quiring two different order cumulants and , whereas
the other one is based on (14), requiring three different order cu-
mulants and . Because both methods deal with
solving linear equations, the postprocessing is avoided. For the
sake of clarification, we have evaluated two particular values for

and and, hence, generated two algorithms. From the point
of statistics, it seems that if we use as many output cumulants
as possible, the estimation results should be better. According
to this understanding, Algorithm 2 seems to perform the esti-
mation over Algorithm 1. To compare the performance of the
proposed algorithms as well as some existing algorithms, we
will give some experimental results in the next section.

III. SIMULATION RESULTS

Two new methods for identifying FIR system have been the-
oretically proposed. To verify the availability of the methods,
we have carried out a number of experiments with third-order
and fourth-order FIR systems under the ARMA Gaussian noise
and three real noises. We are especially interested in comparing
the performance of the new algorithms with that of the existing

TABLE I
ESTIMATED PARAMETERS OF EXAMPLE 1

UNDER THE ARMA GAUSSIAN NOISE (30 MONTE CARLO RUNS,
N = 2048 FOR EACH RUN)

R-C approaches such as the GM approach [4], the T approach
[6], the R-GM approach [5], the GMT1 method [6], the GMT2
method [7], and the methods based on higher order cumulants
alone [2]. All the second- , third-, and fourth-order cumulants
that might be used in these algorithms are computed first. Each
algorithm employs parts of these cumulants, according to the
requirements in the corresponding algorithm. Note that some of
the cumulants with the same order in these algorithms might be
the same, but some of them are different.

To illustrate this comparison, we give three examples. For
each test case, the input is a normalized, i.i.d. exponential
random sequence with zero mean. Others like and

have the same meanings given in (1) and (2). To measure
the strength of the noise, we define the signal-to-noise ratio as
SNR (dB). To measure the ac-
curacy of parameter estimation with respect to the real values,
we define the mean squared error (MSE) for each run as

MSE (18)

where are the estimated parameters in each run, and
are the real parameters in the model. Tables I–III show

the original results of the means and the average standard devia-
tions (Std. Dev.) of the estimated parameters, with sample length

, over 30 Monte Carlo runs for each approach. For
clarity of expression and vision, we calculate the corresponding
MSE’s of these estimation results and draw them in Figs. 1–3,
respectively.

Example 1: The third-order NMP MA model taken from
[2]–[4] is

(19)

with zeroes at and 0.6. With reference to
(1), in this case, we have
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TABLE II
ESTIMATED PARAMETERS OFEXAMPLE 2 UNDER THEARMA GAUSSIAN NOISE

(30 MONTE CARLO RUNS,N = 2048 FOR EACH RUN)

TABLE III
ESTIMATED PARAMETERS OFEXAMPLE 1UNDER REAL NOISES ATSNROF 0 dB

(30 MONTE CARLO RUNS,N = 2048 FOR EACH RUN)

and . Let us compare the algorithms
under the ARMA Gaussian noise. The ARMA Gaussian noise

is generated by a white Gaussian signal passsing an
ARMA process given in [4]

(20)

with poles at 0.8 and and with a zero .
We added the ARMA Gaussian noise to the output samples

. By using the above algorithms, the simulation re-
sults for the ARMA Gaussian noise at SNR 0, 10, and 20 dB
are given in Table I. By calculating the MSE, we can find that
at 0, 10, and 20 dB, the percentages of MSE’s of Algorithm
1 are 7.23%, 3.94% and 1.86%, respectively. For the methods
[2] based on higher order cumulants alone, the best results are
23.05%, 5.86%, and 6.74% at 0, 10, and 20 dB, respectively, ob-
tained by Method 1 in [2]. That implies an improvement of 69%
for a comparison of these two figures at 0 dB. For the R-C algo-
rithms, the best results are 65.02% obtained by the T approach
at 0 dB, 6.8% obtained by the GMT2 approach at 10 dB, and

Fig. 1. MSE’s of parameter estimates of Example 1 (Gaussian ARMA noise,
30 runs,N = 2048 in each run).

Fig. 2. MSE’s of parameter estimates of Example 2 (Gaussian ARMA noise,
30 runs,N = 2048 in each run).

Fig. 3. MSE’s of parameter estimates of Example 3 (three real noises, 30 runs,
N = 2048 in each run).

0.54% obtained by the R-GM approach at 20 dB. An improve-
ment of 88% is achieved for a comparison of Algorithm 1 and
the T-approach with SNR of 0 dB. For convenience, we draw
the MSE’s in Fig. 1. We only give results on our algorithms, the
R-GM, the T, and the GMT2 approaches as well as the methods
in [2]. The results of the other algorithms are not shown in Fig.
1 because their MSE’s are so large that the precision of the com-
parison could be adversely affected. Fig. 1 shows that Algorithm
1 is superior to all others at lower SNR, whereas the methods in
[2] take second place as they are designed for situation with the
ARMA Gaussian noise.

Fig. 4 illustrates the MSE against SNR for 2048 output sam-
ples with the ARMA Gaussian noise. We give the results for
our algorithms, the T, and the GMT2 approaches as well as the
methods in [2]. Obviously, the curves in this figure are located
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Fig. 4 Average MSE against SNR in the ARMA Gaussian Noise.

in three different levels. The lowest curve that corresponds to
Algorithm 1 clearly shows that the MSE varies little against
SNR, whereas the curves at the middle level correspond to the
methods [2]. The top curves corresponding to Algorithm 2, the
T, and GMT2 approaches have significant changes when the
SNR varies from low to high values.

Example 2: Let us simulate the following fourth-order NMP
MA model used in [9] under the above ARMA Gaussian noise

(21)

with zeros at and .
Table II shows the results. For clarity, we compute the corre-

sponding MSE’s and draw them in Fig. 2. It is readily observed
that the overall accuracy of the parameter estimation decreases.
Even so, Algorithm 1 still provides the best performance at
lower SNR. For example, at 0 dB, the MSE of Algorithm 1 is
7.23%, whereas the best one among other algorithms is 20.16%.
An improvement of 56% is achieved.

Example 3: Let us simulate the above third-order NMP MA
model again by adding some real noises in order to test the avail-
ability of our algorithms to real environments. All real noises
are recorded in the real world. They are the sounds of drum, car,
and engine, respectively. The experiments in this example are
carried out with SNR of 0 dB.

Let us see Table III and Fig. 3. It is easy to see that only Algo-
rithm 1 works well under any of these real noises. The R-C algo-
rithms such as Algorithm 2, the T, the R-GM, and the GMT2 ap-
proaches, however, have larger values of MSE’s for the “drum”
and “car” and have acceptable values of MSE’s for the “engine,”
whereas the methods [2], especially Method 1 in [2], provide
better results as compared with the R-C algorithms. A possible
explanation is that the “drum” and “car” may be close to the col-
ored Gaussian noise, resulting in degraded performance for the
R-C algorithms. This example implies that Algorithm 1 is very
robust to the real noises, which can provide potential in practical
applications.

Figs. 5–7 illustrate the MSE against SNR for 2048 output
samples with the three types of real noises. The curves in these
figures are still in three different levels like that in Fig. 4. These

Fig. 5. Average MSE against SNR under “Drum” noise.

Fig. 6. Average MSE against SNR under “Car” noise.

Fig. 7. Average MSE against SNR under “Engine” noise.

figures consistently show that Algorithm 1 obtains the best es-
timation results at lower SNR and is very insensitive to SNR
as the corresponding curve has little fluctuations. Although the
methods in [2] take second place in performance, the curve cor-
responding to Method 1 in [2] has wide fluctuations of the MSE
when the SNR varies from low to high values, and Method 2
in [2] has large overall bias, although it is robust to SNR. The
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curves corresponding to the R-C algorithms have a sharp drop
at an SNR of 5 dB or so.

We have tested our algorithms with the third- and fourth-order
FIR systems under the ARMA Gaussian noise. Experimental re-
sults show that our algorithms are able to perform the parameter
estimation under colored noise environment. Especially as com-
pared with other existing algorithms with postprocessing, Algo-
rithm 1 without postprocessing is very insensitive to the SNR.
It provides comparable results at higher SNR and superior re-
sults at lower SNR (0–5 dB). Particularly at 0 dB, it improves
88% and 56% over the best results obtained from all existing al-
gorithms in Examples 1 and 2. However, other algorithms pro-
duce better estimates only when the SNR is higher. This is not
surprising. On one hand, a real linear least-squares problem is
addressed in Algorithms 1 and 2, which avoids the postpro-
cessing step and thus reduces the estimation errors. However,
the postprocessing step is irreducible in other existing algo-
rithms. On the other hand, Algorithm 1 is applicable for the
ARMA Gaussian noise because of the use of the third- and
fourth-order cumulants, and the estimated parameters have no
interaction, resulting in no propagation of the estimation errors.
Although the methods in [2] are also available for the ARMA
Gaussian noise, their performances are not as good as Algorithm
1 in the estimation.

From the simulation results, Algorithm 2 does not achieve
a better performance over the existing algorithms. The main
reason is that it cannot theoretically suppress the ARMA
Gaussian noise due to the use of second-order cumulants. To
accommodate this kind of noisy environment, we can actually
select the cumulants with order greater than two in Method
2. For example, setting and in Method 2, an
Algorithm that makes use of two third-order and one fifth-order
cumulants will be derived. Without doubt, it can be applied
to the environment with the ARMA Gaussian noise. The
computational burden, however, is largely increased.

In addition, we have also tested all the algorithms with three
real noises. As a result, Algorithm 1 outperforms other algo-
rithms.

IV. CONCLUSION

We have presented two new higher order cumulants-based
methods for NMP FIR system identification. These methods
give the foundation to form a class of algorithms by selecting
different orders. Algorithms 1 and 2 are two simple realizations
of the two methods. Algorithm 1 employs the third- and fourth-
order output cumulants, and Algorithm 2 adopts the second- ,
third-, and fourth-order cumulants.

A distinct feature of the proposed algorithms lies in leaving
out the postprocessing step that happens in almost all existing al-
gorithms. Because the formulations in our algorithms are linear,
the linear least-squares solutions can be directly achieved. Ad-
ditionally, the flexibility of the orders selection of the methods
is another advantage. We can choose appropriate orders to ac-
commodate different environments. The higher the order is, the
larger the computational burden. A compromise between the
choice of order and the computational complexity is generally

considered. In this paper, Algorithm 1 can serve cases with the
ARMA Gaussian noise whereas Algorithm 2 is theoretically
available for white Gaussian noise. Although we can develop
other algorithms by selecting the cumulants with order greater
than two in Method 2, the computational burden will be in-
creased significantly.

Simulation results have shown that Algorithm 1 outperforms
other published cumulant-based linear approaches and is very
robust to the SNR under the ARMA Gaussian and real noises. It
provides comparable results at higher SNR and superior results
at lower SNR (0–5 dB). The reasons follow.

i) The algorithm avoids the postprocessing step.
ii) It only employs several slices of third- and fourth-order

cumulants.
iii) It estimates one parameter in every step.
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