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Abstract: Lightning can be seen as a large-scale cooperative phenomenon, which may evolve 
in self-similar cascaded way. Using the electric field waveforms recorded by the slow antenna 
system, the mono- and multifractal behaviors of 115 first return strokes in negative 
cloud-to-ground discharges have been investigated with wavelet multi-resolution based 
multifractal method. The results show that the return stroke process, in term of its electric 
field waveform, has apparent fractality and strong degree of multifractality. The multifractal 
spectrums obtained for the 115 cases are all well fitted to a modified version of the binomial 
cascade multifractal model. The width of the multifractal spectrums, which measure the 
strength of multifractality, is 1.6 in average. The fractal dimension of the electric field 
waveforms ranges from 1.2 to 1.5 with an average of 1.3, a similar value to the fractal 
dimension of the lightning channel obtained by others. This suggests that the 
lightning-produced electric fields may appear the same fractal dimension as its channel. The 
relationship between the peak current of a return stroke and the charge deposition in its 
channel was also discussed. The results suggest that the wavelet and scaling analysis may be a 
powerful tool in interpretation of the lightning-produced electric fields and therefore in 
understanding of the lightning. 

1. INTRODUCTION 

The fine structure of electric field changes produced by a lightning return stroke is 
intensively studied for lightning protection interest (Bazelyan and Raizer, 2000; Uman, 2001). 
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Various features, such as the initial magnitude, zero crossing time, slow font duration and fast 
transition, are introduced to characterize the details of waveform of the lightning-produced 
electric field changes (Weidman and Krider, 1978; Cooray and Lundquist, 1985; Uman, 
2001). However, the high variability of lightning, which is characterized with strong 
nonlinearity and multiple scales, often makes the analysis difficult (Davis, et al., 1994). On 
the other side, recent studies on theories of fractal suggested that large natural catastrophe, 
like lightning, can be considered as an emergent and collective phenomenon，which is 
governed by the universal law, implying that the important aspect of their behavior has little 
to do with the exact microscopic details such as physical, chemical, physiological, of the 
dynamic systems. This may provide a new perspective for the understanding of lightning 
process.  

It is largely believed that the catastrophe is a self-organized system characterized with the 
scale invariant spatial fractal and temporal fluctuations (avalanche event), which may be two 
sides of the same coin, manifesting the self-organized evolution (Bak, 1987; Turcotte, et al, 
2002). The analog to a critical phenomenon at a second-order phase transition suggested that 
the scaling behavior may be corrected by log-periodic oscillation, which is associated with 
complex exponent scaling law and the discrete scale invariance. This implies further that the 
large-scale hazard is controlled by their cooperativity and scaling up (inverse cascade) of their 
interactions and may potentially offer the prediction of natural disasters ((Turcotte et al., 2002; 
Sornette, 2002, 2004). 

It is well established that lightning discharges follow a tortuous and brunching path 
(Kawasaki and Matsuura, 2000; Tan, et al., 2006). The work on the electromagnetic field 
radiated from a fractal channel show that the lightning channel may be considered as a fractal 
antenna (Vecchi, et al., 1994; Valdivia et al., 1997; Lupò et al., 2000). The tortuosity and 
branching of the discharge channel introduce profound modifications in the intensity and 
structure of the radiated electromagnetic field pattern (LeVine and Meneghini, 1978; Le Vine 
and Willett, 1995), and the radiated field appears the same fractal dimension as the channel 
(Vecchi, et al., 1994). Though there is much a difficult problem, the fractal behavior of 
lightning processes is utterly interesting topic indeed, especially considering its association 
with the possible criticality of lightning and their evolution. In this paper, by applying the 
wavelet multiresolution based multifractal method (Manimaran, et al., 2005, 2006) to the slow 
electric field change data (as recorded by the slow antenna), the fractal and multifractal 
properties of the electrical field radiated by lightning return strokes have been investigated.  

2. METHOD 
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The nonlinear and cascade processes are usually associated with multifractality. Reliable 
identification of long-range correlation and the multifractality in real data is a difficult task 
mainly due to non-stationary of the data. One of the most widely used method of quantifying 
multifractal properties of time series in several fields is the multifractal detrended fluctuation 
analysis (MF-DFA) (Kantelhardt, et al., 2002), which is a generalization of the conventional 
detrended fluctuation analysis (DFA) approach commonly used in the analyses of scaling 
properties of signals in identifying correlations presented in noisy non-stationary time series 
(Peng, et al., 1994). The basic idea in the approach is to isolate fluctuations in the data set 
through multiple local windows or varying sizes.  

Wavelet transforms are mathematical microscope (Daubechies, 1992; Mallat, 1999). The 
heart behind the wavelet transforms is the multiresolution analysis (see Appendix for details). 
With the wavelet multiresolution analysis, a signal can be decomposed into a coarse 
approximation (smooth background) and a series of details. The successive approximations 
can be used as the trend over a window size corresponding to different levels of wavelet 
decomposition. Thus, fluctuations can be extracted at each level by subtracting the above 
trend series from the original data. The built-in ability of the wavelet multiresolution analysis 
for capturing the trends and identifying the fluctuations around trends in variable window 
sizes in a data set makes it a natural tool for scaling processes.  

The new wavelet based approach for multifractal method, which is very similar to that in 
MF-DFA, can be described as follows.  

Step 1: For a given time series x(i), i=1,…N, determine the “profile”, which is cumulative 
sum of the series subtracting the series mean value <x>. 
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Step 2: Carry out wavelet transforms on the profile Y(i) and separate the fluctuations from 
the trend by considering precise values of window size corresponding to different levels of 
wavelet decomposition; Divide the fluctuations into Ms = int(N/s) non-overlapping segments 
of length s starting from both the beginning and the end of the fluctuations series (i.e., 2Ms 
such segments in total); For each segment ν at scale s, calculate the root mean square 
fluctuation function F(ν ,s). 

Step 3: Calculate the q-th order fluctuation function. 
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Step 4: Determine the scaling behavior of the q-th order fluctuation function Fq(s) versus 
the s. 

http://prola.aps.org/search/field/author/Peng_C_K
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The scaling exponent h(q) is called generalized Hurst exponent. For positive values of q, 
h(q) describes the scaling behavior of the segments with large fluctuations, while those of 
negative values of q describe the scaling behavior of the segments with small fluctuations. For 
monofractal time series, h(q) is independent of q, whereas for a multifractal time series h(q) 
varies with q. Specifically, H1=h(1) is related to the graph dimension of signal D=2-H1, and 
H2=h(2) is assumed to be identical to the well-known Hurst exponent H which is related to 
the power spectral analysis by the relation β=2H+1.  

In comparison with the standard partition function based multifractal method, it can be 

easily verified that the term ∑
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Where τ(q) is the Renyi exponent, which is directly related to h(q) as the follow 
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The singularity spectrum f(α) is related to τ(q) by the following relations 
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Where the α is the Hölder exponent and the f(α) is the Hausdorff dimension of the fractal 
subset with the exponent α. The strength of multifractality is measured with the width of 
exponents Δα = αmax - αmin, which is the same as the width of the singular spectrum f(α) at f=0, 
the wider singularity spectrum, the stronger multifractality. 

3. DATA AND RESULTS 

3.1 Data Acquisitions 

In the summer of 2002, simultaneous multiple-station observations of natural lightning 
discharges were conducted in the northeastern verge of Qinghai–Tibetan Plateau area in 
China (101°35′E, 37°33′N, 2650 m asl). Because of the special geography and topography of 
the area, thunderstorms, especially hailstorms, occurred there quite often. During the 
experiment, field mills, and fast and slow antenna systems were employed in 6 sites 
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synchronized by GPSs with a 0.4 μs time resolution. The time constants of the slow antenna 
and fast antenna systems were 6 s and 2 ms with a frequency bandwidth of 4 Hz ~ 2 MHz and 
70 Hz ~ 5 MHz, respectively. Outputs of these antenna systems were digitized by a 16-bit 
A/D converter and recorded by a computer at a sampling rate of 4 MHz. The recorded length 
was 2 s per event. More detail description about the experiment was given by Qie et al. (2005). 
In following, 115 electric field change waveforms recorded by the slow antenna system at 
Liangjiao site for negative cloud-to-ground discharges on August 4 of 2002 are chosen for the 
analyses. 

3.2 Recognition of return strokes 

As shown in Fig 1(a), the waveform of electric field changes produced by a return stroke 
usually has a distinct transition feature. Our study shows that this feature becomes much 
significant when the wavelet analysis is applied to the electric field waveform of the return 
stroke. By employing the Haar wavelet as the analysis wavelet, which is defined as  
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it is found the appropriate indicator for the return stroke electric field signal is the coefficient 
of variation CV of wavelet coefficient, which is defined as CV = σ / <τ>, where <τ> and σ are 
the mean and standard deviation, respectively. The procedure of the wavelet analysis is as 
follows:  

(i) Firstly, perform the wavelet multiresolution decomposition over the return stroke 
electric field signal as shown in Fig 1(a).  

(ii) Secondly, analyze the evolution of the CV and the mean <τ> of the wavelet 
coefficient at the first level decomposition (D1), using overlapping windows of 1024 
points with a shift of 1 point. For each window the CV and the mean <τ> are 
calculated.  

(iii) These calculated CV and <τ> values are then associated with the time of the last 
point in the window, and are plotted into diagrams as shown in Figs 1(b) and 1(c), 
respectively. 

It is noted that the CV waveform has a distinct step feature and a sharp peak (see Fig 1(b)) 
at the times as same as the fast transition and peak of the return stroke electric field waveform 
(see Figs 1(a)), while the mean value <τ> increases steadily (see Fig 1(c)). This means that a 
return stoke may be recognized and distinguished more effectively and reliably by examining 
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the CV and <τ> values of its electric field waveform. Similar results have been obtained for 
all other 114 cases, demonstrated the suitability of this method.  

 

 

 

3.3 Multifractal analysis 

Multifractal analysis has been performed for the electric field waveforms of the chosen 
115 return strokes. The two-order Daubechies wavelet (Db2), which is characterized by four 
filter coefficients, was chosen to extract the fluctuations in the multifractal analysis. For 
convenience in comparison, all the partition functions Z(q,s) were calculated for q varying 
between -5 and 7, and all the scaling exponents were determined by fitting in the regime 4 < s 

< N/2，with N = 2048 as the length of the signal window of the return stroke on which the 

analysis was performed.  
Fig. 2 shows the values of the exponents H1 and H2 for the same return stroke shown in 

Fig 1(a), which were estimated from the straight line fitting of Fq(s) versus scale s for q = 1, 2, 
respectively. The Pearson correlation coefficients (r), which measure the goodness of the 
fitting, were as high as 0.99.  

 
 

 
 
 
The results of H1 and H2 for all other cases, which are very similar, are shown in Fig. 3. 

The error bars in the figure represent the standard deviation. It is noted that the exponents H2  
are all less than 0.5, thus no apparent long-range persistence exists in the whole process of a 
return stroke in term of the electric field waveform. The resultant power spectral exponent β, 
which is related to the H2 by β = 2H2 +1, ranges from 1.6 to 2.0, with an average of 1.8. The 
fractal dimension D of the electric field signal of a return stroke can be estimated from H1 by 
D = 2 – H1. The D obtained ranges from 1.2 to 1.5 with an average of 1.3. On the other hand, 
the model work of Valdivia (1997) showed that the emission strength of lightning channel 
were sensitive to the fractal dimension of the discharge channel, which has an optimal 

Fig. 1 Time variations of coefficients of the variation Cv (b)  and the mean <τ> (c) of 
first level wavelet coefficients D1 for the electric field signal of the first return stroke No. 
163338 (a), dashed vertical line indicating the feature point of the return stroke. 

 

 

Fig. 2 Log-log plots of the fluctuation functions F1(s) and F2(s) versus scale s for the same 
return stroke shown in Fig.1(a). Solid lines represent the linear least square fitting curves, 
the calculated H1 and H2 were also reported in the figure.  
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dimension of 1.3. Tsonis (1996] estimated that the average fractal dimension of 
cloud-to-ground lightning image is 1.34. Referring to the work of Vecchi et al. (1994) that the 
field radiated by a fractal channel appears to have same fractal dimension as the channel, our 
results here is consistent with them.  

 
 

 
 

 
The results of the multifractal spectrum τ(q) and corresponding singularity spectrum f(α), 

for the same signal shown in Fig. 1(a) are shown in Fig.4. It can be seen that the Renyi 
spectrum τ(q) is curved and the singularity spectrum f(α) is wide, indicating strong 
multifractal and nonlinear behavior of the return stroke. A modification of the binomial 
multiplicative cascade multifractal model by Kantelhardt et al. (2002) shows that the 
multifractal spectrum τ(q) of a signal with significant multifractal behavior fits to the formula  

2ln
)ln()(

qq baq +
−=τ   (8) 

By least-square fitting of our τ(q) results to Eq. (8), the parameters a and b are obtained and 
are also reported in Fig. 4. It can be seen that in the whole q-range the Renyi exponents are 
fitted perfectly with the Eq. (8).  

  
 
 
 
 
It can be easily derived that α(-∞)=-(lna/ln2), corresponding to the weakest singularity 

αmax, and α(+∞)=-(lnb/ln2), corresponding to the strongest singularity αmin. The width of the 
singularity spectrum is Δα=αmax-αmin=ln(b/a)/ln2. As the b≈1, thus αmin≈0, means that the 
singularity is close to that of the Heaviside step function. Meanwhile, the width Δα=1.5 is 
very wide, indicating the high degree of multifractality of the return stroke signal analyzed.  

The results of τ(q) and f(α) for all other cases are very similar. Fig.5 shows the histogram 
of αmin for all the 115 return strokes analyzed. A rather narrow range of the αmin around 0 can 
be observed, which implies a rather “stable” singularity feature of return stroke processes. We 
consider that the αmin may be a characteristic parameter relating the contact with ground in a 
return stroke process. The wide range of singular exponent Δα with the mean of 1.6, which 
implies the high degree of multifractality, may be another characteristic of the return stroke 

Fig. 3 The exponents H1 and H2 for the 115 return stroke signals analyzed, error bars 
representing the standard deviations. 
 

 

 

Fig. 4 Multifractal analysis of the return stroke electric field No. 163338: the Renyi exponents 
τ(q) and its fitting (solid line) with Eq.(8) (a), and the multifractal spectrum f(α) (b). The obtained 
two parameters a and b, and the corresponding αmin and Δα are reported in the figure also. 
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process.  
 

 
 

3.4 Peak current and channel dimension of return strokes 

Let L represents the length of tortuous lightning channel of a return stroke and d the 

straight distance between two channel ends, there should be a relation DLd /1∝ , referring to 

the perimeter maximum-diameter relation for measuring the fractal dimension by Mu et al. 

(1993), where D is the fractal dimension of the lightning channel. Bazelyan and Raizer (2000) 

show that the peak current of a return stroke is related to the cloud potential by crp UI ∝ , 

where Uc is cloud potential brought to the ground by leader.  
Assuming that the leader tip potential, Uc, and the charge deposited in the leader channel, 

Q, are direct proportion to the straight length, d , and the tortuous length, L, of the lightning 

channel respectively, i. e. dU c ∝  and LQ ∝ , and relating to the relation DLd /1∝ above, 

we have 

νQQI D
rp =∝ /1  (9) 

Similar formula to Eq. (9) were obtained by Berger (1972) and Cooray and Lundquist 

(1985). With the average D=1.3 obtained for 115 return strokes analyzed in above section, the 
ν = 0.77, which is close to the values of Bergers’. 

 

4. CONCLUSIONS 

The fractal and scaling behaviors of the electric field waveforms produced by first return 
strokes were investigated with wavelet multiresolution based method. Totally 115 return 
strokes in negative cloud-to-ground discharges were studied. The major results include: 

(a) Wavelet analyses show that the time evolution of the coefficient of variation of 
wavelet coefficients of the return stroke electric signal is characterized with a distinct 
step change and a sharp peak, which are similar to but more significant than those of 
the return stroke electric signal. This means that the coefficient of variation of the 
wavelet coefficients of the return stroke signal may be a more reliable indicator for 
recognition of return stokes.  

(b) Multifractal analyses show that the return stroke electric signal exhibits strong degree 

Fig. 5 The histogram of the αmin for the 115 return strokes analyzed. 
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of multifractality and singularity. The fractal dimension of the signal ranges from 1.2 
to 1.5 with an average of 1.3, which is very close to the fractal dimension of lightning 
channels obtained by others. The multifractal spectrum of the signal fits the modified 
version of binomial multifractal model very well. The multifractal spectrum may be 
regarded as the 'fingerprints' of return strokes, and in combination with the advantage 
of wavelet coefficients, it should be important in lightning automatic recognition and 
characterization.  

(c) The peak current of a return stroke has been related to the charge deposited in the 
leader channel by using the fractal dimension obtained. 

Lastly, the possible correction of scaling with log-periodic oscillator could be an 
important and interesting topic relating the branching processes underlying the structure of 
lightning. 
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Fig. 1 Time variations of coefficient of the variation Cv (b) and the mean <τ> (c) of first 
level wavelet coefficients D1 for the electric field signal of the first return stroke No. 
163338 (a), dashed vertical line indicating the feature point of the return stroke. 
 

Fig. 2 Log-log plots of the fluctuation functions F1(s) and F2(s) versus scale s for the same 
return stroke in Fig.1(a). Solid lines represent the linear least square fitting, the obtained 
H1 and H2 were reported in the figure. 
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Fig. 3 The exponents H1 and H2 for the 115 return strokes analyzed, error bars 
representing the standard deviations. 

Fig. 4 Multifractal analysis of the return stroke electric field No. 163338: the Renyi exponents 
τ(q) and its fitting (solid line) with Eq.(8) (a), and the multifractal spectrum f(α) (b), The obtained 
two parameters a and b, and the corresponding αmin and Δα are reported in the figure also. 
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Fig. 5 The histogram of the minimum exponent αmin for the 115 return strokes analyzed. 

Fig. 7 A diagram of the wavelet multiresolution decomposition of a signal  

Fig. 6 Illustration of wavelet spaces and the containment of scale spaces 
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APPENDIX 

Wavelet theory with its roots in the classical Fourier analysis can be thought as a 
refinement of the Fourier analysis and has been widely applied in a variety of engineering and 
science disciplines. Basis functions of the wavelets are produced from two mutually 

orthogonal companion functions, the father wavelet (or scaling function) )(tφ  and the 

mother wavelet (or wavelet function) )(tψ , by the operation of scaling (dilation) and 

translation (shift), here )(tφ and )(tψ  are square integral real functions ( )(2 RL∈ ) satisfying 

∫ =1)( dttφ  and ∫ = 0)( dttψ  (Daubechies, 1992; Mallat, 1999). 

The heart of wavelet analysis is multiresolution analysis (MRA), which is essentially 
characterized by scaling function. A multiresolution analysis of L2(R) associated with the 

scaling function )(tφ  is defined as a nested chain of closed subspaces: 

 ⊂⊂⊂⊂⊂ −1012 VVVV  such that }0{=∞V and )(2 RLV =∞− , and the additional 

condition ZjVtfVtf jj ∈∈⇔∈ +1)
2

()( , here jV  is the subspace spanned by 

})2(2)({ 2
,

Zkktt j
j

kj ∈−= −−
ϕϕ , Z presents the set of integers.  

The association of mother wavelet )(tψ with multiresolution analysis is such that the 

sets })2(2)({ 2
,

Zkktt j
j

kj ∈−= −−
ψψ form an orthonormal basis of the orthogonal 

supplement jW  of jV  in 1−jV  that is, ZjWVV jjj ∈⊕=−1 , thus the 0V  space can be 

decomposed in the way Jj

J

j
VWV ⊕⊕=

=
)(

10  by simply iterating the decomposition j  times, 

here J is an arbitrary lowest resolution level. The subspace sequences },{ ZjV j ∈  and 

}{ ZjWj ∈  of )(2 RL are called approximation and detail spaces, respectively. The wavelet 

spaces and the containment of scale spaces are shown in Fig. 6  

The approximation of a signal )(tf at the resolution j2 is given by its orthogonal 

projection onto the subspace jV , kj
k

kjj fA ,,, φφ∑
∞

−∞=

><= , here <·,·> denotes an inner product, 

and the smaller the j , the finer the resolution obtained. The additional details needed for 
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increasing the resolution for 22
j

−
 to 2

1

2
+

−
j

are given by the orthogonal projection jD of the 

signal onto jW : kj
k

kjj fD ,,, ψψ∑
∞

−∞=

><= ,  and  the relationship between the successive 

approximation jA and 1+jA  is summarized by 11 ++ += jjj DAA , there exists a cascaded 

decomposition technique, termed multiresolution signal decomposition. At each resolution 

level j , the approximation jA can be decomposed into smooth part 1+jA and detail part 1+jD .  

Let 0 and J  be the highest and lowest resolution level of the signal )(tf , then )(tf  can be 

decomposed into coarse approximation (smooth background) and a series of detail signals 

(fluctuation) ∑+=
J

jJ DAtf
1

)( (see illustration of Fig. 7).  

Since both the scaling function )(tφ  and the mother wavelet )(tψ  belong to 1−V , and 

)}2(2)({ ,1 kttk −=− φφ  is an orthonormal basis for 1−V , one obtains a two level relation 

∑ −=
k

k ktht )2(2)( φφ  and ∑ −=
k

k ktgt )2(2)( φψ , here kh and kg  are pair of  

low-pass and high-pass quadrate mirror filters such that k
k

k hg −−= 1)( . The wavelet 

multiresolution decomposition process can be viewed as application of the pair of filters first 
to the original signal, and then recursively to the approximation series only. At each level of 

decomposition j, the high-pass filter is associated with the wavelet function )(, tkjψ , whereas 

the low-pass filter is associated with the scaling function )(, tkjϕ . Hence, wavelet functions 

describe high-frequency signal components, while scaling functions describe smooth 
components. 
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