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Abstract—Due to the more complex constraints, generalized
low-density parity-check (GLDPC) codes can achieve better error
performance but require much higher decoding complexities
compared with the standard LDPC codes. In this paper, single-
parity-check product-codes (SPC-PCs) are considered as the
constituent codes in the super check nodes of a GLDPC code.
Moreover, turbo iterations are used in decoding the SPC-PCs.
The error performance and the decoder complexity of the
proposed GLDPC code are compared with other LDPC code
and GLDPC code.

Index Terms—Generalized low-density parity-check code,
single-parity-check product-code, turbo iteration

I. I NTRODUCTION

A standard low-density parity-check (LDPC) code can be
represented by a bipartite graph consisting of variable nodes,
check codes, and edges connecting the variable nodes and
check nodes. Each variable node can be regarded as a rep-
etition code while each check node can be viewed as a single-
parity-check (SPC) code. In [1], the standard LDPC code has
been generalized by replacing the repetition codes and the SPC
codes with more complex linear block codes called constituent
(or component) codes or subcodes.

Taking advantage of the more powerful constitute codes,
generalized LDPC (GLDPC) codes1 can achieve better bit-
error-rate (BER) performance, lower error floor and faster
convergence rate compared to its standard LDPC counterparts.
At the same time, the computation complexity becomes much
higher because more complicated constraints are introduced.
Thus, finding proper constituent codes that can achieve a given
error performance at a tolerable computation complexity is a
key challenge in designing good GLDPC codes.

In [2], the decoding method applied to decode each consti-
tute code in a GLDPC code involves (i) finding all possible
sequences that can satisfy the constitute code, (ii) determining
the probability of each sequence, and (iii) adding the probabil-
ities together. Besides, the Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm [3], a trellis-based a posteriori probability (APP)
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1Strictly speaking, GLDPC codes refer to the LDPC codes in which the SPC
codes (check nodes) have been replaced with more complex linear block codes
(super check nodes). If both the repetition codes (variable node) and the SPC
codes in the LDPC codes are replaced with more complex linear block codes,
the resultant codes are called doubly-GLDPC codes. However, depending on
the context, doubly-GLDPC codes may also referred to as GLDPC codes for
simplicity. In this paper, all the GLDPC codes are indeed doubly-GLDPC
codes unless otherwise stated.

decoding algorithm, is widely considered to decode GLDPC
codes [4]. Both algorithms can decode GLDPC codes with
all kinds of component codes, such as GLDPC code with
Hamming component codes [5] [6]; GLDPC code with BCH
component codes [6] [7]; GLDPC code with RS component
codes [7]; and GLDPC code with hybrid component codes [8]
[9]. However, the complexities of such decoding algorithms
are very high.

In [10], a class of GLDPC codes with tailored short-
ened Hamming codes as constituent codes, named TSHC-
GLDPC codes, has been proposed. Such codes can be decoded
using the fast-Fourier-transform(FFT)-based APP algorithm.
Although the computation complexity is reduced compared
with trellis-based APP algorithm, the complexity remains high.
In [11], a class of GLDPC codes with Hadamard constraints
are proposed. Since Hadamard constituent codes can be fast
decoded based on fast Hadamard transform (FHT), the com-
plexity issue can be resolved. Yet, the drawback of such codes
is an extremely low code rate (R < 0.1), making them only
suitable for certain kinds of communication systems.

In this paper, we propose a family of GLDPC codes with
single-parity-check product-codes (SPC-PCs) as component
codes. In Section II, we review the structures of GLDPC
codes and SPC-PCs. We then show our proposed class of
GLDPC codes in Section III. We also describe the iterative
decoding algorithm in the same section. Finally, the error
performance and the decoding complexity of the proposed
GLDPC codes are presented and compared with other channel
codes in Section V.

II. REVIEW

A. Generalized LDPC Code

A GLDPC code is denoted by(N,K) where N and
K represent the number of code bits and the number of
information bits, respectively, in each codeword. Moreover,
the variable nodes and the check nodes in a GLDPC code are
termed as super variable nodes (SVNs) and super check nodes
(SCNs), respectively.

Figure 1 illustrates the bipartite graph of a GLDPC code
havingNa SVNs andMa SCNs. The connections among the
super nodes correspond to aMa×Na matrix, which is called
anadjacency matrix and is denoted byHa. A non-zero(m,n)-
th entry inHa indicates a connection between them-th SCN
and then-th SVN. Moreover, the weight of then-th column
in Ha represents the number of edges that connect then-th
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Fig. 1. The bipartite graph of a GLDPC code.

SVN to the SCNs. Similarly, the weight of them-th row in
Ha indicates the number of edges that connect them-th SCN
to the SVNs.

We denote the weight of then-th column and the weight
of the m-th row in the adjacency matrix bydv,n and dc,m,
respectively. We also denote the number of external connec-
tions of then-th SVN bykv,n, as shown in Fig. 1. The overall
length of the GLDPC code hence equals

N =
∑Na

n=1
kv,n. (1)

Then, for then-th SVN(1 ≤ n ≤ Na), we can represent the
component code by(dv,n, kv,n), meaning thatdv,n coded bits
are formed for everykv,n information bits. Similarly, for the
m-th SCN(1 ≤ m ≤ Ma), we denote the number of check
equations bydc,m − kc,m. The total number of check bitsM
in the GLDPC code is hence upper-bounded by

M ≤
∑Ma

m=1
(dc,m − kc,m). (2)

We can then represent the constituent code for them-th SCN
by (dc,m, kc,m), implying thatdc,m coded bits are formed for
everykc,m information bits. Using (1) and (2), we can compute
the overall rate of the GLDPC code as

R ≥ 1−

∑Ma

m=1
(dc,m − kc,m)

∑Na

n=1
kv,n

. (3)

B. Single-Parity-Check Product-Code (SPC-PC)

In the (Nspc, Nspc − 1)D SPC-PC, the information bits are
first arranged in aD-dimensional hypercube and then encoded
by a (Nspc, Nspc − 1) SPC in each dimension [12]. Figure 2
shows the(4, 3)2 SPC-PC. The construction is elaborated as
follows. First,9 information bits are arranged in a square (of2-
dimension) of size3×3. The bits are then encoded by the(4, 3)
SPC code row-by-row and column-by-column. Afterward,
a check on checks satisfying the(4, 3) SPC constraint is
added. In this example, the number of information bits is
9; the number of check bits is7; the code length is16 and
hence the code rate equals9/16. In general, the number of
information bits equalsKspc−pc = (Nspc − 1)D; the number
of check bits isMspc−pc = ND

spc − (Nspc − 1)D; the code

Fig. 2. The structure of the(4, 3)2 single-parity-check product-code (SPC-
PC).

length is Nspc−pc = ND
spc and hence the code rate equals

Rspc−pc = (Nspc − 1)D/ND
spc. Furthermore, the parity-check

matrix of the(Nspc, Nspc−1)D SPC-PC, denoted byHspc−pc

is of sizeMspc−pc ×ND
spc.

In [13], it has been proved that GLDPC codes with
constituent codes having a minimum distancedmin ≥ 3
performs asymptotically good. The minimum distance of the
(Nspc, Nspc − 1)D SPC-PC, moreover, has been shown equal
to dmin = 2D [12]. Such an outstanding distance property
therefore makes SPC-PC an attractive candidate to be con-
stituent codes of a GLDPC code.

III. PROPOSEDGLDPC CODE

A. Code Construction

For simplicity, we only consider regular GLDPC codes.
We use the(Nspc, Nspc − 1)D SPC-PC as the component
code in each of the SCNs. The corresponding parity-check
matrix Hspc−pc is therefore of sizeMspc−pc × ND

spc. It can
also be readily shown that each SCN has a degree ofND

spc.
Moreover, to allow a high overall code rate of the GLDPC
code without increasing the decoding complexity much, SPC
codes are employed as component codes in all SVNs. Denoting
the number of information bits entering each SVN bydv − 1,
the generator matrixGsvn corresponding to the SPC code is
of size (dv − 1)× dv.

We consider an adjacency matrixHa of sizeMa×Na. (Note
that the row weight ofHa must equalND

spc while the column
weight equalsdv.) Based on the matricesHspc−pc andGsvn,
the parity-check matrix of the GLDPC code is constructed as
follows.

• Step 1 (Row Expansion): For each row inHa, each “1” is
substituted by one column vector inHspc−pc while each
“0” is substituted by an all-zero column vector. However,
each column vector inHspc−pc can only be used once
for each row inHa. After the substitutions are made, the
resultant matrix is of sizeMaMspc−pc ×Na. We denote
this matrix byH′

a.
• Step 2 (Column Expansion): Consider a column inH

′

a.
For every Mspc−pc entries (called a row block), all
“1”s within this block are substituted by the same row
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Fig. 3. Passing of extrinsic LLR messages in a 2-dimensionalSPC-PC
decoder.I denotes the “channel messages”;A denotes the a priori messages
at the input of a SISO decoder andE denotes the extrinsic LLR messages
at the output of a SISO decoder. The subscript corresponds tothe identity of
the SISO decoder.
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Fig. 4. Passing of extrinsic LLR messages in a 3-dimensionalSPC-PC
decoder.I denotes the “channel messages”;A denotes the a priori messages
at the input of a SISO decoder andE denotes the extrinsic LLR messages
at the output of a SISO decoder. The subscript corresponds tothe identity of
the SISO decoder.

vector randomly selected fromGT

svn where T denotes
the transpose operator; and all “0”s within this block are
substituted by the all-zero vector of size1 × (dv − 1).
However, each row vector inGT

svn can only be used
once for each column inH′

a. The substitution process
applies to each column inH′

a. After all substitutions are
made, the parity-check matrixH of the GLDPC code is
obtained and is of sizeMaMspc−pc ×Na(dv − 1).

Note that the encoding complexity of GLDPC codes can be
reduced by using quasi-cyclic adjacency matrix, as illustrated
in [14] [15].

IV. D ECODING ALGORITHM

Similarly to the standard LDPC code, the message-passing
algorithm is used to allow the exchange of extrinsic informa-
tion between the SVNs and the SCNs iteratively (based on
the bipartite graph of the adjacency matrix). Moreover, each
super node is regarded as a local decoder, in which a soft-
input soft-output (SISO) decoding algorithm is used to decode
the constituent code. Since a SPC code is adopted in each of
the SVNs, the corresponding SISO decoder can be readily
implemented with a relatively low complexity [16], [17]. The
complexity of the GLDPC decoder is therefore dominated by
the complexity of the local decoders at the SCNs.

Suppose the(4, 3)2 SPC-PC shown in Fig. 2 is used as the
constituent code in the SCNs. We propose using local turbo
iterations in the SISO decoder for this code. When messages
are passed from the SVNs to the SCNs, each SCN treats
the incoming messages as “channel messages”. To begin the

decoding process, we set all the a priori log-likelihood-ratio
(LLR) values corresponding to the incoming bit sequence to
zero. Then, for the horizontal dimension (first dimension),
the extrinsic LLR values are evaluated for all bits in each
(4, 3) SPC code [16], [17]. Such extrinsic LLR values are
then passed to the vertical dimension (second dimension)
which uses them as the a priori LLR values. Subsequently,
the extrinsic LLR values are evaluated for all bits in each
(4, 3) SPC code (in the vertical dimension). Such extrinsic
LLR values are then returned to the horizontal dimension
which uses them as the a priori LLR values. Onelocal turbo
iteration is completed. In the second iteration, the extrinsic
LLR values are evaluated for all bits in each(4, 3) SPC code
for the horizontal dimension, and so on. After a fixed number
of turbo iterations have been carried out, the overall extrinsic
LLR value for a particular bit is obtained by summing the
corresponding extrinsic LLR values in all dimensions (two
dimensions in this case). Finally, these overall extrinsicLLR
values are passed to the connected SVNs. The decoder in each
SVN, based on all incoming messages, evaluates the extrinsic
LLRs and return them to the connectedSCNs. One global
iteration is completed. When a sufficient number of global
iterations are performed, the SVNs decode the codeword.

Figures 3 and 4, respectively, illustrate how the extrinsic
LLR messages are passed among the SISO decoders for the
2-dimensional and 3-dimensional SPC-PC decoders.

V. RESULTS

A. Error Performance

1) Different decoding algorithms at SCNs: We adopt(4, 3)
SPC codes as constituent codes in all SVNs and(4, 3)2

SPC-PCs as constituent codes in all SCNs. First, we use a
Ma,1 × Na,1 = 250 × 1000 adjacency matrix to construct a
GLDPC code of rate0.417 and length3000. We denote this
code as GLDPC-1. We send the all-zero codewords and we
assume an additive white Gaussian noise (AWGN) channel.
In our simulations, we set the maximum number of global
iterations to50. (Unless otherwise stated, a maximum of50
global iterations are used throughout this paper.)

Figure 5 depicts the bit-error-rate (BER) performance when
GLDPC-1 is decoded with the algorithm described in Sec-
tion IV. The number of local turbo iterations used at the SCN
is set to1, 3 and5. In the same figure, we also plot the BER
curve when GLDPC-1 is decoded by using the algorithm in
[2] to decode the SCNs. The simulation results show that the
BER performance of GLDPC-1 improves when the number of
local turbo iterations used to decode the SCNs increases from
1 to 5. We also observe that when5 local iterations are used,
the proposed decoding algorithm outperforms that in [2] by
about0.3 dB at a BER of2× 10−7.

Figure 6 presents the cumulative distribution function (CDF)
of LLRs at the SCNs for GLDPC-1 during the first global
iteration. Large LLR values imply the code bits are decoded
correctly with higher reliabilities. The results draw the same
conclusion as in the above, i.e., the proposed decoding algo-
rithm with 5 local iterations outperforms that in [2].
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Fig. 6. The CDF of LLRs at SCNs for GLDPC-1 under different decoding
algorithms during the first global iteration.Eb/N0 = 1.8 dB.

2) Comparison with other channel codes: We construct
another GLDPC code using(8, 7) SPC codes as constituent
codes in all SVNs and(4, 3)2 SPC-PCs as constituent codes
in all SCNs. The size of theadjacency matrix is set to be
Ma,2 × Na,2 = 146 × 292. We then obtain a GLDPC code
with rate0.5 and length2044, and we denote it as GLDPC-2.
Using our proposed decoding algorithm with3 local iterations
at the SCNs, the BER and frame error rate (FER) of GLDPC-2
is shown in Fig. 7.

We also simulate the error performance of (i) the
accumulate-repeat-by-4-accumulate (AR4A) code with rate-
0.5 and length-2048 proposed in [18], and (ii) the optimized
binary LDPC code provided in [19]. The rate of the binary
LDPC code is0.4971 and the parity-check matrix is of size
1030 × 2048. Moreover, the variable-node and check-node
degree distributions of the binary LDPC code are given,
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Fig. 7. BER and FER performance of different codes.

respectively, by

λ(x) = 0.0002x0 + 0.2648x+ 0.2400x2 + 0.1587x5

+ 0.0871x6 + 0.0312x13 + 0.2180x14 (4)

and ρ(x) = 0.5546x6 + 0.4442x7 + 0.0012x8. (5)

(The average check-node degree of the LDPC code, denoted
by d̄LDPC , equals7.41; and the number of check nodes,
denoted byMLDPC , equals1030.) The BER and FER of
the AR4A and the optimized binary LDPC code are shown
in Fig. 7. We can observe that GLDPC-2 outperforms (i) the
AR4A codeby 0.4 dB at a BER of10−6 and (ii) the optimized
binary LDPC code by0.25 dB at a BER of2× 10−6.

In Fig. 7, we further re-plot (i) the FER performance of the
(2044, 1022) quasi-cyclic GLDPC code (a pure GLDPC code
with Hamming constraints at SCNs and repetition codes at
SVNs, named as Hamming-GLDPC code) proposed in [14]
and (ii) the BER performance of the(2048, 1024, 0.5) 3G
Turbo code shown in [20]. Note that the Hamming-GLDPC
code possesses the same code length and code rate as GLDPC-
2, and it is decoded by the Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm at the SCNs. Moreover, a maximum of50 (global)
iterations are used when generating the curves in [14] and
[20]. The results depicted in Fig. 7 indicate that GLDPC-2
outperforms (i) the Hamming-GLDPC code by0.5 dB at a
FER of 10−5 and (ii) the 3G Turbo code by0.17 dB at a
BER of 10−5.

B. Computation Complexity

In Table I, we show the complexity of the decoder for
different codes and different decoding algorithms. We observe
that for the GLDPC-1 code, the complexity of our proposed
decoder withωmax = 5 local turbo iterations is about64
times lower than that of the decoding algorithm described
in [2]. In addition, our proposed decoder using3 local turbo



TABLE I
COMPLEXITY OF THE DECODER FOR DIFFERENT CODES AND DIFFERENT DECODING ALGORITHMS.

Code No. of Multiplications
GLDPC-1

ωmax = 5 local turbo iterations
Ma,1 ωmax DNspc−pc (Nspc − 1)

= 250× 5× 2× 16× (4− 1) = 120, 000

GLDPC-1
Algorithm in [2]

Ma,12
Kspc−pcNspc−pc(Nspc−pc − 1)

= 250 × 2(16−9)
× 16× (16 − 1) = 7, 680, 000

GLDPC-2
ωmax = 3 local turbo iterations

Ma,2ωmaxDNspc−pc (Nspc − 1)

= 146× 3× 2× 16× (4− 1) = 42, 048

Optimized binary LDPC in [19]
MLDPC d̄LDPC (d̄LDPC − 1)

= 1030 × 7.41× (7.41 − 1) ≈ 48, 974

iterations for decoding GLDPC-2 has a similar complexity as
the decoder that decodes the binary LDPC code in [19].

What is more, the computation of each SPC component
code in each dimension of each SCN is the same. It implies
that such computations can possibly be implemented in a
highly parallel manner.

VI. CONCLUSION

In this paper, we introduce a class of GLDPC code with
single-parity-check product-codes (SPC-PCs) as component
codes in the super check nodes (SCNs). Simulation results
show that the proposed GLDPC codes can be decoded with
low-complexity decoder and have remarkable error perfor-
mance.

There are two advantages of using PCs as component codes
in the SCNs. Firstly, the minimum distance of a PC increases
exponentially with the number of dimensions, making the
GLDPC ensemble more powerful in terms of error-correction
capability. Secondly, due to its special structure, a PC canbe
split into shorter component codes. Since the shorter codescan
be decoded with reduced complexity, the overall complexity
of the turbo decoder at the SCN is also reduced.

In general, PCs consisting of any type of component codes
can be used in the SCNs of a GLDPC code. At each SCN,
each of the component codes of the PC can be decoded with
a SISO decoder using the BCJR algorithm. Then the extrinsic
information of each SISO decoder output can be exchanged
among the different dimensions of the PC by using a small
number of local turbo iterations. By adjusting the number of
local turbo iterations, a tradeoff between the error performance
and the computation complexity can be obtained. This is
one of the future works that are being pursued. We are also
investigating the performance of the GLDPC code proposed
in this paper when the dimension of the SPC-PCs increases.
Finally, we have considered only regular GLDPC codes in
this paper. Our another goal is to optimize the GLDPC code
structure based on the extrinsic-information-transfer (EXIT)
chart. We aim at finding irregular GLDPC code structures that
possess excellent error performance.
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