Accepted Manuscript

The deformation and longitudinal excursion of median nerve during digits movement and wrist extension

Wai Keung Christopher Lai, Yin Ting Chiu, Wing Sze Law

PII: S1356-689X(14)00123-4

DOI: 10.1016/j.math.2014.06.005

Reference: YMATH 1585

To appear in: Manual Therapy

Received Date: 29 May 2013
Revised Date: 5 June 2014
Accepted Date: 17 June 2014

Please cite this article as: Lai WKC, Chiu YT, Law WS, The deformation and longitudinal excursion of median nerve during digits movement and wrist extension, *Manual Therapy* (2014), doi: 10.1016/j.math.2014.06.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The deformation and longitudinal excursion of median nerve during digits movement and wrist extension

Lai, Wai Keung Christopher a* Chiu, Yin Ting b Law, Wing Sze c

- ^a Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, HKSAR, China;
- b Department of Radiology, The Pamela Youde Nethersole Eastern Hospital, Chai wan, HKSAR, China;
 - c Department of Radiology, Tuen Mun Hospital. Tuen Mun, HKSAR, China.

* Corresponding author:

Dr. Lai, Wai Keung Christopher Address for correspondence:

Department of Health Technology and Informatics, The Hong Kong

Polytechnic University, Hung Hom, HKSAR, China.

Email: chris.lai@polyu.edu.hk

Tel: +852-3400-8596 Fax: +852-2362-4365

Abstract

The use of electronic devices, such as mobile phones and computers, has increased drastically among the young generation, but the potential health effects of carpal tunnel syndrome (CTS) on university students has not been comprehensively examined. Thirty-one university students aged 18 to 25 y with no symptoms of CTS were successfully recruited in this study. By using noninvasive ultrasonography, the morphological characteristics of the median nerve of each volunteer, and the extent of its longitudinal excursion movement under experimental conditions, in which a real operating environment of electronic devices was simulated, were quantified. The results demonstrated that the median nerve at the carpal tunnel inlet was flattened during wrist extension: the flattening ratio increased from 3.40 ± 0.91 at the neutral position to 4.10 ± 1.11 at the angle of 30° and 4.09 ± 1.11 at the angle of 45° . In addition, the median nerve became swollen after the students performed rapid mobilephone keying for 5 min, indicated by a significant increase in the cross-sectional area from $6.05 \pm 0.97 \text{ mm}^2$ to $7.56 \pm 1.39 \text{ mm}^2$. Passive longitudinal excursion was observed at the median nerve when the students performed mouse-clicking (2.4 ± 1.0 mm) and mobile-phone keying tasks (1.7 \pm 0.6 mm), with the mouse-clicking task generating a greater extent of longitudinal excursion than the mobile-phone keying task did. In conclusion, the findings of the present study verify the potential harm caused by using electronic devices while maintaining an inappropriate wrist posture for a substantial period.

1. Introduction

2	Carpal tunnel syndrome (CTS) is a progressive painful condition that occurs at the
3	wrist, and is caused by a combination of factors that are associated with increased
4	carpal pressure such as trauma or injury, diabetes, rheumatoid arthritis, acromegaly,
5	hypothyroidism, and pregnancy (Silman et al., 1993). In addition to these factors,
6	repetitive wrist-hand movements, especially involving digit movement combined with
7	extension, ulnar deviation, or external compression at the wrist, increase the risk of
8	CTS (Fagarasanu and Kumar, 2003, Palmer et al., 2007, Thomsen et al., 2008). Ali
9	and Sathiyasekaran (2006) demonstrated that year-long exposure to computer work
10	and the long working hours of computer workers were risk factors for CTS (Ali and
11	Sathiyasekaran, 2006). Therefore, with the growing availability and excessive use of
12	electronic devices such as mobile phones and computers, the effects on health have
13	become a concern because certain patients with CTS are idiopathic and exhibit no
14	definite contributors such as synovitis or other compressive conditions of the wrist
15	(Wright et al., 1996).
16	
17	In Hong Kong, the increased availability of computers has resulted in extremely high
18	usage. Students are using computers to perform various tasks including word
19	processing, gaming, and searching for information on the Internet (Kent and Facer,

20	2004). Approximately two-thirds of U.S. high school students aged 16–18 y were
21	reported to use their computer for more than 4 h per d (Sommerich et al., 2007),
22	whereas in Hong Kong, students aged 12–16 y reported an average of 2.5 h per d (Ho
23	and Lee, 2001). Therefore, the finding that students are using electronic devices for
24	substantial periods from an early age is not surprising.
25	
26	The emerging study of the morphological changes and gliding movement of the
27	median nerve is crucial for the identification of CTS risk markers. When the median
28	nerve is under increased carpal tunnel pressure, it typically becomes swollen and
29	flatten (Klauser et al., 2009). Moreover, previous studies have reported that the
30	median nerve of symptomatic CTS subjects exhibited a large cross-sectional area
31	(CSA) (Lopes et al., 2011) and high flattening ratio (FR—the ratio of the transverse
32	diameter over the anteroposterior diameters of the median nerve) (Chan et al., 2011),
33	although such associations were generally confounded by the body mass index (BMI)
34	and wrist circumference measurements (Moghtaderi et al., 2005). In addition,
35	Burgess-Limerick et al. (1998) indicated that when the wrist was extended, the carpal
36	tunnel pressure increased because of the constricted space in the carpal tunnel, which
37	exerted increased force onto the median nerve (Burgess-Limerick et al., 1999).

39	Recently, the application of B-mode ultrasonography was determined to be useful in
40	the measurement of nerve deformation. Although it is a noninvasive and readily
41	available imaging tool used in neuromusculoskeletal imaging, the current use of this
42	tool in the clinical diagnosis of CTS is limited. Ultrasound can be used to evaluate
43	morphological changes and identify certain focal lesions on the median nerve, but it
44	fails taking into the consideration of the capacity of median nerve to glide during
45	wrist-hand movements.
46	
47	The longitudinal movement of the median nerve is a type of movement that cannot be
48	quantified directly using B-mode ultrasound because of the lack of a distinct marker
49	for tracking. In addition, when the longitudinal movement of the median nerve is
50	perpendicular to the transmission of the ultrasound, tracking the moving echo-
51	reflecting interfaces accurately is difficult. Therefore, directly measuring the
52	longitudinal excursion of the median nerve remains challenging.
53	
54	Nevertheless, spectral Doppler ultrasonography is a possible method for determining
55	the longitudinal excursion of the median nerve indirectly by using a pixel analysis
56	program (Echigo et al., 2008). Because the extent of longitudinal excursion of the
57	median nerve measured using spectral Doppler ultrasonography was mathematically

58	equal to the total number of calibrated pixels within the area of a spike in the velocity-
59	time integral spectrum, the corresponding longitudinal excursion of the median nerve
60	could, therefore, be calculated indirectly in this study (Figure 1).
61	
62	Therefore, the objectives of the present study were to determine the following:
63	1. Whether extension at the wrist (a common posture adopted during the use of
64	mobile phones and a computer mouse) is related to morphological changes
65	(cross-sectional area and flattening ratio) in the median nerve;
66	2. The effect of a substantial period of intense mobile phone use (performing a
67	rapid keying task for 5 min) on morphological changes in the median nerve;
68	and
69	3. The extent to which the median nerve demonstrates passive longitudinal
70	excursion during the use of mobile phones and computers.
71	
72	2. Methods
73	2.1 Subjects
74	Thirty-one Chinese volunteers aged 18-25 y were recruited from the Hong Kong
75	Polytechnic University. The inclusion criteria of the present study were (1) Chinese
76	ethnicity, (2) university student, and (3) right handed. The exclusion criteria included

77	(1) subjects with symptoms of CTS including pain, tingling, burning, numbness, or a
78	combination of these symptoms in relation to the palmar aspect of the thumb, index
79	finger, middle finger, or radial half of the ring finger (Katz and Simmons, 2002); (2)
80	subjects with a history of wrist surgery including carpal tunnel injection or fracture
81	within past 10 y; (3) subjects with a history of underlying conditions associated with
82	CTS including diabetes mellitus, rheumatoid arthritis, pregnancy, acromegaly, and
83	hypothyroidism; (4) subjects exhibiting anatomic variations in the median nerve, such
84	as bifurcation, which were identified during the ultrasound experiment (Wong et al.,
85	2002); (5) obese subjects, determined by a BMI> 25kg/m ² (Moghtaderi, Izadi, 2005);
86	and (6) subjects who engaged in exercise involving their upper arm, such as weight
87	lifting, boxing, racket sports, and cycling, within 1 wk prior to the examination.
88	
89	2.2 Materials
90	Ethical approval was obtained from the local research committee and informed
91	consent was obtained from each participant. A Philips ultrasound unit (Model: HD11
92	XE, Philips Medical Systems, Bothell, WA, USA) with an L12-5 linear array
93	transducer was used in this study. A trained sonographer (MC) performed all
94	ultrasound measurement and another 2 researchers (KL and KC) conducted the image
95	analysis of all the resultant images.

n	
	n
7	()

99

100

101

102

103

104

105

106

107

108

109

110

97	2.3	Procedures
) /	4.5	Troccaures

98 2.3.1 Wrist extension

The CSA and FR of the carpal tunnel inlet in the right wrist were first examined using B-mode ultrasound, which was similar to the technique described in a similar previous study (Toosi et al., 2011), and the measurement was repeated at 4 distinct wrist extension angles (0°, 15°, 30°, and 45°) without the participants performing any specific activity during the process. The values measured at the neutral position (wrist extension angle at 0°) will be used as reference and compared with the values measured from 15°, 30° and 45° respectively. During the examination, the volunteers were asked to sit on a chair with the right side of their shoulder slightly abducted, elbow flexed at 90°, and forearm resting on the table with the wrist fully supinated and the digits fully extended. After the morphological changes in the median nerve were measured at 4 distinct wrist extension angles, the longitudinal excursion of the median nerve was subsequently measured during the mouse-clicking and mobilephone keying tasks.

112

111

113 2.3.2 Mouse-clicking task

The volunteers were asked to maintain the postured described in 2.3.1, except their

115	wrist was pronated in this examination. They were then instructed to click a computer
116	mouse 5-10 times using their right index finger according to the beat generated by a
117	metronome (80 beats/min). The median nerve in the longitudinal section at a site
118	approximately 3–4cm distal to the crest of the subject's right elbow was identified
119	using B-mode ultrasound. A Doppler range gate was then positioned over the median
120	nerve to detect changes in the velocity of the median nerve during mouse clicking.
121	The longitudinal excursion of the median nerve was measured at this level rather than
122	at the wrist because the transverse movement of the median nerve at this level was
123	reduced, and the surrounding muscles and tendons were not easily included in the
124	sample volume, which would have affected the accuracy of Doppler sampling (Hough
125	et al., 2000). After at least 3 consecutive spikes were generated on the velocity-time
126	integral spectrum by the participants performing the mouse-clicking task, still images
127	were saved and transferred to the pixel analysis program, Scion Image (Scion Corp.,
128	Fredrick, Maryland, USA), which was developed by the National Institutes of Health
129	for conducting further analysis (Figures 1 and 2).

130

- 132 2.3.3 Mobile-phone keying
- 133 The ultrasound scanning protocol for measuring the extent of longitudinal excursion

of the median nerve during the mobile-phone keying task was the same as that used
for the mouse-clicking task, except the volunteers were asked to change their wrist
posture to partially supinated (approximately 45° supinated) to enable them to assume
a posture generally applied when using a mobile phone for text messaging (Figure 3).
They were provided with a mobile phone without a touchscreen (Sony Errison K750i)
and were asked to simulate text messaging by flexing their right thumb and pressing
the number 5 button on the keypad 5–10 times according to the beat generated by the
metronome (80 beats/min). Again, at least 3 consecutive spikes on the velocity-time
integral spectrum were required for further analysis using Scion Image.

2.3.4 Five-min rapid keying on a mobile phone

After successfully measuring the longitudinal excursion by performing spectral Doppler ultrasound, the subjects were asked to perform a rapid keying task using the same mobile phone. They were instructed to press the number 5 button rapidly as many times as possible for a period of 5 min. After completing the rapid keying activity, the flattening ratio and cross-sectional area of the median nerve at the carpal tunnel inlet of the wrist were evaluated at 0° of wrist extension by using B-mode ultrasound.

153	2.4 Data Analysis

154	The CSA and FR were measured offline by manually tracing the boundary of the
155	median nerve and its corresponding axes (Figures 4 and 5). Similarly, by manually
156	tracing the boundary of the velocity-time integral spectrum shown in the image, the
157	area under the velocity-time integral spectrum could be determined using the pixel
158	analysis program. SPSS Statistics software (IBM, version 18) was used for
159	conducting all statistical analysis. A generalised linear model repeated measures
160	analysis of covariance (ANCOVA) adjusted for sex and BMI (posthoc test with
161	Bonferroni adjustment) was used for comparing the mean difference in CSA and FR
162	at various wrist angles. A t-test was used to determine the mean difference in the
163	longitudinal excursion that occurred during the mouse-clicking and mobile-phone
164	keying tasks, and the mean difference between the results obtained before and after
165	rapid keying. All parameters were represented by mean±standard deviation and the
166	level of significance was set at 0.05. Because the ultrasound measurement and pixel
167	analysis were highly dependent on an operator, intraclass correlation analysis was
168	performed to determine the intrarater variation in the ultrasound measurement of the
169	CSA over 10 cases, and the intrarater and interrater variation in longitudinal excursion
170	between the pixel analysis results obtained over 10 cases and 12 cases, respectively.

172	3. Results
173	The interrater and the intrarater class correlation derived from the pixel analyses of
174	the longitudinal excursion were 0.96 and 0.96, respectively, whereas the intrarater
175	correlation of the CSA measurement was 0.98. The demographic details of the study
176	population are summarised in Table 1. Thirty-one university students with a mean age
177	of 21.7±1.5 y, a female to male ratio of 11:20, and a mean body-mass index of 19.60
178	±2.15kg/m ² were recruited.
179	
180	The morphological changes in the median nerve at various degrees of extension at the
181	wrist are summarised in Table 2. No significant difference in the CSA of the median
182	nerve occurred between the various intervals of wrist extension angle (6.05–6.13mm²)
183	Nevertheless, a significant increase in the FR at 30° of wrist extension (4.10±1.11, P
184	<0.01) and 45° of wrist extension (4.09 \pm 1.11, P =0.01)) was observed when compared
185	with that at the neutral position (3.40 ± 0.91) (0° of wrist extension).
186	
187	Both the mobile-phone keying and mouse-clicking tasks affected the median nerve
188	and resulted in various degrees of longitudinal excursion, with the mouse-clicking
189	task (2.4 \pm 1.0 mm) generating greater longitudinal movement (P <0.01, F =16.53) than
190	the mobile-phone keying task did (1.7±0.6 mm) (Figure 6).

191	
192	Finally, after the participants performed the rapid keying task on a mobile phone for
193	5min, the morphological changes in the CSA and FR of the median nerve were
194	measured again (Table 3). The results indicated that a significant increase in the CSA
195	occurred (from $6.05\pm0.97 \text{ mm}^2\text{to } 7.56\pm1.39\text{mm}^2$, $P < 0.01$) but not in the FR (from
196	3.40 ± 0.91 to 3.54 ± 1.13 , $P=0.55$).
197	
198	4. Discussion
199	The mean CSA of the median nerve in the present study had a relatively smaller value
200	(6.05mm ²) compared with that reported in previous studies (mean CSA ranged from
201	10.1–14.3mm ²) (Allmann et al., 1997, Moghtaderi, Izadi, 2005, Toosi, Impink, 2011).
202	This can be partially explained by the smaller mean BMI of the population used in the
203	present study; most previous studies have been conducted using people of European
204	descent who were generally taller and had a heavier build than the Chinese people
205	who participated in this study.
206	
207	Substantial deformation was observed when the wrist had extended to 30° and 45°.
208	The median nerve was compressed by extension, and it elongated or glided to a

limited extent because of increased traction (Keir and Rempel, 2005) and became

210	flattened (Topp and Boyd, 2006). Kuo et al. (2001) determined that the neutral wrist
211	position is associated with minimal median nerve compression (Kuo et al., 2001),
212	whereas Liu et al. (2003) demonstrated that computer users who type using an
213	extended wrist posture have a higher risk of CTS, particularly when the wrist is
214	extended to more than 20°(Liu et al. , 2003). Burgess-Limerick et al. (1998) further
215	supported that wrist extension and ulnar deviation lead to an increase in carpal tunnel
216	pressure by narrowing the space of the carpal tunnel and exerting a force on the
217	median nerve (Burgess-Limerick, Shemmell, 1999, Werner and Andary, 2002).
218	Therefore, the increase in the FR of the median nerve at the level of the pisiform
219	(carpal tunnel inlet) can indirectly reflect the abrupt increase in carpal tunnel pressure
220	that occurs during wrist extension.
221	
222	In addition to being deformed during wrist extension, the morphology of the median
223	nerve may be affected by rapid digit movement (Massy-Westropp et al., 2001, Toosi,

Impink, 2011). A previous study reported that significant swelling of the median nerve occurred at the carpal tunnel inlet in both the dependent and nondependent hand of a typist after they typed for 60 min (Toosi, Impink, 2011). Keir et al. demonstrated that the carpal tunnel pressure of the majority of participants observed during mouse usage was higher than that of subjects with known alterations in nerve function and structure,

229	indicating that intensively using a computer mouse for a substantial period can
230	increase the risk of neuropathy (Keir and Rempel, 2005). Today, mobile phone is
231	gradually replacing computer to become a necessity at work, communication and
232	entertainment of our daily life. Mobile phone users need to press on the phone
233	screen/keypad to search on the Internet, playing games and sending messages. In
234	particular, text messaging is now the widely used mobile data service, with about 2.4
235	billion active users at the end of 2007 (Sharan and Ajeesh, 2012). Nowadays, the
236	teenagers tend to communicate using Short Message Service that requires frequent
237	keying stroke for a substantial period of time. They like to play games on the phone,
238	but certain games on mobile phone require them to press on the phone screen/keypad
239	vigorously and continuously for minutes. Therefore, repetitive stress injuries like
240	wrist and finger pain become a new epidemic in teenagers due to overuse of it. In the
241	present study, a substantial increase in the cross-sectional area of the median nerve
242	was observed after the participants performed a rapid keying task for 5 min, indicating
243	that the intensive thumb-tapping activity led to a swelling of the median nerve.
244	Nevertheless, Impink et al. (2009) reported contradictory findings, in which a reduced
245	cross-sectional area was observed after participants engaged in a wheelchair sporting
246	activity (Impink et al., 2009). We postulate that such discrepancy may be caused by
247	the difference in the nature of the activities: the wheelchair sporting activity involved

248	solely upper-limb exercise and was more vigorous than mouse clicking and rapid
249	keying, leading to a significant increase in carpal tunnel pressure that compensated for
250	the swollen median nerve.
251	
252	The gliding of the median nerve during digit movement and wrist extension can
253	prevent kinking or stretching, and facilitate the reestablishment of equilibrium when
254	any imbalance in tensile force occurs because of joint motions. During active digit
255	movement, friction may have developed between flexor digitorum superficialis
256	tendons (Topp and Boyd, 2006), and the longitudinal excursion of the median nerve in
257	response to finger and joint movement was considered to be caused by its internal
258	elastic tension (Szabo et al., 1994). In the present study, we gathered evidence that
259	the median nerve demonstrated passive longitudinal gliding movement during the use
260	of mobile phones and computers, with the mouse-clicking task generating greater

In addition to using the spectral Doppler ultrasonography technique, the speckle tracking ultrasonography technique involving the computational recognition of individual greyscale patterns is another emerging technique for tracking the movements of a particular speckle in an image (Korstanje et al., 2010). Although this

longitudinal excursion than the mobile-phone keying task did.

technique has been proposed in several previous studies, using it to measure the
median nerve gliding movement was generally determined by its availability.
Furthermore, the lack of an identifiable speckle limits the accuracy of tracking the
movement of the median nerve. By contrast, the spectral Doppler ultrasonography
technique is readily accessible, highly reproducible, and can provide additional
information on the kinematic motion of the median nerve. Although the application of
the spectral Doppler technique for measuring the longitudinal excursion is still being
developed, the accuracy and reliability of this technique in dynamic
neuromusculoskeletal imaging are promising.
4.1 Limitations
This study has several limitations. First, applying spectral Doppler ultrasound in the
investigation of the longitudinal excursion of the median nerve, the transverse
movement of the median nerve was not considered. In addition, the deformation of
the median nerve in relation to wrist extension greater than 45° was not addressed.

Moreover, previous studies indicated that a median nerve becomes swollen

immediately after hand activity and returns to its original size within 10 min (Massy-

Westropp, Grimmer, 2001, Toosi, Impink, 2011). In the present study, no resting time

was provided in between the hand activities. However, because all the study subjects

286	followed a standard protocol and the intensity of the hand activities during the
287	measurement of longitudinal excursion was far lesser than that in the 5-min rapid
288	keying task and the aforementioned pervious studies, the accumulated effect of
289	performing previous activities on morphological changes in median nerve during the
290	5-min rapid keying task was comparably negligible.
291	
292	5. Conclusion
293	The setup of the present study was used to ascertain the potential harm of using a
294	computer mouse and a handheld mobile phone in a real operating environment. The
295	findings of the present study further support that the repetitive digit movement and
296	improper posture of the wrist when using electronic devices may impose a high risk of
297	CTS among university students, particularly when using these devices for a
298	substantial period.
299	
300	Financial support
301	There are no declarations of financial support.
302	
303	Conflicts of interest
304	There are no declarations of conflicts of interest.

305	
306	References
307	Ali KM, Sathiyasekaran BWC. Computer professionals and Carpal Tunnel Syndrome
308	(CTS). Int J Occup Saf Ergo. 2006;12:319-25.
309	
310	Allmann KH, Horch R, Uhl M, Gufler H, Altehoefer C, Stark GB, et al. MR imaging of
311	the carpal tunnel. European Journal of Radiology. 1997;25:141-5.
312	
313	Burgess-Limerick R, Shemmell J, Scadden R, Plooy A. Wrist posture during computer
314	pointing device use. Clinical Biomechanics. 1999;14:280-6.
315	
316	Chan KY, George J, Goh KJ, Ahmad TS. Ultrasonography in the evaluation of carpal
317	tunnel syndrome: Diagnostic criteria and comparison with nerve conduction studies.
318	Neurol Asia. 2011;16:57-64.
319	
320	Echigo A, Aoki M, Ishiai S, Yamaguchi M, Nakamura M, Sawada Y. The Excursion of the
321	Median Nerve during Nerve Gliding Exercise: An Observation with High-resolution
322	Ultrasonography. Journal of Hand Therapy. 2008;21:221-8.
323	

324	
325	Fagarasanu M, Kumar S. Carpal tunnel syndrome due to keyboarding and mouse
326	tasks: a review. International Journal of Industrial Ergonomics. 2003;31:119-36.
327	Ho SMY, Lee TMC. Computer usage and its relationship with adolescent lifestyle in
328	Hong Kong. J Adolescent Health. 2001;29:258-66.
329	
330	Hough AD, Moore AP, Jones MP. PERIPHERAL NERVE MOTION MEASUREMENT WITH
331	SPECTRAL DOPPLER SONOGRAPHY: A RELIABILITY STUDY. The Journal of Hand
332	Surgery: British & European Volume. 2000;25:585-9.
333	
334	Impink BG, Boninger ML, Walker H, Collinger JL, Niyonkuru C. Ultrasonographic
335	Median Nerve Changes After a Wheelchair Sporting Event. Archives of physical
336	medicine and rehabilitation. 2009;90:1489-94.
337	
338	Katz JN, Simmons BP. Carpal Tunnel Syndrome. New England Journal of Medicine.
339	2002;346:1807-12.
340	
341	Keir PJ, Rempel DM. Pathomechanics of Peripheral Nerve Loading: Evidence in Carpal
342	Tunnel Syndrome. Journal of Hand Therapy. 2005;18:259-69.

343	
344	Kent N, Facer K. Different worlds? A comparison of young people's home and school
345	ICT use. Journal of Computer Assisted Learning. 2004;20:440-55.
346	
347	Klauser AS, Halpern EJ, De Zordo T, Feuchtner GM, Arora R, Gruber J, et al. Carpal
348	tunnel syndrome assessment with US: value of additional cross-sectional area
349	measurements of the median nerve in patients versus healthy volunteers. Radiology.
350	2009;250:171-7.
351	
352	Korstanje JW, Selles RW, Stam HJ, Hovius SE, Bosch JG. Development and validation of
353	ultrasound speckle tracking to quantify tendon displacement. Journal of
354	biomechanics. 2010;43:1373-9.
355	
356	Kuo MH, Leong CP, Cheng YF, Chang HW. Static wrist position associated with least
357	median nerve compression: sonographic evaluation. American journal of physical
358	medicine & rehabilitation / Association of Academic Physiatrists. 2001;80:256-60.
359	Liu C-W, Chen C-H, Lee C-L, Huang M-H, Chen T-W, Wang M-C. Relationship Between
360	Carpal Tunnel Syndrome and Wrist Angle in Computer Workers. The Kaohsiung

361

Journal of Medical Sciences. 2003;19:617-22.

362	
363	Lopes MM, Lawson W, Scott T, Keir PJ. Tendon and nerve excursion in the carpal
364	tunnel in healthy and CTD wrists. Clinical biomechanics (Bristol, Avon). 2011;26:930-6.
365	
366	Massy-Westropp N, Grimmer K, Bain G. The effect of a standard activity on the size of
367	the median nerve as determined by ultrasound visualization. J Hand Surg Am.
368	2001;26:649-54.
369	
370	Moghtaderi A, Izadi S, Sharafadinzadeh N. An evaluation of gender, body mass index,
371	wrist circumference and wrist ratio as independent risk factors for carpal tunnel
372	syndrome. Acta Neurologica Scandinavica. 2005;112:375-9.
373	
374	Palmer KT, Harris EC, Coggon D. Carpal tunnel syndrome and its relation to
375	occupation: a systematic literature review. Occupational medicine. 2007;57:57-66.
376	Sharan D, Ajeesh PS. Risk factors and clinical features of text message injuries. Work.
377	2012;41 Suppl 1:1145-8.
378	
379	Silman AJ, Hochberg MC, Cooper C. Epidemiology of the rheumatic diseases. Oxford;
380	New York: Oxford University Press; 1993.

381	
382	Sommerich CM, Ward R, Sikdar K, Payne J, Herman L. A survey of high school
383	students with ubiquitous access to tablet PCs. Ergonomics. 2007;50:706-27.
384	Szabo RM, Bay BK, Sharkey NA, Gaut C. Median nerve displacement through the
385	carpal canal. The Journal of Hand Surgery. 1994;19:901-6.
386	
387	Thomsen J, Gerr F, Atroshi I. Carpal tunnel syndrome and the use of computer mouse
388	and keyboard: A systematic review. BMC Musculoskelet Disord. 2008;9:1-9.
389	Toosi KK, Impink BG, Baker NA, Boninger ML. Effects of computer keyboarding on
390	ultrasonographic measures of the median nerve. American Journal of Industrial
391	Medicine. 2011;54:826-33.
392	
393	Topp KS, Boyd BS. Structure and Biomechanics of Peripheral Nerves: Nerve
394	Responses to Physical Stresses and Implications for Physical Therapist Practice.
395	Physical Therapy. 2006;86:92-109.
396	
397	Werner RA, Andary M. Carpal tunnel syndrome: pathophysiology and clinical
398	neurophysiology. Clinical Neurophysiology. 2002;113:1373-81.
399	

400	Wong SM, Griffith JF, Hui ACF, Tang A, Wong KS. Discriminatory sonographic criteria
401	for the diagnosis of carpal tunnel syndrome. Arthritis & Rheumatism. 2002;46:1914
402	21.
403	
404	Wright TW, Glowczewskie JF, Wheeler D, Miller G, Cowin D. Excursion and Strain of
405	the Median Nerve*. The Journal of Bone & Joint Surgery. 1996;78:1897-903.
406	

Table 1. The demographic details of the study population

	N=31
Age (y)	21.7±1.49
Female to Male ratio	11:20
Body Mass Index (kg/m²)	19.60 ±2.15

- 1 Table 2. ANCOVA analysis with post hoc test on cross sectional area
- 2 (CSA) and flattening ratio (FR) of the median nerve at the pisiform level
- 3 with sex and BMI adjusted

4

Baseline reference	Mean CSA (mm²)		Mean FR (no unit)		
value	Mean±SD (P value)	95%CI	Mean±SD (P value)	95%CI	
Neutral Position (0°)	6.05±0.97	5.70-6.40	3.40±0.91	3.07-3.73	
Degree of wrist	Mean CSA (mm²)		Mean FR (no unit)		
extension					
15°	6.06±0.93 (<i>P</i> =0.92)	5.71-6.42	3.82±1.10 (<i>P</i> =0.15)	3.42-4.22	
30°	6.13±0.82	5.83-6.43	4.10±1.11	3.70-4.50	
450	(<i>P</i> =0.61)	5 00 0 40	(P<0.01)	0.00.4.40	
45°	6.11±0.83	5.80-6.42	4.09±1.11	3.69-4.48	
	(<i>P</i> =0.82)		(<i>P</i> =0.01)		

- 5 Comparisons between the reference scan with various wrist positions:
- 6 ANCOVA analysis with post hoc test demonstrated no significant change in
- 7 CSA of the median nerve from neutral position (baseline reference value) to
- 8 various degree of wrist extension. However, a significant increase in flattening
- 9 ratio of median nerve was observed when the wrist was extended (1) from
- neutral position to 30° of wrist extension (*P*<0.01, F=18.53), and (2) from
- neutral position to 45° of wrist extension (P=0.01, F=16.36) respectively.

12

13

- 1 Table 3. *t*-test analysis on the acute change of cross sectional area (CSA)
- 2 and flattening ratio (FR) of median nerve after a 5-minute of rapid keying
- 3 on mobile phone

	Mean CSA (mm²)		Mean FR (no unit)	
Mobile phone keying	Mean±SD	95%CI	Mean±SD	95%CI
	(p value)		(p value)	7
Baseline measurement	6.05±0.97	5.71-6.40	3.40±0.91	3.07-3.73
Post measurement (5	7.56±1.39	7.06-8.07	3.54±1.13	3.12-3.96
minutes rapid keying)	(p<0.01)		(p=0.55)	

- 5 A significant increase in CSA (P < 0.01, F = 37.80) but not in FR was
- 6 observed after the subjects performed the 5-min rapid keying task on a phone.

1 Figure 1. The Spectral Doppler ultrasound of the right median nerve

2 during mouse clicking task

Fig 1 is a still image of median nerve in longitudinal section captured from the ultrasound examination using B-mode and spectral Doppler mode. In this image, the 2-D B-mode information was projected on the upper portion of the still image. The corresponding Doppler signal caused by the movement of the median nerve was projected at the bottom of the image as a spectrum—Doppler velocity (y-axis) over time (x-axis). All Doppler signals were detected by placing a caliber (white dotted line) over the median nerve. As shown in this image, 7 consecutive spikes were detected, corresponding to the longitudinal excursion of the median nerve caused by 7 mouse

1	clicks.
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

1 Figure 2. The calibration process of the pixel size dimension in an

2 image

- 5 By converting the dimensions of each calibrated pixel in an image, the pixel analysis
- 6 software can determine the actual magnitude of the measured parameters from the
- 7 Doppler spectrum. (Top) The y-axis of the velocity-time integral spectrum
- 8 corresponds to the velocity of the Doppler signal. The example shown here indicates

1	that 123 pixels correspond to 15 cm/s and, therefore, the height of the pixel is 0.12
2	cm/s. (Bottom) The same calibration procedure was repeated on the x-axis
3	(time-lapsed Doppler signal) for calculating the width of the pixel. The example
4	shown here indicates that 104 pixels represent 1 s and, therefore, the width of the
5	pixel is 0.0096 s. Thus, a single pixel in the image represents 0.001152 cm. If a spike
6	on the spectrum contains 100 pixels, the excursion movement is equal to 0.01152 x
7	100 or 1.15 mm. The calibration process was repeated on every image.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

- 1 Figure 3. The sitting posture of the volenteer (a) and the experimental
- 2 setup of the mobile phone keying task for the measurement of
- 3 longitudinal excursion (b)

(a)

- 6 (Fig 3a) A volunteer sat on a chair with the right side of her shoulder slightly abducted,
- 7 elbow flexed at 90°, and her forearm resting on a table. A thermosplint shaped with a

1	predefined angle was used to standardise the angle of wrist extension at 0°, 15°, 30°,
2	and 45° .
3	(Fig 3b) The forearm of the volunteer was slightly supinated because most people use
4	this posture when using a mobile phone.
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

1 Figure 4. The transverse section of the median nerve at the level of carpal

2 tunnel inlet.

- 5 Fig 4 is a transverse section of the wrist captured using 2-D B-mode. The arrowheads
- 6 indicate the boundary of the median nerve (MN) and (P) represents the pisiform bone.

1 Figure 5. The measurement of the CSA and FR of median nerve

2

- 3 Fig 5 is a transverse section of the wrist captured using 2-D B-mode, with
- 4 magnification over the median nerve. In this magnified picture, the major axis and the
- 5 minor axis of the median nerve represent the transverse diameter and the
- 6 anteroposterior diameters of the median nerve, respectively. The ratio of the
- 7 transverse diameter to the anteroposterior diameter of the median nerve represents the
- 8 flattening ratio of the median nerve, whereas the boundary of the median nerve is
- 9 indicated by the dotted line, and the area under the dotted line represents the CSA of
- the median nerve.

11

12

13

14

- 1 Figure 6. An error bar graph showing the mean with 95% CI of the
- 2 longitudinal excursion movement of the median nerve during mouse
- 3 clicking task and mobile phone keying task

4

5

7

6

8