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Abstract 

In recent years, Gaussian process (GP) models have been popularly studied to solve hard 

machine learning problems. The models are important due to their flexible non-parametric 

modeling abilities using Mercer kernels and the Bayesian framework for probabilistic inference. 

In this paper, we propose a sparse GP regression (GPR) model for tourism demand forecasting in 

Hong Kong. The sparsification procedure of the GPR model not only decreases the computational 

complexity but also improves the generalization ability. We experiment the proposed model with 

monthly demand data that are relevant to Hong Kong's tourism industry, and compare the 

performance of the sparse GPR model with those of various kernel-based models to show its 

effectiveness. The proposed sparse GPR model shows that its forecasting capability outperforms 

those of the ARMA model and the two state-of-the-art SVM models. 

Keywords: Sparse Gaussian process; support vector machine; tourism demand forecasting; kernel 

machines 

 

1. Introduction 

The tourism industry in Hong Kong has recently undergone drastic changes in terms of 
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international demand for inbound travel, both in tourism receipts and tourist arrivals. Associated 

with these drastic changes is the restructuring of inbound tourist market segments, and therefore 

different needs for tourism products and services. As an example, the changes in tourism demand 

in Hong Kong are more prominent after the introduction of the Individual Visit Scheme to 

residents in certain cities in Mainland China (Law, To, & Goh 2008). In view of the new 

challenges and opportunities that the Hong Kong tourism industry has been, and will be facing, 

this research is expected to make a major contribution to tourism demand forecasting in Hong 

Kong. 

To a large extent, accurate forecasts of demand for tourism are crucial for effective planning 

by all providers of services and products in tourism (Perez & Sampol, 2000). In its broadest 

classification, tourism demand forecasting divides into qualitative and quantitative streams. A 

qualitative approach, such as a desk reviewing method or an expert-opinion technique, stresses the 

qualitative insight, intuition, and non-quantifiable knowledge of a particular tourism event. 

However, these qualitative relationship-identification methods are slow and tedious, and have 

been criticized as “artistic in nature” and unable to be generalized (Walle, 1997). Quantitative 

(formal) tourism demand forecasting approaches, employing either causal or time series models, 

apply mathematical functions to estimate the quantitative relationships of some phenomena in 

numerical tourism data (Law, 2000b; Law, Goh, & Pine 2004; Witt & Witt, 1995; Mok, 1990; Goh, 

Law, & Mok 2008). On the basis of past performance, these models can then be used to project 

some future values. However, Goh and Law (2003) commented that given the complex and 

interrelated nature of today’s tourism demand framework, the inclusion of only traditional 

economic variables in the econometric models could be insufficient. Similarly, Song and Li (2008) 

stated that AI-based tourism forecasting models can achieve better results than other methods. Due 

to the limitation of space, this section mainly covers AI-based modeling techniques. 

Gaussian Processes (GPs) are non-parametric models where a priori Gaussian process is 

directly defined over function values. The direct use of Gaussian Processes as priors over 

functions was motivated by Neal (1996), as he studied priors over weights for ANNs. A model 

equivalent to GPs, kriging, has since long been used for analysis of spatial data (Cressie, 1993). In 

a more formal way, in a GP, the function outputs  if x  are a collection of random variables 
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indexed by the inputs ix . Any finite subset of outputs has a joint multivariate Gaussian 

distribution (Rasmussen, 1996). 

GP models are routinely used to solve difficult machine learning problems. A recent overview 

of GP methods is provided by Rasmussen and Williams (2006). Generally speaking, GPs allow a 

Bayesian use of kernel machines for learning, with the two key advantages of: i) GPs provide full 

probabilistic predictive distributions, including estimations of the uncertainty of the predictions, 

and ii) the evidence framework applied to GPs enables the learning of parameters of the kernel. 

Treated within a Bayesian framework, very powerful statistical methods can be implemented 

in GP models which have valid estimations of uncertainties in the predictions, and generic model 

selection procedures cast as nonlinear optimization problems. However, an important problem 

with GP methods is that the naive implementation requires computation which grows as  3o n , 

where n is the number of training cases. To overcome the computational limitations of GP 

regression, many authors have recently suggested a variety of sparse approximations (Keerthi & 

Chu, 2006; Quinonero-Candela & Rasmussen, 2005). These techniques can broadly be divided 

into two classes of: 1) those that are based on sparse methods, which approximate the full 

posterior by expressions involving matrices of lower rank m n , and 2) those relying on 

approximate matrix-vector multiplication conjugate gradient methods. In this paper, class (1) is 

applied to our tourism demand forecasting tasks. 

To our knowledge, sparse GPR models in tourism demand analysis has been entirely 

unexplored by the academic community. As such, this paper is the first attempt to investigate the 

issue. Research outcomes are expected to have superb generalization ability compared to other 

models in tourism demand analysis, and have the advantage of comprehensibility in terms of 

confidence levels. 

The paper is organized as follows. In Section 2 we introduce the AI-based tourism 

forecasting literature. In Section 3 we describe the proposed method, and in Section 4 we report 

the results of numerical experiments that demonstrate the effectiveness of our method. The 

conclusion is arranged in Section 5. 

2. Literature review 
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    In recent years, researchers have attempted to develop forecasting models that mimic human 

nervous systems to tourism demand analyses (Cho, 2003; Law, 2000a; Uysal & Roubi, 1999). 

This biological resemblance has guided researchers to examine the potential applications of 

artificial neural networks (ANNs) in pattern classification and modeling. In the context of tourism 

forecasting, prior studies on single destinations have shown that ANNs are superior to selected 

forecasting techniques (Cho, 2003; Law & Au, 1999; Law, 2000b). However, the structure of 

ANNs has to be manually selected and optimized in a trial-and-error way. It is thus difficult to 

guarantee its generalization performance. Another limitation of ANNs is the problem of 

over-fitting that frequently occurs after training (Lawrence & Giles, 2000). 

Recently, SVMs (Vapnik, 2000) have been the main advance in statistical learning theory for 

data forecasting and classification (Fan et al., 2005; Xu & Wang, 2005; Guo & Li, 2003; 

Brahim-Belhouari & Bermak, 2004; Xu, Law, & Wu 2007; Xu, Law, & Wu 2009). The aim of the 

theory of statistical learning is to study how to select or control the structural complexity of 

various learning machines (e.g., ANNs and fuzzy sets) so that the generalization ability or 

precision of forecasting and classification can be guaranteed and optimized. Compared with ANNs, 

which are based on the traditional empirical risk minimization (ERM) principle, SVMs are a class 

of statistical learning algorithms derived from the structural risk minimization (SRM) principle, 

and the generalization ability of SVMs can be guaranteed by selecting the structural complexity 

automatically. In addition, the training procedure of SVMs is a convex quadratic programming 

process such that the local minima problem in ANNs can be eliminated (Lin, 2001). 

SVM-based models have been shown in many cases to be more accurate than ANNs in 

regression and prediction problems (Cristianini & Schölkopf, 2002). Tourism researchers should, 

therefore, refocus their attention to SVM-based modeling techniques as they can better capture the 

useful information in tourism datasets. Pai and Hong (2005) proposed a preliminary SVM model 

with genetic algorithms to forecast tourist arrivals. Experimental results showed that the proposed 

model outperformed the ARIMA approaches. In Chen and Wang’s (2007) study, a genetic 

algorithm was combined with Support Vector Regression (SVR) to model tourist arrivals to China 

during 1985-2001. Empirical evidence showed that their approach outperformed ANNs and 

ARIMA models based on the normalized mean square error (NMSE) and mean absolute 
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percentage error (MAPE). 

3. Methodology 

Tourism demand analysis can be formulated as a regression problem, where the goal is to 

estimate an unknown continuous-valued function by collecting a finite number of training 

samples    , , 1,2, ,i y i nx , where d -dimensional input  d
x R  and output 

y R . Assuming the statistical model for data generation has the following form: 

 y r  x                                    (1) 

where  r x  is the unknown target function, and   is an additive zero mean noise with noise 

variance 
2 . 

To solve the above regression problem, the proposed sparse GPR-based modeling method for 

tourism demand forecasting includes the following aspects: 

3.1. Basic GPR model 

A Gaussian process (GP) is a powerful, non-parametric tool for regression in high 

dimensional spaces. Key advantages of GPs are their ability to provide uncertainty estimations and 

to learn the noise and smoothness parameters from training data. More GPR information can be 

found in Rasmussen and Williams (2006). A GP can be considered as a “Gaussian over functions”. 

More precisely, a GP describes a stochastic process in which the random variables, in this case the 

outputs of the modeled function, are jointly Gaussian distributed. A GP is fully described by its 

mean and covariance functions. 

A Gaussian Process Regression (GPR) model is a Bayesian framework which assumes a GP 

prior over functions, i.e. that a priori the function values behave according to the following 

assumptions: 

The training set       1 1 2 2, , , , , ,n nD x y x y x y  is assumed to be drawn from 

the (noisy) process: 

 i iy f  x                                       (2) 

where ix is an input vector in 
dR and iy  is a scalar output in R  (extension to multiple 
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outputs is possible). The noise term   is drawn from  20,N  . For the sake of convenience, 

the inputs are aggregated into a matrix  1 2, , , nX x x x . The outputs are likewise 

aggregated,  1 2, , , ny y y y . The joint distribution over the (noisy) outputs y  given 

inputs X  is a zero-mean Gaussian, and has the form: 

    20, ,p y X N K X X I                      (3) 

where the covariance matrix  ,K X X  is also called the kernel matrix with elements 

 ,ij i jK x x . The kernel function  , 'k x x  is a measure of the distance between input vectors. 

The covariance function encodes the assumptions about the function that is wished to learn, by 

defining a notion of similarity between two function values, as a function of the corresponding 

two inputs. The term 
2I  introduces the Gaussian noise and plays a similar role to that of   

in (2). 

For the kernel function, a common choice is the Gaussian, or squared exponential: 

 
 2

2
, exp

2

i i

ij i j

x y
K k x x v



 
   

 
                   (4) 

where 
2v  controls the prior variance, and   is an isotropic length-scale parameter that controls 

the rate of decay of the covariance, i.e., it determines how far away ix  must be from jx  for if  

to be unrelated to jf . 

Given the training samples  ,i ix y  and a set of test points
*X , the objective of GPR is to 

find the predictive outputs 
*f  with probabilistic confidence levels. By making use of the 

Bayesian inference, the joint posterior distribution is 

 
   

 

*

*
,

,
p y f p f f

p f f y
p y

                    (5) 

The posterior predictive distribution is produced by marginalizing the unwanted training set 

latent variables 
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   
   

 

*

* *
,

,
p y f p f f

p f y p f f y df df
p y

                 (6) 

The joint prior distribution and the independent likelihood probability are both Gaussian 

distribution: 

 
*

* * *

, ,*

, ,

, 0,
f f f f

f f f f

K K
p f f N

K K

  
   
    

                    (7) 

   2,P y f N f I                        (8) 

where f  and 
*f  is a subscript of the variables between which the covariance is computed and 

I  is the identity matrix. Since both factors in the integral (7) are Gaussian, the integral can be 

evaluated in a closed form to give the Gaussian predictive distribution: 

   * ,p f y N                        (9) 

where   is the predicted output and   is the variance, which can be used as the uncertain 

estimations for confidence levels: 

   
1

* 2, ,K X X K X X I y 


                              (10) 

       * * * 2 1 *, , [ , ] ,K X X K X X K X X I K X X                (11) 

The parameters of the kernel function,  , , nv   , are called the hyper-parameters of 

the Gaussian process. These hyper-parameters can be learned by maximizing the log likelihood of 

the training outputs given the inputs: 

   max argmax log ,p y X


                      (12) 

where 

       
1

2 21 1
log , log , log2

2 2 2

T n
p y x y K X X I y K X X I  



     

(13) 

3.2. Sparse approximation to GPR model for tourism demand forecasting 
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The problem with the above GPR model is that it requires inversion of a matrix of size 

n n  which requires  3o n  operations, where n  is the number of training cases. To reduce 

the computational complexity of the basic GPR model, many computationally efficient 

approximation methods for GPR have been proposed. Common to all these approximation 

schemes is that only a subset of the latent variables is treated exactly, and the remaining variables 

are given some approximate, but computationally cheaper treatments. In the study of 

Quinonero-Candela and Rasmussen (2005), a unifying description of sparse approximations for 

GP regression was provided by modifying the joint prior  *,p f f  from (6) in ways which 

will reduce the computational requirements from (8). This general sparse approximation procedure 

is briefly presented as follows. 

Let us first rewrite that prior by introducing an additional set of m  latent 

variables  1, , m   , which we call the inducing variables. These latent variables are 

values of the Gaussian process (as also f  and 
*f ), corresponding to a set of input locations 

X , which we call the inducing inputs. 

Due to the consistency of Gaussian processes, we know that we can recover  *,p f f  by 

simply integrating (marginalizing) out   from the joint GP prior  *, ,p f f  . 

       * * *, , , ,p f f p f f p f f p d                (14) 

where    ,0,p N K   . 

    As we shall detail in the following sections, the different computationally efficient algorithms 

proposed in the literature correspond to different additional assumptions about the two 

approximate inducing conditionals    *,q f q f   of the integral in (9). 

We approximate the joint prior by assuming that 
*f  and f  are conditionally 

independent given  , such that: 
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         * *, , *p f f q f f q f q f p d           (15) 

   1

, , , ,,f f f f fp f N K K K Q                    (16) 

   * * * * *

* 1

,, , ,
,

f f f f f
p f N K K K Q 

                (17) 

where 

1

, , , ,a b a bQ K K K   
                      (18) 

Most of the sparse GPR methods, such as those studied in Keerthi and Chu (2006), 

correspond simply to different approximations to the conditionals in (10) with exact likelihood 

and inducing prior. 

4. Performance evaluation and comparisons 

To illustrate the sparse GPR method, tourism demand forecast with multi-factors is studied. 

In general, demands for international travel can be estimated by the following function f (Kimand 

Uysal, 1998; Lathiras and Siriopoulos, 1998; Goh and Law, 2003; Lee et al., 1996; Lim, 1997; 

Song & Witt, 2000). 

 Inc ,RP ,TC ,FER ,Pop ,Mkt ,QF ,ijt it ift ijt ijt it jt jt tQ f           (19) 

where: 1,2, ,i I  (for I  origins); I  is set for 13 in this research. 

1,2, ,j I  (for J  destinations); In this research, J  is set for 1, which represents 

Hong Kong. 

1,2, ,t K  (for K  time periods); K  is set for 38 for annual data and 456 for 

monthly data 

ijtQ  = origin i ’s demand for travel to destination j  at time t ; 

Incit = income of origin i  at time t ; 

RPift
= prices in destination j  relative to origin i  at time t ; 

TCijt
= transportation costs between origin i  and destination j  at time t ; 
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FERijt
= foreign exchange rate, measured as units of destination j ’s currency per 

unit of origin i ’s currency at time t ; 

Popit = population in origin i  at time t ; 

Mkt jt
= marketing expenses to promote destination j ’s tourism industry at time t ; 

QFjt
= qualitative factors (including special events, changes in tourism policies, climate, 

and leisure time) in destination j  that are relative to origin at time t ; 

t = random error at time t . 

Depending on data availability, tourism researchers use real or proxy values for the 

dependent variable and the explanatory variables described in function (19) will be used for model 

calibration and data analysis. 

The study covered the time period 1985 to 2008 for monthly analysis (due to data 

availability). Since it is not possible to include all countries/origins in this research, we conducted 

an initial search and thus determined 13 countries/origins that had generated the most number of 

inbound tourists to Hong Kong with the most number of tourist arrivals during the time period. 

During the research process, we have collected secondary data from university libraries, library of 

the Hong Kong Tourism Board, and other research institutes. Both online and printed versions of 

data source were used. The data set contains 276 samples representing the recording period of the 

number of tourist arrivals. We obtain 142 patterns for training and 134 for testing candidate 

models. Predictive patterns are generated by windowing 10 inputs and one output. 

In addition, distinct numerical variables have different dimensions and should be normalized 

firstly. The following normalization is adopted:  

)min()max(

)min(

11
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l
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d

i

l

i

d

i

d

id

i

xx

xx
x








 ,  2,...,2,1 nd         (20) 

where l  is the number of samples, 
d

ix  and 
d

ix  denote the original value and the normalized 

value respectively. In fact, all the numerical variables from (1) through (19) are the normalized 

values although they are not marked by bars.  
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Obviously, the tourism demand is a multivariable series. The normalized data set with an 

additive zero mean noise is presented in Fig. 1.  

 

Fig. 1. Training and testing set with an additive zero mean noise 

The experiments are conducted on a 1.80GHz Core(TM)2 CPU personal computer (PC) with 

1.0G memory under Microsoft Windows XP professional. Some criteria, such as mean absolute 

error (MAE), mean square error (MSE) and mean absolute percentage error (MAPE), are adopted 

to evaluate the forecasting performance of the sparse GPR method. The predictive performance 

given by sparse GPR method is illuminated in Figs. 2-5. It is obvious that the predictive 

performance of the sparse GPR has good generalization capability for the tourism data.  

Apparently, tourism demand forecasting as an application of time series forecasting is a 

complex dynamic system, and the demand behavior is affected by many factors. Many of these 

factors have the random, nonlinear, seasonal, and uncertain characteristics. There is a kind of 

nonlinear mapping relationship between the influencing factors and demand series. As such, it is 

difficult to present the relationship by traditional models. 

     

Fig. 2. Covariance parameters posterior mean values 
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Fig.3. Lower bound 

 

 
Fig.4. Predictive likelihood 

 

 
Fig.5 Out-of-Sample percent prediction correct 

 

To analyze the forecasting performance of the proposed sparse GPR, some state-of-the-art 

models such as ARMA, ν-SVM (Wu, 2009) and g -SVM (Wu, 2010) are selected to handle the 

above multidimensional tourism demand series. The indexes MAE, MAPE and MSE are used to 
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evaluate the forecasting capability of the above four models. The results of the experiments 

indicate the running cost of the model ARMA is the highest among all selected models. The 

running cost of ν-SVM is close to that of g -SVM. Although the forecasting precision of the 

proposed sparse GPR is better than that of the models ν-SVM and g -SVM, the running cost of 

the proposed sparse GPR is higher than that of the models ν-SVM and g -SVM. Table 1 shows 

the forecasting accuracy of the four models.  

  Table 1    Forecasting accuracy of the four models 

Model MAE MAPE MSE 

ARMA 153.8 43.6 13657 

v -SVM 17.2 5.7 448 

g-SVM 11.38 3.78 188 

Sparse GPR 1.834 0.64 75.3 

 

Then we can find that ARMA model is not appropriate for the tourism demand series. The 

comparison results indicate the accuracy indexes MAE, MAPE and MSE as provided by sparse 

GPR are better than ones of ARMA. Moreover, the forecasting accuracy given by sparse GPR 

excels the ones by other kernel-based models such as v -SVM and g -SVM. The proposed 

sparse GPR thus has a good generalization performance and is appropriate to those cases with 

tourism demand forecasting.  

In summary, based on the forecasting method using sparse GPR models, the experiment has 

shown that reasonable prediction and tracking performance can be achieved in the case of 

nonstationary tourism series. Therefore, sparse GPR models are a practical and powerful Bayesian 

tool for data analysis in the context of tourism demand forecasting. 

5. Conclusions  

In this paper we proposed the use of the sparse GPR models to keep us from avoiding 

over-fitting problems and to provide a predictive distribution of tourism demand. Although sparse 

GPRs are very flexible regression models, they are still limited by the form of the covariance 

function. For example it is difficult to model non-stationary processes with a sparse GPR model 

because it is hard to construct sensible non-stationary covariance functions. Although the sparse 



 14 

GPR is not specifically designed to model non-stationarity, the extra flexibility associated with 

moving active inputs around can actually achieve this to a certain extent. The experiment shows 

the sparse GPR model fits to some data with an input dependent noise variance. The sparse GPR 

achieves a much better fit to the data than the standard GP by moving almost all the active input 

points outside the region of data. It will be interesting to test these capabilities further in the 

future.  

To show the effectiveness of the proposed method compared with other tradition model and 

kernel-based models, we have conducted simulation with the tourism demand data of Hong Kong. 

Experimental results show that the forecasting capability of the sparse GPR model outperforms 

those of ARMA and other kernel-based models in terms of error index, thereby generating 

consistent results. The extension to classification is also a natural avenue to explore. 
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