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Dynamic Depth-dependent Osmotic Swelling and Solute Diffusion in 

Articular Cartilage Monitored using Real-time Ultrasound 
 

ABSTRACT 

The objective of this study was to investigate the feasibility of ultrasonic monitoring for 5 

the transient depth-dependent osmotic swelling and solute diffusion in normal and 

degenerated articular cartilage (AC) tissues. Full-thickness AC specimens were collected 

from fresh bovine patellae. The AC specimens were continuously monitored using a 

focused beam of 50 MHz ultrasound during sequential changes of the bathing solution 

from 0.15 M to 2 M saline, 0.15 M saline, 1 mg/ml trypsin solution, 0.15 M saline, 2 M 10 

saline and back to 0.15 M saline. The transient displacements of ultrasound echoes from 

the AC tissues at different depths were used to represent the tissue deformation and the 

NaCl diffusion. The trypsin solution was used selectively to digest the proteoglycans in 

AC. It was demonstrated that high frequency ultrasound was feasible for monitoring the 

transient osmotic swelling, solute transport and progressive degeneration of AC in real 15 

time. Preliminary results showed that the normal bovine patellar AC shrank during the 

first several minutes and then recovered to its original state in approximately 1 h when 

the solution was changed from 0.15 M to 2 M saline. Degenerated AC showed neither 

shrinking nor recovering during the same process. In addition, a dehydrated-hydrated AC 

specimen showed much stronger shrinkage and it resumed to the original state when the 20 

solution was changed from 2 M back to 0.15 M saline. The diffusion of NaCl and the 

digestion process of proteoglycans induced by trypsin were also successfully monitored 

in real time. (Email: rczheng@polyu.edu.hk) 
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INTRODUCTION 

The articular cartilage (AC) is the thin layer of connective tissue that covers the 

articulating bony ends in diarthrodial joints. In the last few decades, AC has attracted a 

tremendous amount of interest from researchers because of its important functions and 

unique structural characteristics, such as multiphasic compositions and multilayered 5 

structures, special diffusion-based nutrition transportation and frequent degeneration with 

aging (Mow et al. 1991). The extracellular matrix of AC contains negatively charged 

proteoglycans embedded in a collagenous network (Fig. 1a and 1b). In the biological 

condition, there is a balance between collagen tension and swelling pressure, contributed 

by the negative charges (Maroudas 1976a; Lai et al. 1991). This balance plays an 10 

important role in the unique biomechanical behavior of AC. Factors such as proteoglycan 

concentration, water volume fraction and the intrinsic material properties of the AC solid 

matrix govern the inhomogeneous swelling strain distribution in situ (Maroudas 1976a; 

Lai et al. 1991; Narmovena et al. 1999). These factors also affect the diffusivity of 

various solutes through the surface of the AC and within the extracellular matrix. These 15 

solutes are essential for transporting nutrients, metabolic waste products and molecules 

for cell signaling between the synovial fluid and the chondrocytes (Maroudas 1976b; 

Quinn et al. 2001). It has been suggested that the quantification of the swelling effects in 

AC can be used to characterize the degenerative changes associated with osteoarthritis 

(Maroudas 1976a; Narmovena et al. 1999). Previous investigations have also 20 

demonstrated that the degeneration of AC may increase the diffusivity of solutes (Lotke 

and Granda 1972; Burstein et al. 1993; Xia et al. 1995; Torzilli et al. 1997).  
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The swelling properties of AC can be characterized mechanically in tension 

(Grodzinsky et al. 1981; Guilak et al. 1994) and in compression (Eisenberg and 

Grodzinsky 1987), or electromechanically in compression (Berkenblit et al. 1994). 

Depth-dependent swelling behaviors were previously studied destructively by cutting a 

full-thickness slice of AC into layers and testing the layers individually (Guilak et al. 5 

1994). Recently, optical methods have been developed to characterize the equilibrium 

swelling behavior of full thickness AC sections (Narmoneva et al. 1999, 2001, 2002; 

Setton et al. 1998; Flahiff et al. 2002). To derive the local strains induced by swelling, 

optical microscopic images of the cut surfaces of full-thickness AC were recorded under 

different concentrations of bathing saline solution and compared. As the AC at the cut 10 

surface of the specimens disintegrated, these optical methods were not feasible for in-vivo 

applications or for investigating the in-situ transient behaviors of swelling and solute 

transport.  

Previous investigations of the transport of solutes in AC have employed different 

methods, including radiolabel (Torzilli et al. 1997; Maroudas 1976b; Schneiderman et al. 15 

1995), magnetic resonance (Burstein et al. 1993; Xia et al. 1995), fluorescence tracer 

methods (Quinn et al. 2001) and scanning electrochemical microscopy (Gonsalves et al. 

2000). Among them, magnetic resonance imaging (MRI) methods show great potential 

for use in nondestructive in-situ measurements of depth-dependent solute diffusion. 

However, they are expensive and most MRI systems are limited to a relatively low 20 

spatiotemporal resolution. An easy and nondestructive approach for measuring the in-situ 

transient transport of solutes in AC is still lacking.   
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The ultrasonic characterization of AC has been the subject of many recent 

investigations, due to its nondestructive manner and penetration ability. These 

investigations have included studies on the assessment of progressive changes in the AC 

with experimental osteoarthritis (Saied et al. 1997), the monitoring of the ultrasound 

parameters of AC during enzyme digestion (Nieminen et al. 2002) and the measurement 5 

of the inhomogeneous mechanical properties of AC during compression (Zheng et al. 

2001, 2002, 2003a; Fortin et al. 2003) (Refer to Zheng et al. (2003) for a full list of 

relevant references). Local strains of AC tissues under compression can be measured or 

imaged using ultrasound so as to characterize AC in a nondestructive way. However, the 

collection of scattered high-frequency ultrasound signals from AC tissues during 10 

compression still remains a challenge, particularly when the AC specimen is small, such 

as a mouse joint (Saied et al. 1997). The osmotic swelling of partially dehydrated normal 

AC as a whole layer has previously been probed using ultrasound (Tepic et al. 1983). 

However, due to technical limitations, no measurement was achieved for the depth-

dependent swelling behavior. In addition, the potentials of ultrasound for measuring the 15 

transport of solutes and swelling in AC induced by changing the concentration of bathing 

solution has not been reported. We have developed an easy approach using 50 MHz 

ultrasound for AC research. Our aim was to use this approach to monitor and compare 

transient depth-dependent swelling behavior and solute transport between normal and 

degenerated AC.  20 
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MATERIALS AND METHODS 

AC Specimens 

Cylindrical AC specimens with a bone layer approximately 3 mm thick were 

prepared from fresh mature bovine patellae using a metal punch with a diameter of 6.35 

mm (Zheng et al. 2001, 2002). One AC disk was selected from each patella for the 5 

ultrasound-swelling test. The prepared specimens were stored at –20°C until the 

ultrasound measurement. The results of six specimens were reported in this paper and 

used to address different aspects of this technique. A trypsin solution was used to digest 

the proteoglycan to induce AC degeneration (Zheng et al. 2001). One of the specimens 

had been prepared and dehydrated eight months before the test was conducted for this 10 

study. During the test, it was first thoroughly hydrated in a 0.15 M saline solution for 

more than 6 h.  

Ultrasound System  

A 50 MHz ultrasound system was recently developed to monitor and compare the 

normal and degenerated AC specimens in terms of the transient depth-dependent swelling 15 

behavior and the transport of solutes induced by changing the concentration of bathing 

saline. Figure 2 shows the schematic diagram of the ultrasound swelling measurement 

system used in this study. The system included a 50 MHz focused ultrasound transducer 

(focal length is 12.3 mm and -6 dB focal zone is approximately 1 mm in length and 0.1 

mm in diatemeter; Panametrics, Waltham, MA, USA), an ultrasound pulser/receiver 20 

(model 5601A; Panametrics, Waltham, MA, USA), an A/D converter card with a 
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sampling rate of 500 MHz (model CompuScope 8500PCI; Gage, Canada), and software 

for data collection and signal processing (Zheng et al. 2003). The resolution for 

displacement measurement was approximately 0.4 μm in AC using a cross-correlation 

algorithm and an average sound speed of 1666 m/s in AC (Zheng et al. 2002). This 

displacement resolution was sufficient to allow detection of a 0.4% deformation for a 0.1 5 

mm thick layer of AC.  

Ultrasound Measurements  

AC specimens were first taken from a -20°C freezer, placed rigidly on the bottom 

of the container and then submerged in a 0.15 M saline solution for thawing (Fig. 2). The 

sides of the AC specimen were gently sealed using rubber gels to ensure that the fluid 10 

was transported only through the surface of the AC. The ultrasound transducer was 

moved to a position over the central portion of the AC specimen, with the focal zone of 

its beam located inside the AC layer. The AC specimen was tested in room temperature 

(19.5±1°C) for all of the following procedures. After the AC specimen had been thawed 

for 3 h, the 0.15 M saline was replaced with 2 M saline within 30 s, and the AC was 15 

monitored with ultrasound for 1 to 2 h. The echo signals that reflected from the surface of 

the AC and from the AC/bone interface and scattered inside the AC layer were 

continuously recorded with a sampling period of approximately 1 s. Figure 1c shows a 

frame of typical ultrasound radio-frequency (RF) signals collected from an AC specimen 

(#1). The ultrasound signals were also displayed in an M-mode image to represent 20 

transient information. This means that the echoes at different measurement times were 
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drawn line-by-line to form an image, with the grey levels indicating the amplitude of the 

ultrasound signals (Fig. 1d). Each horizontal trace in the M-mode image indicated the 

transient displacement of the AC tissues at different depths, induced by the change in 

saline concentration. The bathing solution was further changed from 2 M saline to 0.15 M 

saline, a 1 mg/ml trypsin solution, 0.15 M saline, 2 M saline and 0.15 M saline for 5 

different periods of time (Fig. 3). The ultrasound signals were recorded and displayed 

with M-mode images during the whole procedure except during the replacement of 

solutions, which lasted for approximately 30 s. To confirm that the different swelling 

behaviors of AC tissues before and after the digestion of trypsin were not due to other 

changes in the specimen during the long period of the experiment, another AC specimen 10 

was tested following the whole procedure described above, but with the trypsin solution 

replaced by a 0.15 M saline solution during the “digestion” period. Additional 

experiments were also conducted by changing the concentration of the saline solution 

from 0.15 M to 0.015 M and then back to 0.15 M.  A repeatability test was conducted on 

a specimen (#6) with a procedure of changing the concentration of the saline in a 15 

sequence of 0.15, 2, 0.15, 2 and 0.15 M. For each concentration of saline, the ultrasound 

echoes were recorded for approximately 1 h.  

 

 

RESULTS 20 

Figures 3a to f show the M-mode representation of the ultrasound signals 

collected from AC specimen #2 during different processes. After the saline was changed 
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from 0.15 to 2 M, the AC surface of the normal specimen first gradually moved 

downwards and then recovered almost to its original position after approximately 1 h (Fig. 

3a). The same phenomenon was observed in the four fresh specimens that we measured. 

The echo reflecting from the AC/bone interface gradually moved upwards, indicating that 

a shorter time was required for the ultrasound to propagate through the AC. It means that 5 

a change had occurred in the speed of the ultrasound in the AC during this process and 

that this change was the result of the penetration of the 2 M of saline into the AC tissues 

(i.e., a diffusion of NaCl) from the superficial to the deeper zone. Since the bone was 

fixed to the bottom of the container, the movement of the AC surface could be used to 

represent the change of AC thickness. After the saline was changed from 0.15 to 2 M, the 10 

thickness of the AC was first reduced and then almost resumed to its original value. At 

the beginning of the process, as shown in Fig. 3a, the diffusion of NaCl could be traced 

by tracking the disturbance of the ultrasound signals, as indicated by the dotted line. 

Using the change in the ultrasound speed of the AC and the disturbance in the ultrasound 

signals, the diffusivity of NaCl at different depths could be estimated. The displacements 15 

of AC tissues at different depths could be estimated by tracking the horizontal traces. The 

transient change in the speed of the AC ultrasound at different depths might also 

contribute to the shifts in the ultrasound signals represented in a time scale. As shown in 

Fig. 3b, the displacement of the AC was very small when the saline solution was changed 

from 2 M back to 0.15 M, although the upward movement of the echo that was reflected 20 

from the AC/bone interface suggested that the 0.15 M saline solution gradually 

penetrated into the tissue. This phenomenon demonstrated that the swelling processes 
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induced by changing the concentration from 0.15 M to 2 M and back to 0.15 M was not 

reversible. Similar displacements of the AC surface and changes in the ultrasound speed 

of the AC were observed in the tests by changing the saline concentration between 0.015 

M and 0.15 M. However, the values were much smaller in comparison with the cases of 

0.15 M to 2 M.  5 

Figure 3c shows the ultrasound signals collected during the process of trypsin 

digestion, which lasted for approximately 6 h. The digestion was clearly observed from 

the additional echoes generated at the interface between the digested and undigested AC 

tissues. The shift of these additional echoes formed the inclined streak in Fig. 3c. The 

penetration rate of the trypsin solution or the digestion rate could then be estimated with 10 

this inclined trace. The echo from the bone/AC interface shifted slightly, indicating a 

corresponding slight change in the speed of the ultrasound after the AC had been digested 

by trypsin. After the digestion with trypsin, the AC specimen was submerged in a 0.15 M 

of saline solution for 3 h. Interestingly, the digestion process continued during this period, 

as indicated by the inclined trace in Fig. 3d. Better to represent the additional echoes 15 

generated at the interface of the digested and undigested AC tissues, Fig. 4 shows three 

typical radio-frequency ultrasound echo trains that were collected at the time positions 

indicated by the three vertical dashed lines A, B and C in Figs. 3b, c and d. Indicated by 

the dashed circles, additional echoes were generated at different depths of AC as the 

trypsin digestion penetrated into the deep region as time went on.  The trypsin digestion 20 

for proteoglycan appears not to affect the scatterers in AC tissues, as the patterns of 

scattering signals in the digested region did not change after the digestion front 
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penetrated into deeper region. However, the amplitudes of the scattering signals tended to 

increase as the digestion time increased ,as a result of the fact that more ultrasound 

energy might be transmitted into the AC specimen. This observation agreed with the 

previous finding that less energy was reflected from the AC surface after trypsin digestion 

(Nieminen et al. 2002).    5 

In the process of changing the saline from 0.15 to 2 M and back to 0.15 M, the 

surface of this digested AC no longer shifted, although the shift in the echo from the 

AC/bone interface indicated that the 2 M saline solution had penetrated (Fig. 3e). Again, 

from each trace of the echoes, the diffusivity of NaCl in 2 M of saline could be estimated. 

When the concentration of the saline was changed from 2 M back to 0.15 M, the 10 

movement of the echo from the AC/bone could be observed, but not that from the surface 

of the AC (Fig. 3f). Since no swelling was observed in the digested AC, the shifts in the 

echoes were solely due to the change in the speed of the ultrasound induced by the 

diffusion of NaCl. Thus, swelling-induced transient strains at different depths of AC 

before trypsin digestion could be obtained by correcting the echo traces in Fig. 3a using 15 

those in Fig. 3e.    

For specimen #3, when the trypsin solution was replaced by 0.15 M of saline 

during the processes, as shown in Fig. 3, the swelling-induced movement of the AC 

surface was observed at the beginning of the test (Fig. 5a), as well as after approximately 

10 h into the experiment (Fig. 5b). It further supported that the changes in the swelling 20 

behavior of AC shown in Fig. 3 were caused by the removal of the proteoglycan that had 

been induced by the trypsin digestion and not by other effects such as the duration of the 
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experiment and the thawing process at the beginning of the test. In addition, the transient 

diffusion of NaCl in the 2 M saline was also identified, according to the disturbance in 

the ultrasound signals and shifts in the echoes from the AC/bone interfaces (Figs 5a and 

b).  

In another test, the specimen (#4) was stored at -20°C after it had been digested 5 

for 6 h and submerged in 0.15 M of saline for 3 h. One day later, a swelling test for this 

digested specimen was conducted again. After the specimen had been thawed in 0.15 M 

of saline for 3 h, the saline was replaced with 2 M and then back to 0.15 M. No surface 

displacement of this digested specimen was observed during the process (Figs 5c and d). 

It further supported again that the swelling behavior was altered by the digestion process 10 

and not by other effects such as possible incomplete thawing at the beginning of the test.  

The swelling-induced displacements of AC tissues appeared to be much larger for 

the dehydrated/hydrated AC specimen #5 (Figs. 5e and 5f). In addition, the recovering 

pattern of the displacements observed in the fresh specimens could not be observed in the 

dehydrated/hydrated AC specimen. When the concentration of saline was changed from 2 15 

M back to 0.15 M, a stronger reversing process of the tissue displacements was observed, 

which had not occurred in the fresh AC specimens.  

The repeatability test demonstrated that the measurement of the transient shifts of 

the echoes was repeatable. As shown in Fig. 6, the patterns of the transient echo shifts 

were very similar for the two consecutive tests. When the saline was changed from 0.15 20 

to 2 M, the transient echo shifts measured at the two tests were almost overlapped with 
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each other  for both echoes from the AC surface and the AC/bone interface.  Similar 

repeatability was obtained for the shifts of the scattering echoes from tissues at different 

depths of AC.  The shift of the echo from the AC surface represented the thickness 

change of AC tissues and the shift of the echo from the AC/bone interface represented the 

change of the ultrasound speed in the AC tissues. Hence, the measurement of the transient 5 

displacements of the tissues and the sound speed would also be repeatable.  

DISCUSSION 

We demonstrated that a high frequency focused ultrasound beam could be used to 

monitor various transient processes of articular cartilage (AC) at different depths, 

including the swelling induced by changing the concentration of bathing saline, the 10 

diffusion of NaCl and the digestion of proteoglycan induced by trypsin solution. Our 

results demonstrated that the transient swelling behavior of AC altered dramatically when 

the proteoglycan was digested with trypsin enzyme, simulating the natural degeneration 

process. Because of its nondestructive feature and high sensitivity, this ultrasonic 

approach may potentially be used to diagnose cartilage degeneration in its early stages in 15 

vivo together with an arthroscopy. The maximum deformation of normal AC induced by 

changing the saline concentration from 0.15 M to 2 M occurred during the first several 

minutes. Thus, with proper miniaturization of the instrument, it would be clinically 

practicable to detect the cartilage using the approach introduced in this paper. In 

comparison with the promising MRI diagnosis of AC in vivo (Burstein et al. 1993; Xia et 20 

al. 1995), the present ultrasonic approach may allow real-time monitoring of transient 

depth-dependent swelling and solute transport. In addition, ultrasound measurements of 
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swelling and solute transport may be more accessible and much cheaper in comparison 

with the current MRI.   

The transient depth-dependent displacements of AC tissues during swelling may 

provide comprehensive information on the biomechanical behaviors of AC, which is 

currently unavailable. The various biomechanical models of AC found in the literature 5 

can be used to extract the intrinsic material properties of AC and new biomechanical 

models of AC might be devised to explain new findings. We observed that AC tissues 

first appeared to shrink but then expanded after approximately 10 min, almost returning 

to their original state after approximately 40 to 100 min when the concentration of the 

bathing saline was changed from 0.15 to 2 M. This self-recovering phenomenon was 10 

repeated for all of the measured normal specimens. The repeatability was also 

demonstrated by the results of a specimen tested twice with a 10 h interval, during which 

the specimen was submerged in saline solutions with different concentrations.  In 

addition, one specimen was monitored for 4 h after the saline was changed from 0.15 to 2 

M, and no further shift in the surface of the AC was observed after the phase of 15 

resumption.  

The new findings about the transient swelling behavior of AC differ from the 

common understandings, including equilibrium results measured using optical methods 

where the free swelling of the cut surfaces of the AC were monitored (Berkenblit et al. 

1994; Setton et al. 1998; Narmoneva 2001, 2002; Flahiff et al. 2002), transient results 20 

measured in tension for AC stripes (Grodzinsky et al. 1981) and the current models for 

describing the swelling behavior of AC (Lai et al. 1991). Since only the central region of 
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approximately 0.1 mm in diameter was monitored for the full-thickness AC specimen 

with 6.3 mm in diameter, the reported results were well representative for an in-situ 

condition. For the specimen that was previously dehydrated, the shrinkage induced by 

changing the saline concentration from 0.15 to 2 M was much stronger and the recovery 

weaker. It appears that some components of the AC or some linkages between different 5 

components were damaged in the dehydrated specimen, resulting in a change in the 

transient swelling behavior. However, the results of the limited number of specimens 

would not be enough to let us make a clear explanation for the observed phenomena. 

More specimens from different regions of patella as well s from other joint parts will be 

tested in the future. In addition, in order better to understand this recovering phenomenon, 10 

we plan to remove different components of AC sequentially by using the enzymatic 

digestion of the AC specimen with different enzymes, including collagenase for removing 

collagen fibers and trypsin for removing proteoglycan. We believe that the 

comprehensive transient and depth-dependent information provided by this ultrasound-

swelling approach, together with the ultrasound-compression approach (Zheng and Mak 15 

1996; Zheng et al. 2001, 2002, 2003a; Fortin et al. 2003), may give more experimental 

support for the current biomechanical models of AC (Lai et al. 1991; Mow et al. 1980, 

Mak 1986) and stimulate more advanced modeling. 

The precise and reliable real-time monitoring of the digestion process of enzyme 

provided a unique tool for the preparation of AC specimens to model degenerations. 20 

Similar studies have been reported using 30 MHz ultrasound (Nieminen et al. 2002). 

Since the raw radio-frequency ultrasound signals with higher frequency were used in this 
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study, M-mode images with a higher resolution showed clearer traces of the penetration 

of trypsin. Previous studies demonstrated that the trypsin penetration front measured with 

ultrasound correlated with that measured with histology (Zheng et al. 2001; Nieminen et 

al. 2002; Qin et al. 2002). The trypsin digestion of proteoglycan in AC could reduce the 

Young’s modulus of the tissues (Zheng et al. 2001) and subsequently introduce the 5 

discontinuity of acoustic impedance in the interface of the digested and undigested 

regions. This interface moved towards the deeper region as the digestion progressed. The 

acoustic impedance also depends on the tissue density. However, a previous study 

demonstrated that the AC density was not affected by removing the proteoglycans using 

enzymes (Gu et al. 1999). We are now able to prepare a partially-degenerated AC 10 

specimen by replacing the trypsin solution with a proper enzyme inhibitor when the 

digestion front reaches a required depth. As both the enzyme digesting and inhibiting 

process can be real-time monitored, it is possible to know immediately whether the 

specimen is properly prepared. Currently, preparation of such AC models is normally 

verified with histology, which is a destructive method and can only be performed after 15 

the digestion. As the trypsin digestion depth can be precisely controlled, the functional 

contributions of proteoglycans at different AC depths can be easily studied using these 

models. Therefore, in order to understand how different zones of AC contribute to 

swelling and solute transport, we also plan to conduct swelling tests for specimens with 

precisely controlled different digestion depths.  20 

 In the present experiment, the ultrasound speed in AC tissue was found to have 

become larger in the saline solution with the higher concentration. When the 
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concentration of the saline was changed, the diffusion of NaCl could be reliably 

monitored by observing the disturbance in the ultrasound signals as well as the change in 

the speed of the ultrasound, which was indicated by a shift in the echoes from the 

AC/bone interface. Our results demonstrated that the diffusivity of NaCl in normal and 

degenerated AC was not dramatically different. This agreed with the previous results that 5 

the AC diffusivity of molecules with a small molecular weight might not be altered by 

the removal of proteoglycan (Torzilli et al. 1997). This new ultrasound approach may 

provide a nondestructive way to measure the transport of solutes in AC at different depths 

for molecules with different molecular weights, so as better to understand the transport of 

nutrients and cell signaling elements in AC (refer to Quinn et al. (2001) for a summary of 10 

molecules that have been studied using different approaches). Previous studies reported 

that the ultrasound speed of AC was depth-dependent (Agemura et al. 1991; Patil et al. 

2003). There was a difference of approximately 10% from the superficial zone to the 

deep zone, according to our recent results. This issue has to be taken into account when 

extracting quantitative depth-dependent information from the echo traces in the M-mode 15 

images. In addition, the shift in the ultrasound echo from AC surface could also be 

caused by a change in the sound speed in water induced by the temperature change. All 

of the echoes from the AC would be altered equally by this factor and shifts in echoes 

could be corrected by measuring the ultrasound speed of saline at different temperatures. 

In the experiments presented in this paper, the room temperature was controlled and 20 

measured as 19.5 ± 1ºC. Our recent study on the temperature-dependency of the 

ultrasound speed in AC based on 20 patellar specimens showed that the ultrasound speed 



 Zheng et al. 2003 Page 18.

in full-thickness AC and 0.15 M saline increased by 1.9% and 1.8%, respectively, when 

the temperature was changed from 18.5ºC to 20.5ºC. The changes of ultrasound speeds in 

AC and saline could cause some uncertainties to the measurement results. However, these 

uncertainties were much smaller in comparison with the measured displacement of the 

interested echoes. The potential artifacts caused by the temperature change can be further 5 

reduced by using a temperature controlled chamber in the future studies.  

In summary, the ultrasonic technique introduced in this paper provided a new 

approach for studying the biomechanical and biophysical problems associated with AC, 

including swelling, solute transport and progressive degeneration. We observed, using 

this approach, a self-recovering phenomenon of the normal AC after the concentration of 10 

its bathing solution was changed. The mechanisms behind this interesting phenomenon 

are still not clear and more experimental and theoretical investigations need to be 

followed. This ultrasonic approach may have wide applications in the study of various 

dynamic processes of AC in situ at different depths under biochemical, 

bioelectrochemical, biophysical, biomechanical and other types of stimulations, in animal 15 

models and patients as well as in cultured or tissue-engineered AC. Similar approaches 

can also be used for characterizing other tissues including the intervertebral disc, tendon 

etc. The reported results of this new approach are still preliminary and advanced signal 

and image processing algorithms are required to derive more quantitative parameters. 

One of the aims is to separate the effects of the sound speed changes and the swelling 20 

induced displacements at different depths in AC after the saline concentration is changed. 

In spite of these challenges, this ultrasonic approach is noncontact and nondestructive, 
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has a high resolution and requires little or no preparation of the specimens. As a result, it 

could be used to investigate the biomechanical properties and solute transport of the AC 

of small animals like rats and mice, which is currently still very challenging. By 

miniaturizing the probe and designing a proper mechanism for altering the concentration 

of NaCl and other solutes locally on the AC surface, this technique can potentially be 5 

used for the in-vivo detection of early signs of osteoarthritis, together with arthroscopy.  
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FIGURE CAPTIONS 

 

Fig. 1. (a) Schematic representation of the AC structure with the collagen fibers arranged 

differently at different zones (Mow et al. (1991)); (b) Histology of a typical AC specimen 

with the red color (darkness in the gray image) indicating the concentration of 5 

proteoglycan stained with Safrannin-O; (c) A-mode ultrasound signal obtained from a 

typical specimen (#1); (d) M-mode representation of the ultrasound signals collected 

during swelling, with the grey level indicating the signal amplitude shown in (c), the 

position of which was indicated by the vertical dotted line in (d). The grey level was 

normalized by the signal amplitudes indicated by the two vertical dashed lines in (c). 10 

Each horizontal trace in the M-mode image indicated the transient displacement of the 

AC tissues at different depths, induced by the change in saline concentration. The solid 

and open triangle marks indicate the first positive half cycle of the reflection signal from 

the AC surface and that from the AC/bone interface, respectively. 

Fig. 2. Diagram of the ultrasound swelling measurement system. The AC specimen was 15 

fixed on the bottom of the container, surrounded by rubber gel to prevent the solutions 

from penetrating from the sides of the specimen and submerged in saline solution. The 

ultrasound transducer could be moved in three dimensions to focus its beam at the center 

of the AC specimen. 

 20 

Fig. 3. The M-mode representation of the ultrasound signals collected from a consistent 

site of AC specimen (#2) during the continuous monitoring for different processes. The 
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solid and open triangle marks indicate the first positive half cycle of the reflection signal 

from the AC surface and that from the AC/bone interface, respectively. The echoes from 

the AC surface were at the top. (a) 0.15 M saline replaced with 2 M saline; (b) 2 M saline 

replaced with 0.15 M saline; (c) 0.15 M saline replaced with 1 mg/ml trypsin; (d) trypsin 

replaced with 0.15 M saline; (e) 0.15 M saline replaced with 2 M saline after the trypsin 5 

digestion; (f) 2 M saline replaced with 0.15 M saline after trypsin digestion. The dashed 

line in (a) indicates that the penetration of 2 M saline could be observed from the 

disturbance of the ultrasound signals. Similar results could be observed in Figs. 2d and 

4a-d for different specimens. The shifts in the echoes from the AC surface and those from 

the AC/bone interface were mainly due to a change in the thickness and ultrasound speed, 10 

respectively, of the AC. The inclined streaks in (c) and (d) indicate the progressive 

penetration of the trypsin digestion front. The radio-frequency signals at the positions 

indicated by the dashed lines A, B, and C in (b), (c) and (d) are drawn in Fig. 4.  

 

Fig. 4. The radio-frequency ultrasound signals collected at the time points indicated by 15 

the dashed lines A, B, and C in Figs. 3(b), (c) and (d). The three time points represent the 

statuses of the specimen in 0.15 M saline before digestion, in the middle of the 6 h 

trypsin digestion and in the middle of the 3 h period after replacing the trypsin with 0.15 

M saline. The dashed circles represent the additional echoes caused by the interface of the 

trypsin digested and undigested AC tissues. It appears that the progressive penetration of 20 

the trypsin digestion front did not affect the ultrasound scattering signals from the AC 

tissues.   
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Fig. 5. The M-mode representation of the ultrasound signals collected from different 

specimens with the solid and blank triangle marks indicate the first positive half cycle of 

the reflection signal from the AC surface and that from the AC/bone interface, 

respectively. (a) The results of normal specimen #3 after the solution was changed from 5 

0.15 to 2 M of saline; and (b) The results of the same site of the same specimen with the 

same process as (a), but measured 10 h later. After the measurement of (a), the specimen 

went through the same experimental protocol as shown in Fig. 3, except that the trypsin 

solution was replaced with a 0.15 M saline solution. (c) The results of normal specimen 

#4 after the solution was changed from 0.15 to 2 M saline; and (d) the results of the same 10 

specimen with same process as (c) but digested by trypsin for 6 h. (c) and (d) were the 

results of two steps out of a whole procedure similar to that shown in Fig. 3, but the 

specimen was stored under -20ºC after the trypsin digestion. Thus, the specimen went 

through the same thawing process before the results were collected in (c) and (d). (e) The 

results of the dehydrated/hydrated specimen #5 after 0.15 M saline was replaced by 2 M; 15 

and (f) The results of the same specimen as (e) after 2 M saline was replaced by 0.15 M. 

This specimen was previously dehydrated and stored for eight months and was hydrated 

for 6 h before the test.   

 

Fig. 6. The shifts of the ultrasound echoes reflected from the AC surface and the AC/bone 20 

interface extracted from the results of two consecutive tests for a specimen. In each test, 

the concentration of the saline solution was first changed from 0.15 M to 2 M and then 

back to 0.15 M. (a) and (b) Show the shifts of the echoes after the saline was changed 
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from 0.15 to 2 M, and from 2 to 0.15 M, respectively. Results showed that the obtained 

patterns of the time shifts of the echoes were repeatable for the two consecutive tests. 
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