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Abstract 1 

In this study we simultaneously collected ultrasound images, EMG, MMG from the 2 

rectus femoris (RF) muscle and torque signal from the leg extensor muscle group of nine 3 

male subjects (mean±SD, age = 30.7±.4.9 years; body weight = 67.0±8.4 kg; height = 4 

170.4±6.9 cm) during step, ramp increasing, and decreasing at three different rates (50%, 5 

25% and 17% MVC/s). The muscle architectural parameters extracted from ultrasound 6 

imaging, which reflect muscle contractions, were defined as sonomyography (SMG) in 7 

this study. The cross-sectional area (CSA) and aspect ratio between muscle width and 8 

thickness (width/thickness) were extracted from ultrasound images. The results showed 9 

that the CSA of RF muscles decreased by 7.25±4.07% when muscle torque 10 

output changed from 0% to 90% MVC, and the aspect ratio decreased by 11 

41.66±7.96%. The muscle contraction level and SMG data were strongly 12 

correlated (R2=0.961, P=0.003, for CSA and R2=0.999, P<0.001, for 13 

width/thickness ratio). The data indicated a significant differences (P<0.05) in 14 

percentage changes for CSA and aspect ratio among step, ramp increasing, and 15 

decreasing contractions. The normalized EMG RMS in ramp increasing was 16 

8.25±4.00% higher than step (P=0.002). The normalized MMG RMS of step 17 

contraction was significantly lower than ramp increasing and decreasing, with 18 

averaged differences of 12.22±3.37% (P=0.001) and 12.06±3.37% (P=0.001), 19 

respectively. The results of this study demonstrated that the CSA and aspect ratio, 20 

i.e., SMG signals, can provide useful information about muscle contractions. They 21 

may therefore complement EMG and MMG for studying muscle activation 22 

strategies under different conditions. 23 
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Index Terms- Muscle; Soft Tissue; Ultrasound; Sonomyography; SMG; 1 

Mechanomyography; MMG; Electromyography; EMG. 2 
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1. Introduction 4 

Electromyography (EMG) is generated by a record of the electrical discharges of active 5 

motor units (MU) during the muscle activation [1], and the root mean square (RMS) 6 

magnitude of EMG is commonly used to describe the time-domain information of the 7 

EMG signal [2]. As the “mechanical counterpart” of the motor unit electrical activity 8 

measured by EMG, mechanomyography (MMG) is a recording of mechanical oscillation 9 

that is detected from the body surface overlying the muscle [3, 4]. It has been suggested 10 

that the lateral oscillations detected by MMG can be decomposed into three parts: (1) a 11 

gross lateral movement at the beginning of a muscle contraction, (2) smaller subsequent 12 

lateral oscillations produced at the resonant frequency of the muscle, and (3) dimensional 13 

changes of the muscle fiber [4, 5].  14 

As the index of torque during muscle contraction [5, 6], EMG and MMG signals can each 15 

provide information on various aspects of muscle function. For example, EMG has now 16 

been widely used to study muscle fatigue [7, 8], muscle pathology [9-12], prosthetic 17 

device control [13, 14], etc. The features of the MMG signal have been used to reflect the 18 

kinematic and physiological characteristics of postural control [15], concentric muscle 19 

contractions [16], and cycle ergometry [17,18], as well as to detect various muscular 20 

disorders, including cerebral palsy [19], myotonic dystrophy [20], low back pain [21], 21 

and muscle fatigue [22]. Furthermore, studies have been conducted with EMG and MMG 22 
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simultaneously to examine skeletal muscle characteristics. For example, EMG and MMG 1 

were used to compare agonist vs. antagonist muscles in old vs. young women [6] and to 2 

estimate the influence of torque changes during relaxation from maximal voluntary 3 

contraction (MVC) of elbow flexors at different joint angles [23]. Additionally, 4 

complementary knowledge was provided by collecting EMG and MMG during 5 

concentric, isometric and eccentric contractions at different MVC [24]. These modalities 6 

were also used to investigate the effect of acute static stretching on the biceps brachii [23] 7 

and to assess lower-back muscle fatigue [21]. 8 

Recently, many studies have been performed using EMG and MMG to identify the motor 9 

control strategies involved in force/torque production during isometric ramp increasing or 10 

step contraction, in which the force/torque is alternately linearly increased or steadily 11 

maintained [25]. Investigating the differences between various muscle contraction 12 

protocols may guide exercise testing and training [26]. The amplitude and frequency of 13 

MMG and EMG were examined with torque during ramp increasing or step contraction 14 

[4, 27-30]. For example, EMG has been used to illustrate the different characteristics of 15 

ramp increasing vs. step contractions [31-34], and the relationship between MMG and 16 

force/torque has also been compared [35].  17 

On the other hand, ultrasonography has been effectively employed to evaluate the 18 

morphological changes in muscle thickness or displacement [36-40], muscle fiber, 19 

pennation angle [44, 45], and cross-sectional area [46, 47]. It has also been suggested that 20 

ultrasound parameters may characterize muscular pain, injury and dysfunction [48-52]. 21 

Moreover, ultrasonography has been used along with EMG to provide more 22 



 5

comprehensive information about the activities and properties of skeletal muscles [53-57]. 1 

We have recently proposed using the real-time muscle morphological change detected by 2 

ultrasound, namely sonomyography (SMG), for the prosthetic control [58,59] and for 3 

assessment of isometric muscle contraction [60-62] and isotonic contraction [63,64].  4 

According to the literature, EMG and MMG have been used as indicators to compare 5 

different motor control strategies in ramp increasing vs. step contractions 6 

[25,26,29,31,32,35]. Yet the utility of the architectural changes detected by ultrasound for 7 

evaluation of the difference between these contractions has not been comprehensively 8 

investigated. Since data suggest that the motor control strategy may differ between ramp 9 

increasing and step contractions [25,26,29,31,32,35], it is possible that different motor 10 

control strategies may be recruited during step, ramp increasing and decreasing, in which 11 

torque is produced to a greater or lesser degree. Therefore, the purpose of this study was 12 

to simultaneously collect and compare EMG, MMG and SMG vs. torque relationships 13 

during ramp increasing, decreasing and step contractions and hopefully to investigate the 14 

differences in the motor control strategy of ramp and step contractions with respect to 15 

morphological characteristics, including muscle cross-sectional area (CSA) and aspect 16 

ratio between width and thickness (width/thickness ratio). 17 

2. Methods  18 

2.1. Subjects 19 

Nine healthy male adults (mean±SD, age = 30.7±.4.9 years; body weight = 67.0±8.4 kg; 20 

height = 170.4±6.9 cm) volunteered to participate in this study. No participant had a 21 
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history of neuromuscular disorders, and all were aware of experimental purposes and 1 

procedures. Human subject ethical approval was obtained from the relevant committee in 2 

the authors’ institution, and informed consent was obtained from each subject prior to the 3 

experiment.   4 

2.2. Experiment protocol 5 

The subject was seated with the right leg at a flexion angle of 90° below the horizontal 6 

plane on a calibrated dynamometer (Humac/Norm Testing and Rehabilitation System, 7 

Computer Sports Medicine, Inc., Massachusetts, USA). Straps on the subject’s trunk 8 

were used to stabilize his position (Fig. 1). The testing position of the subject was 9 

in accordance with the Humac/Norm User’s Guide (Humac/Norm Testing and 10 

Rehabilitation System, Computer Sports Medicine, Inc., Massachusetts, USA. 2006). 11 

The subject was required to put forth his maximal effort of isometric knee 12 

extension for a period of 3 s with verbal encouragement provided. The maximal 13 

voluntary contraction (MVC) was defined as the highest value of torque recorded during 14 

the entire isometric contraction [65]. A rest of 5 min was allowed before the subject 15 

performed a second MVC test. The MVC torque was then calculated by averaging the 16 

two recorded highest torque values from the two tests. 17 

The subject was instructed to perform step, ramp increasing, and decreasing contractions, 18 

the order of which was chosen randomly. For the step contraction, the subject was 19 

required to produce a stable sub-maximal MVC torque (15, 30, 45, 60, 75, and 90% 20 

MVC) respectively for 4 s. During the ramp increasing and decreasing, each subject was 21 

instructed to produce torques increasing from 0 to 90% of his MVC, decreasing back to 22 
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zero linearly within 4, 8, and 12 s, during which the corresponding contraction rates were 1 

50% MVC/s, 25% MVC/s, and 17% MVC/s, respectively. The reason for choosing 90% 2 

MVC as the highest value was to avoid muscle fatigue. During each contraction, a 3 

template and the real-time torque values were shown on a computer screen. The former 4 

served as a target, and these two lines helped subjects to adjust their torque productions in 5 

real time. Each test was repeated twice with a rest of 5 min between two adjacent trials. 6 

Before the actual test, subjects practiced producing a smooth ramp contraction for several 7 

times. The ramp contractions with tracking error (TE) smaller than 3% MVC [28] were 8 

selected for subsequent data processing. The tracking error was defined as follows: 9 
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where Torque (n) is the actual torque recorded during each test, Template (n) is the 11 

pre-designed linear pattern shown on a computer screen to guide the ramp contraction, 12 

and N is the number of torque signal data points recorded during each test. 13 

2.3. Data Acquisition 14 

The isometric torque generated by the right quadriceps femoris muscle was measured 15 

using a Norm dynamometer (Humac/Norm Testing and Rehabilitation System, Computer 16 

Sports Medicine, Inc., Massachusetts, USA) and sampled at a frequency of 25 Hz, which 17 

was the frame rate of B-mode ultrasound imaging. A commercial ultrasound scanner 18 

(Ultrasound Diagnostic Scanner, EUB-8500, Hitachi Medical Corporation, Tokyo, Japan) 19 

with a 12 MHz linear array ultrasound probe (L53L, Hitachi Medical Corporation, Tokyo, 20 

Japan) was used to collect the ultrasound images. The long axis of the ultrasound probe 21 

was arranged perpendicularly to the long axis of the thigh on its superior aspect, 22 
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three-fifths of the distance from the anterior superior iliac spine to the superior patellar 1 

border [66, 67]. The ultrasound probe was fixed by a multi-degree custom-designed 2 

adjustable bracket. Ultrasound gel was applied between the skin and probe to serve as an 3 

acoustic coupling medium (Fig. 1). The probe was adjusted to optimally visualize the 4 

muscle fiber [56] and the position was marked to ensure that the probe was placed at the 5 

same site every time. Before the test began, the ultrasound images were collected for the 6 

subject under the relaxed state for normalization of the parameters collected during the 7 

contraction tests. The B-mode ultrasound images were displayed in real time and 8 

digitized by a video card (NI PCI-1411, National Instruments, Austin, USA) at 25 Hz for 9 

later analysis. 10 

Two surface EMG electrodes were placed on the rectus femoris (RF) muscle belly 11 

parallel with the long axis of the muscle, and the ultrasound probe was positioned 12 

between them. It has been earlier reported that the ultrasound gel used during the test 13 

generates negligible effects to the EMG recording [68]. An MMG sensor was placed 14 

close to one of the EMG electrodes, which was at a shorter distance from the knee than 15 

the other electrode (Fig. 1). The surface EMG signal was captured by the EMG bipolar 16 

Ag-AgCl electrodes (Axon System, Inc., NY, USA), and a reference EMG electrode was 17 

placed near the kneecap. The MMG signal was detected using an accelerometer 18 

(EGAS-FS-10-/V05, Measurement Specialties, Inc., France) fixed with two-sided tape. 19 

The surface EMG and MMG signals were amplified by a custom-designed amplifier with 20 

a gain of 2000, filtered separately by 10-400 Hz, 5-100Hz band-pass analog filters within 21 

the amplifier, and digitized by a 12-bit data acquisition card (NI-DAQ 6024E, National 22 

Instruments Corporation, Austin, TX, USA) with a sampling rate of 1 KHz. Ultrasound 23 
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images, surface EMG, MMG and torque signals were simultaneously collected and stored 1 

by software for ultrasonic measurement of motion and elasticity (UMME, 2 

http://www.tups.org) for further analysis. The time delay between the different data 3 

collection systems was calibrated using a method similar to that described by Huang et al. 4 

[68]. As the transducer moved cyclically up and down in a water tank, the two signals 5 

representing the ultrasound image and the simulated EMG, respectively, were collected 6 

and stored. The time delay between the data sets was calculated using a cross-correlation 7 

algorithm. The details can be found in our earlier study [68]. 8 

2.4. Data Analysis 9 

All signals were processed off-line using a program written in Matlab (Version 7.3, 10 

MathWorks, Inc., Massachusetts, USA). During each sub-maximal step contraction, a 1-s 11 

epoch of data was selected from the middle of the 4-s muscle contraction duration. The 12 

torque value was represented by the mean of the data within the 1-s epoch (Fig. 2). For 13 

ramp contraction, 256-ms epochs of data were selected from the centre of the torque to 14 

match the value in step contraction (Fig. 3). The mean torque, and root mean square 15 

(RMS) values of EMG and MMG were calculated for each epoch, and the EMG/MMG 16 

RMSs were expressed as a percentage of their maximal values at 90% MVC. B-mode 17 

ultrasound images were synchronized with the torque signal. In other words, a given 18 

B-mode ultrasound image frame corresponded to a given torque value point. The B-mode 19 

ultrasound images corresponding to torque values that were close to the averaged torque 20 

value calculated during step contraction were selected for ramp increasing, decreasing 21 

and step contractions. The width, thickness and cross-sectional area (CSA) of the RF 22 

muscle were measured from the ultrasound images [69] using ImageJ software (ImageJ, 23 
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National Institutes of Health, USA) as shown in Fig. 4. In addition to CSA, the 1 

width/thickness ratio of the RF muscle was used to describe the morphological change 2 

during contractions (Fig. 5). The ultrasound parameters were then normalized as the 3 

percentage change, with the reference value taken while the subject was relaxed in the 4 

same position.  5 

A total of 294 (6×6×2 (step) ＋6×6×3×2 (ramp) + 6×1 (relaxed state)) ultrasound 6 

images were measured twice by the same investigator. The intra-class correlation (ICC) 7 

based on one-way random model and standard error of the measurement (SEM) were 8 

performed to evaluate intra-observer repeatability. The relationships for CSA, 9 

width/thickness ratio, EMG and MMG RMS vs. % MVC were investigated by a power 10 

model for the averaged value across the nine subjects and three types of isometric 11 

contractions (step, ramp increasing, and decreasing). Four separate three-way repeated 12 

measure analyses of variance (ANOVAs) (movement patterns [step vs. ramp increasing 13 

vs. decreasing] ×  % MVC [15% vs. 30% vs. 45% vs. 60% vs. 75% vs. 90%]×velocity 14 

[50% MVC/s vs. 25% MVC/s vs. 17% MVC/s]) were used to analyze normalized 15 

EMG/MMG RMS, CSA, and width/thickness ratio, respectively. If there were no 16 

significant interaction effect among these three factors, two- and one-way repeated 17 

measures ANOVAs were followed up with Bonferroni pairwise comparisons [35]. The 18 

relationships between CSA, width/thickness ratio, MMG RMS, EMG RMS versus 19 

%MVC were examined for each individual and the mean values for all the subjects. 20 

Polynomial regression analysis (linear, quadratic, and cubic) were used to examine the 21 

relationships. All the data were analyzed using SPSS (SPSS Inc. Chicago, IL, USA). 22 
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Statistical significance was set at the 5% probability level.                                         1 

3. Results 2 

3.1 Composite (mean) of ultrasound measurements of the RF muscle during step 3 

and ramp increasing, decreasing contractions 4 

The ICC for width, thickness and CSA measurements of RF muscle in this study 5 

were 0.986, 0.987, and 0.978 respectively, and the SEM were 0.13 cm, 0.04 cm and 6 

0.48 cm² (Table 1). The overall values of CSA and width/thickness ratio from the nine 7 

subjects’ RF muscles were 9.83±3.06 cm² (mean ± SD) and 2.99±0.57, respectively, 8 

during the relaxed state. As shown in Fig. 6, the relationships between both the 9 

percentage change of CSA and width/thickness ratio vs. % MVC could be well 10 

represented by cubic functions (R2 =0.961, P=0.003, for CSA and R2 =0.999, 11 

P<0.001, for width/thickness ratio).  12 

There were no significant three- or two-way interactions among the three factors 13 

(movement patterns×% MVC×velocity, all P>0.05), but the effects of the movement 14 

patterns (P<0.001) and % MVC (P=0.012) on the CSA were significant. The percentage 15 

change at 15% MVC was found to be significantly lower than at 75% MVC (reduced by 16 

2.94±0.93%, P=0.026) or 90% MVC (reduced by 3.21±0.93%, P=0.010). The percentage 17 

change of CSA during step was significantly lower than during ramp decreasing, with 18 

mean difference of 2.75±0.82% (P=0.003). While the corresponding reduction compared 19 

with ramp increasing was 0.64±0.82%, no significant difference was demonstrated 20 

(p>0.999). In addition, the percentage change of CSA during ramp increasing was 21 

2.11±0.58% lower than during ramp decreasing with significant effect (P=0.001) (Fig. 7).  22 
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For the width/thickness ratio, there were no significant three-way or two-way 1 

interactions for movement patterns×velocity and movement patterns×% MVC, but 2 

there was a significant effect for two-way interactions for movement patterns×% 3 

MVC (P=0.002). As shown in Fig. 8, we noted that the change of width/thickness 4 

ratio in ramp decreasing was 5.42±1.65% and 6.93±1.17% higher than in both 5 

step and ramp increasing, respectively (P=0.003 and P<0.001), and the difference 6 

between step and ramp increasing was not significant (P>0.999). 7 

 8 

3.2 Composite (mean) of the EMG and MMG RMS of RF muscle during step, 9 

ramp increasing, and decreasing contractions 10 

As shown in Fig. 9, the overall relationships of both the normalized EMG RMS and 11 

MMG RMS vs. % MVC were well represented by cubic models with high R2 values 12 

(R2 = 0.999, P<0.001, for EMG RMS and R2 = 0.999, P<0.001, for MMG RMS). 13 

Movement patterns and % MVC were each found to significantly affect the EMG 14 

RMS (both P<0.001). It was demonstrated that the normalized EMG RMS was 15 

increased as the increase of torque (all P<0.05). The normalized EMG RMS in 16 

ramp increasing was 8.25±4.00% higher than step (P=0.002) (P<0.001). Although 17 

the average normalized EMG RMS of ramp decreasing was 4.25±2.38% higher 18 

than, step contraction and 4.00±1.68% lower than ramp increasing, no significant 19 

difference was demonstrated (P=0.225 and 0.054) (Fig. 10).  20 

The normalized MMG RMS of step contraction was significantly lower than ramp 21 

increasing and decreasing, with averaged differences of 12.22±3.37% (P=0.001) 22 

and 12.06±3.37% (P=0.001), respectively. The difference between ramp 23 
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increasing and decreasing was small and not obvious (0.16±2.38%, Fig. 11). Significant 1 

effects of velocity and % MVC for normalized MMG RMS were found (both 2 

P<0.01). MMG RMS was only found to be significantly higher at a velocity of 50% 3 

MVC/s than at 17% MVC/s (P<0.001). Moreover, the averaged MMG RMS 4 

became significantly higher as % MVC increased (all P<0.05), with the exception 5 

of the change from 15% to 30% MVC, and 30% MVC to 45% MVC (P>0.999) (Fig. 6 

9).   7 

3.3 Inter-individual variability of polynomial regression analysis of CSA, width/thickness 8 

ratio, EMG RMS, MMG RMS 9 

Table 1 shows the polynomial regression analyses for the individual CSA, 10 

width/thickness ratio, EMG RMS, MMG RMS versus isometric torque relationships. For 11 

the individual patterns of CSA, five of the nine subjects exhibited cubic, three exhibited a 12 

quadratic; for width/thickness ratio, five best fit with cubic, two with quadratic and one 13 

with linear regression. For EMG and MMG RMS, there are still five subjects exhibit 14 

cubic. However, three exhibit quadratic for EMG RMS whereas only one exhibit 15 

quadratic and linear for MMG RMS. 16 

4. Discussion 17 

In this paper, ultrasound images, EMG, MMG and torque signals were continuously 18 

collected from the RF muscles of nine male subjects during step, ramp increasing, and 19 

decreasing contractions at rates of 50, 25 and 17% MVC/s. The CSA and width/thickness 20 

ratio were extracted from the ultrasound images to describe the architectural changes of 21 
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the RF muscle during isometric contractions. The intra-operator reliability for 1 

ultrasound measurements of RF muscle in this study was excellent, ranging from 2 

0.978 to 0.987 (Table 1). This reliability in ultrasound measurement was achieved 3 

by careful control of the transducer’s position and orientation. Studies have shown 4 

that muscle functions, such as the amplitude of force produced, joint angle change, 5 

muscle contraction pattern (step or ramp) are closely related to architectural 6 

characteristics such as CSA [65-71] and thickness [36,60, 63,64,72-74]. The CSA of RF 7 

muscle of the younger male participants in this study (9.83±3.06 cm²) was similar to 8 

those observed in [71] using magnetic resonance imaging. In another study using 9 

ultrasonography, the reported CSA of RF muscle was 4.6±1.33 cm² for the older 10 

male subjects [66]. The CSA of RF muscle reported was smaller mainly because 11 

the subjects recruited were much older (around 60 years old) than that used in 12 

current study. It has been suggested that reduction in muscle CSA develops 13 

during the aging process due to a decrease in motor units [75].  14 

During the isometric contractions, the CSA of the RF muscle was measured by 15 

directly tracing the position of the aponeurosis, which separates the RF muscle 16 

from the neighboring muscles of the quadriceps femoris (Fig. 4). The results 17 

showed that the CSA decreased more as torque increased, with an average 18 

percentage change from 6.61± 9.03% (15% MVC) to 10.27±8.77% (90% MVC) 19 

(Fig. 6A). On the other hand, the percentage change of width/thickness ratio 20 

indicated that as torque increased, the width of the RF muscle diminished, while 21 

the thickness increased (Fig. 6B). During the development of quadriceps femoris’ 22 

torque output, the RF muscle is often regarded as the bi-articular muscle that 23 
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transfers moments between joints [76] and directs force and movement [77], while 1 

the other three vasti are synergistic, mono-articular muscles that generate force 2 

[78-79]. Ploutz-Snyder et al. suggested that the RF muscle was the inactive 3 

muscle, based on their findings of no change in CSA after squat exercises [71]. In 4 

contrast, in the present study, although the CSA of the RF muscle decreased with 5 

increasing torques, the results of the width/thickness ratio suggested that the RF 6 

muscle was actively involved in isometric torque development, as indicated by its 7 

increasing thickness and decreasing width. These observations strongly support 8 

the concept that the RF muscle is likely to act as a mono-articular body [79]. 9 

However, to support this conclusion, future studies are warranted.  10 

The morphological differences in the RF muscle in step, ramp increasing, and 11 

decreasing may suggest different activation strategies in each of these three 12 

isometric contractions. Movement patterns significantly affect the CSA and 13 

width/thickness ratio (P<0.05). Both the CSA and width/thickness ratio of RF 14 

muscle were significantly higher in step compared with ramp decreasing, and the 15 

width/thickness ratio of ramp increasing was significantly higher than of ramp 16 

decreasing at all velocities (P<0.05). Akima et al. suggested that not all muscle 17 

fibers are recruited, even at the MVC, for subjects with low physical training [80]; 18 

furthermore, according to the muscle size principle, motor units are recruited in 19 

the order of their recruitment thresholds [81].  As muscle torque developed, the 20 

CSA and width/thickness ratio of RF muscle decreased. Thus, the smaller values 21 

seen in ramp increasing compared with step may indicate that more muscle motor 22 

units were recruited and that more fast-twitch muscle fibers may have been 23 
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activated for ramp increasing than for step. The motor units of fast-twitch were 1 

controlled by the large size of motor neuron, which was recruited at higher thresholds 2 

[82]. Therefore, the increased ratio between the recruited motor unit of fast-twitch and 3 

slow-twitch in ramp increasing might allow subjects to gradually increase torque; this 4 

mechanism may require extra effort to recruit high-threshold motor units. Ramp 5 

decreasing occurs in a reverse process compared to ramp increasing. However, the CSA 6 

and width/thickness ratio of RF muscle in ramp decreasing was deduced by a 7 

comparison to ramp increasing (Fig. 7 and 8). As the torque was linearly reduced, the 8 

deformation of the RF muscle in ramp decreasing could not restore muscle function to the 9 

same level as in ramp increasing, possibly due to viscoelasticity of the skeletal muscle 10 

and surrounding media. Another reason may be that the effort needed to produce the 11 

same level of torque in the torque-increasing process was lower than for 12 

torque-decreasing, which was used to recruit high-threshold motor units. Other reasons 13 

too may affect muscle behavior during different movement patterns, such as the 14 

actin-myosin cross-bridge activity, intramuscular pressure, muscle stiffness, the 15 

mechanical properties of neighboring tissues [24], and the ratio of fast-twitch and 16 

slow-twitch fibers [83]. Since the ratio of the fibre type could vary greatly in different 17 

types of muscle [84], the current SMG parameters should be tested on other skeletal 18 

muscles for a solid conclusion. The findings of a curvilinear increase in EMG and 19 

MMG amplitude vs. torque were consistent with those reported in previous studies 20 

[29, 85]. EMG and MMG RMS increased progressively with increasing torque at 21 

all velocities, suggesting that more muscle motor units were recruited as torque 22 

developed.                                                                             23 
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Both EMG and MMG amplitude in the RF muscle were found to be smaller in step 1 

contraction than in ramp increasing, which was consistent with results from the 2 

plantar flexors in studies performed by Bilodeau et al. [86] and Ryan et al. [28]. 3 

However, in a departure from previous studies examining the EMG and MMG 4 

performance in step vs. ramp increasing contractions [25,32,35,87-88], the 5 

present study also investigated the EMG and MMG amplitude in ramp decreasing 6 

contractions in order to comprehensively compare all of the movement protocols 7 

that may be used in muscle training or rehabilitation. We found that the EMG RMS 8 

of ramp decreasing contractions was significantly smaller than that of ramp 9 

increasing and bigger than that of the step test. However, the difference between 10 

ramp increasing and decreasing was not significant in the MMG RMS. The 11 

contraction rate did have a significant effect on the MMG RMS, perhaps because 12 

MMG signals are easily contaminated by noise during muscle contractions [89]. At 13 

higher rates, the low-frequency movement at the beginning or end of isometric 14 

contractions would affect the MMG signals. This may also explain the large increase in 15 

MMG RMS at 60% MVC of ramp decreasing contractions at a rate of 50% MVC/s (Fig. 16 

11A). Our results are in line with findings from previous studies that have indicated that 17 

the isometric contraction patterns ramp increasing, ramp decreasing and step may each 18 

require motor control strategies that differ in, for example, the relative contributions of 19 

motor unit recruitment and firing rate modulation [31,35,83]. 20 

Moreover, the differences among ramp increasing, decreasing and step 21 

contractions were observed in the electrophysiological (EMG), mechanical (MMG), 22 

morphological (SMG) responses. SMG parameters at most percentages of MVC 23 
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increased from ramp decreasing to ramp increasing to step, while EMG and MMG RMS 1 

parameters increased from step to ramp decreasing to ramp increasing. We noticed a 2 

discrepancy between the SMG parameters and EMG/MMG RMS during ramp increasing 3 

and decreasing contraction; this may indicate that the morphological parameter would not 4 

always yield the same conclusion as the electrophysiological or mechanical parameter. 5 

The mechanisms responsible for this phenomenon should be further investigated, and if 6 

this finding can be confirmed by testing more subjects, SMG parameters may provide 7 

information complementary to EMG and MMG. 8 

The results of inter-individual variability of polynomial regression analysis indicated that 9 

the composite CSA, width/thickness ratio, EMG RMS and MMG RMS versus isometric 10 

torque relationship were all best fit with a cubic model. However, only 55.5% (five of 11 

nine) exhibited the same cubic patterns as the composite relationship (Table 1). The 12 

quadratic relationship was take 33.3%, 22.2%,33.3%, 11.1% for CSA, width/thickness 13 

ratio, MMG RMS and EMG RMS. There was only 11.1% exhibit linear for 14 

width/thickness ratio and MMG RMS, whereas 11.1% of the individual patterns exhibited 15 

no significant relationship for CSA, width/thickness ratio, EMG RMS versus torque and 16 

22.2% for MMG RMS. The EMG, MMG result of the present study was consistent 17 

with previous studies suggesting that the surface EMG and MMG amplitude versus 18 

isometric torque relationship should be evaluated on a subject-by-subject basis [90, 91] 19 

and that there were differences between subjects for the MMG amplitude versus 20 

isometric torques [92, 93]. On the other hand, the SMG parameters also showed the 21 

inter-individual variability. This may caused by the differences in motor control strategies 22 

[94, 95] or muscle fiber type composition [96], which deserves further study. 23 
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Based on the sample size of 9 and alpha of 0.05, the calculated mean statistical power for 1 

the parameters showed significances between different percentages of MVC is 0.61; that 2 

for comparison between ramp increasing and decreasing parameters is 0.65; and that for 3 

comparison between ramp and step parameters is 0.71. The overall mean statistical power 4 

is 0.66 for all parameters. It is noted that statistical powers of the parameters were 5 

relatively small, particularly for SMG and MMG parameters. This result is consistent 6 

with the large standard deviations observed for the SMG and MMG parameters. In future 7 

studies, more subjects are required and the reasons for the relatively larger variations of 8 

SMG and MMG parameters among subjects should be investigated 9 

To sum up, the combination of ultrasonography, EMG and MMG recordings during three 10 

isometric contractions revealed the non-linear relationships between SMG (CSA, 11 

width/thickness ratio) and torque, EMG and torque, and MMG and torque for the RF 12 

muscle. As the utilization of different motor control strategies under various movement 13 

patterns has not been comprehensively studied, the present study provides data regarding 14 

morphological changes of the RF muscle in different movement patterns (ramp increasing, 15 

decreasing, and step) using ultrasound. We found that the different movement patterns 16 

significantly affect the CSA and width/thickness ratio; in other words, our ultrasound 17 

measurement data of the RF muscle suggested that different movement patterns may use 18 

different motor control strategies to control muscle morphology. The EMG/MMG data 19 

from this study were consistent with findings from previous studies and support the 20 

suggestion that different motor control strategies may be utilized during various 21 

movement patterns. The discrepancy between SMG parameters and EMG/MMG RMS 22 

regarding to ramp increasing and decreasing contraction should be further studied. 23 
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Furthermore, the reasons for the relatively larger variations of SMG parameters among 1 

subjects should be investigated in future studies. The recording system described here can 2 

be used to obtain more comprehensive information regarding muscle activities by 3 

simultaneously recording electrophysiological, mechanical, and morphological responses 4 

in human skeletal muscle activity. 5 

 6 
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Figure Captions 1 

Fig. 1. Experimental setup for collecting ultrasound images, EMG, MMG and torque 2 

signals from the subject’s right rectus femoris (RF) muscle during isometric ramp 3 

increasing, decreasing and step contractions. The ultrasound probe was aligned 4 

perpendicularly to the RF muscle belly using a multi-degree adjustable bracket. The 5 

two surface EMG electrodes were located at the two sides of the ultrasound 6 

transducer and in parallel with the muscle fibers. The MMG sensor was placed near 7 

the EMG electrode. 8 

Fig. 2. A typical example of MMG and EMG signals recorded from RF muscle of subject 9 

C during step contraction at the 45% MVC level. The signals (MMG, EMG, torque) 10 

between the dashed lines were selected to represent the characteristics of a 45% 11 

MVC step.       12 

Fig. 3. A typical example of MMG and EMG signals recorded from the RF muscle of 13 

subject C during ramp contractions at the rate of 25% MVC/s. The vertical dashed 14 

boxes represent twelve segments of data points analyzed as MVC increased from 15 

15% to 90% and again as MVC decreased from 90% to 15% at 15% intervals.  16 

Fig. 4.  (A) The aponeuroses appear as hyperechoic strips and boundaries differentiating 17 

RF muscle from other neighboring quadriceps muscles (vastus lateralis (VL), vastus 18 

intermedius (VI), and vastus medialis (VM)). The central aponeurosis of the RF 19 

muscle appears as a comma-shaped hyperechoic band [69]. (B) The CSA, width and 20 

thickness were measured by ImageJ software for further analysis. 21 

Fig. 5. Typical ultrasound images at 0%, 30%, 60%, and 90% MVC contraction levels 22 

during ramp contractions at the rate of 17% MVC/s from subject C. 23 
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Fig. 6. The relationship between (A) averaged percentage change of cross-sectional area 1 

vs. % MVC, and (B) the averaged percentage change of width/thickness ratio vs. % 2 

MVC across nine subjects in isometric contraction. 3 

Fig. 7. The percentage change of cross-sectional area at different isometric torque (MVC) 4 

during the step and ramp increasing, decreasing contractions with torque changing 5 

rates of (A) 50% MVC/s, (B) 25% MVC/s, and (C) 17% MVC/s. Values are mean ± 6 

SD (N=9). 7 

Fig. 8. The percentage change of width/thickness ratio at different isometric torque 8 

(MVC) during step, ramp increasing, and decreasing contractions with torque at 9 

rates of (A) 50% MVC/s, (B) 25% MVC/s, and (C) 17% MVC/s. Values are mean ± 10 

SD (N=9). 11 

Fig. 9. Normalized (A) EMG RMS vs. % MVC and (B) MMG RMS vs. % MVC for nine 12 

subjects in isometric contraction. 13 

Fig. 10. Normalized EMG RMS during step, ramp increasing, and decreasing 14 

contractions with torque at rates of (A) 50% MVC/s, (B) 25% MVC/s, and (C) 17% 15 

MVC/s. Values are mean ± SD (N=9). 16 

Fig. 11. Normalized MMG RMS at different isometric torques (MVC) during step, ramp 17 

increasing, and decreasing contractions with torque at rates of (A) 50% MVC/s, (B) 18 

25% MVC/s, and (C) 17% MVC/s. Values are mean ± SD (N=9). 19 

 20 
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Table 1. The intra-class correlation coefficients (ICC) and standard errors of 1 

measurement (SEM) for the width, thickness, and cross-sectional area (CSA) of rectus 2 

femoris (RF) muscle from two repeated ultrasound measurements made by one 3 

operator.  4 

Ultrasound parameter ICC 95% CI lower 95% CI upper SEM 

Width 0.986 0.985 0.988 0.13 cm 

Thickness 0.987 0.986 0.989 0.04 cm 

CSA 0.978 0.975 0.981 0.48 cm² 
 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
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Table  2. The polynomial regression models for the change of cross-sectional area 1 

(CSA), width/thickness ratio, mechanomyography and electromyography root mean 2 

square (MMG RMS and EMG RMS) vs. percent maximal voluntary contraction (% 3 

MVC) relationship. 4 

Subject CSA  Width/thickness ratio EMG RMS  MMG RMS 

 Model R2  Model R2 Model R2  Model R2 

1 Cubic 0.992  Linear 0.831 Cubic 0.997  Cubic 0.997

2 Cubic 0.999  Cubic 0.987 NS NS  Cubic 0.986

3 Cubic 0.990  Quadratic 0.998 Quadratic 0.996  Cubic 0.999

4 Quadratic 0.926  Cubic 0.999 Quadratic 0.999  Cubic 0.999

5 Cubic 0.998  Cubic 0.997 Cubic 0.999  Cubic 0.998

6 Cubic 0.999  Cubic 0.994 Cubic 0.999  NS NS 

7 Quadratic 0.942  Quadratic 0.993 Cubic 0.999  Linear 0.723

8 NS NS  Cubic 0.982 Cubic 0.981  NS NS 

9 Quadratic 0.934  NS NS Quadratic 0.986  Quadratic 0.986

Mean Cubic 0.998  Cubic 0.999 Cubic 0.998  Cubic 0.999

 5 

NS: no significant model (P>0.05) 6 

 7 

 8 

 9 

 10 
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Figures 1 
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Fig. 1 3 
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Fig. 7 1 
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Fig. 8  1 
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