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Abstract—Maximum scatter difference (MSD) discriminant cri-
terion was a recently presented binary discriminant criterion for
pattern classification that utilizes the generalized scatter differ-
ence rather than the generalized Rayleigh quotient as a class sepa-
rability measure, thereby avoiding the singularity problem when
addressing small-sample-size problems. MSD classifiers based
on this criterion have been quite effective on face-recognition
tasks, but as they are binary classifiers, they are not as effi-
cient on large-scale classification tasks. To address the problem,
this paper generalizes the classification-oriented binary criterion
to its multiple counterpart—multiple MSD (MMSD) discrimi-
nant criterion for facial feature extraction. The MMSD feature-
extraction method, which is based on this novel discriminant
criterion, is a new subspace-based feature-extraction method.
Unlike most other subspace-based feature-extraction methods, the
MMSD computes its discriminant vectors from both the range
of the between-class scatter matrix and the null space of the
within-class scatter matrix. The MMSD is theoretically elegant
and easy to calculate. Extensive experimental studies conducted
on the benchmark database, FERET, show that the MMSD out-
performs state-of-the-art facial feature-extraction methods such
as null space method, direct linear discriminant analysis (LDA),
eigenface, Fisherface, and complete LDA.

Index Terms—Face recognition, feature extraction, linear
discriminant criterion.

I. INTRODUCTION

THE MAXIMUM scatter difference (MSD) discriminant
criterion [1] was a recently presented binary discriminant

criterion for pattern classification. Because the MSD utilizes
the generalized scatter difference rather than the generalized
Rayleigh quotient as a class separability measure, it avoids
the singularity problem when addressing the small-sample-
size problems that trouble the Fisher discriminant criterion.
Furthermore, studies have demonstrated that MSD classifiers
that are based on this discriminant criterion have been quite
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effective on face-recognition tasks. The drawback of the MSD
classifier is that, as a binary classifier, it cannot be applied
directly to multiple-category classification tasks such as face
recognition. This means that multiple-category classification
tasks have to be divided into a series of binary classification
problems using one of the three decomposition strategies: one
versus rest, one versus one, or directed acyclic graph [2].
Experiments have shown that MSD classifiers are not very
effective when using the first strategy, while using the latter two
strategies requires the training of l(l − 1)/2 MSD classifiers
for an l-category classification task. The efficiency of such an
approach will greatly be affected by any increase in the number
of categories. Ultimately, then, like all binary classifiers, MSD
classifiers are not suitable for large-scale pattern recognition
problems.

To address the problem, this paper generalizes the
classification-oriented binary criterion to its multiple
counterpart—multiple MSD (MMSD) discriminant criterion
for facial feature extraction. The MMSD feature-extraction
method, which is based on this novel discriminant criterion,
is a new subspace-based feature-extraction method. Unlike
most conventional subspace-based feature-extraction methods
that derive their discriminant vectors either in the range of the
between-class scatter matrix or in the null space of the within-
class scatter matrix, the MMSD computes its discriminant
vectors in both subspaces. The MMSD is theoretically elegant
and easy to calculate. Extensive experimental studies conducted
on the benchmark database, FERET, show that the MMSD
outperforms many state-of-the-art facial feature-extraction
methods, including the null space method (NSM), direct linear
discriminant analysis (D-LDA), eigenface, Fisherface, and
complete LDA (C-LDA).

The remainder of this paper is organized as follows:
In Section II, we describe the MMSD discriminant crite-
rion and the MMSD-based facial feature-extraction algorithm.
In Section III, we present some theoretical analyses of MMSD.
In Section IV, we compare the performance of MMSD with
that of several current facial feature-extraction approaches on
the FERET database. Section V offers a brief conclusion.

II. DISCRIMINANT CRITERION AND

FEATURE-EXTRACTION ALGORITHM BASED ON MMSD

We first review the MSD discriminant criterion in
Section II-A, then describe the MMSD discriminant criterion
in Section II-B, and, finally, present the feature-extraction
algorithm based on the MMSD in Section II-C.

1083-4419/$25.00 © 2007 IEEE
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A. MSD Discriminant Criterion

The optimization model corresponding to the MSD discrim-
inant criterion [1] is as follows:

max
w �=0

wT(Sb − c · Sw)w
wTw

(1)

which is derived from the following multiobjective program-
ming problem

max
wTSbw
wTw

min
wTSww
wTw

(2)

by combining the two objectives using additive principle [3].
The parameter c in (1) is a nonnegative constant which balances
the relative merits of maximizing the between-class scatter to
the minimization of the within-class scatter, the between-class
scatter matrix Sb, and the within-class scatter matrix Sw, both
of which are defined as in [1].

It has been proven that the optimal projection direction
determined by the MSD is the eigenvector of the matrix (Sb −
c · Sw) corresponding to the largest eigenvalue. Let w∗ be
the optimal projection direction determined by the MSD. The
binary linear classifier based on the MSD is defined as follows:

f(x) = sign(w∗Tx + w0) · sign(θ + w0) (3)

which assigns a label sign(w∗Tx + w0) · sign(θ + w0) to a
sample x. Here, sign is the sign function, f(x) = 1 means
that x belongs to the first class, and f(x) = −1 means that
x belongs to the second class. The bias w0 can simply be
computed by

w0 = −w∗Tm (4)

where m is the mean training sample.
Theoretical analysis demonstrates that the MSD classifier has

closed relations with other binary classifiers. For example, if
the within-class scatter matrix Sw is singular, the asymptotic
form of an MSD classifier is the large margin linear projection
classifier [4] when the parameter c approaches infinity. In
addition, if the matrix Sw is nonsingular, the MSD classifier
is the Fisher classifier [5] when the parameter c is the unique
solution to the following equation:

max
w �=0

wT(Sb − c · Sw)w
wTw

= 0. (5)

The experimental studies demonstrated that, as a binary clas-
sifier, the MSD is quite effective on small-sample-size problems
such as appearance-based face recognition. Furthermore, its
performance is quite robust on the parameter c. However, like
all binary classifiers, the efficiency of the MSD declines greatly
with the increase of the number of classes. Therefore, there
is a need to extend this classification-oriented binary criterion
to its multiple counterpart—MMSD discriminant criterion for
feature extraction in large-scale recognition tasks.

B. MMSD Discriminant Criterion

The goal of discriminant criteria for feature extraction is to
seek r discriminant vectors w1,w2, . . . ,wr such that training
samples from a high-dimensional input space are farthest apart
after they are projected on these vectors. In order to eliminate
the influences of the lengths of the discriminant vectors and
linear dependences between these vectors, we usually require
them to be orthonormal. That is, the discriminant vectors should
satisfy the constraints wT

i wj = δij , i, j = 1, 2, . . . , r.
Let W = [w1,w2, . . . ,wr] ∈ Rd×r be the discriminant

matrix. The projection of a sample x on the discrimi-
nant vectors w1,w2, . . . ,wr is WTx. The between- and
within-class scatter matrices of the projected training samples
WTx1,W

Tx2, . . . ,W
TxN are S̃B = WTSBW and S̃W =

WTSWW , respectively.
The trace of the between-class scatter matrix of the pro-

jected training samples tr(WTSBW ) reflects the scatter of
the projected training samples between categories, whereas
the trace of the within-class scatter matrix of the projected
training samples tr(WTSWW ) reflects the scatter of the
projected training samples within each category. The larger
the tr(WTSBW ), the more separable the projected data; the
smaller the tr(WTSWW ), the more separable the projected
data. Thus, we wish to achieve two distinct objectives

max tr(WTSBW ) (6)

min tr(WTSWW ) (7)

satisfying the orthonormal constraints

wT
i wj = δij , i, j = 1, 2, . . . , r. (8)

The problem of seeking a set of discriminant vectors is then
translated into a problem of solving a multiobjective program-
ming model which is defined by (6)–(8). It is well known that
a multiobjective programming model cannot be solved directly.
It has to be converted first into a single-objective programming
model. There are two main ways to convert a multiobjective
programming model into a single-objective model: The first is
the goal programming approach in which one of the objectives
is optimized while the remaining objectives are converted into
constraints. The second is the combining objective approach
in which all objectives are combined into one scalar objective
[3]. When using a combining objective approach, there are two
major rules: the multiplicative and the additive. By utilizing the
multiplicative rule to combine objectives (6) and (7), we gain
a discriminant criterion that is similar to the generalized Fisher
discriminant criterion [6]. If we use the additive rule to combine
the two objectives, we obtain the MMSD discriminant criterion.
The single-objective optimization model corresponding to the
MMSD discriminant criterion is as follows:

max
wT

i
wj=δij ,i,j=1,2,...,r

tr
{
[w1,w2, . . . ,wr]T(SB−c·SW)

× [w1,w2, . . . ,wr]} . (9)
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It can further be transformed into

max
wT

i
wj=δij , i,j=1,2,...,r

r∑
i=1

wT
i (SB − c · SW)wi. (10)

Here, SB − c · SW is a generalized scatter difference matrix,
and c is a nonnegative parameter. Obviously, (10) is an exten-
sion of (1).

Based on [6, Th. 4], we can conclude that the orthonormal
eigenvectors ϕ1, ϕ2, . . . , ϕr of the matrix SB − c · SW, corre-
sponding to the r largest eigenvalues, make an optimal solution
of (10). We call these orthonormal eigenvectors as MMSD
discriminant vectors.

It should be pointed out that a similar discriminant
criterion—Differential Scatter Discriminant Criterion has been
investigated in [7] and extended to General Tensor Discriminant
Analysis [8] and Tensor Minimax Probability Machines [9].

C. MMSD-Based Feature-Extraction Algorithm

It is expensive, both in time and memory, to directly perform
eigendecomposition on the matrix SB − c · SW when the di-
mensionality of the input space d is large enough. It is the key of
the MMSD-based feature-extraction algorithm how to quickly
decompose the matrix SB − c · SW. Fortunately, however, with
the following lemma and theorem, we can always compute the
eigenvectors of SB − c · SW by performing eigendecomposi-
tion on a much smaller matrix whose dimension is equal to or
less than (N − 1) × (N − 1).

Lemma 1: Suppose SB and SW to be the between- and
within-class scatter matrices, respectively. Let P be the ma-
trix of all unit eigenvectors of the total scatter matrix ST(=
SB + SW) corresponding to nonzero eigenvalues. Then, the
following conditions follow.

1) PPTSB = SB.
2) PPTSW = SW.

Proof: Let Q = [q1, . . . ,qs] be the matrix of all unit
eigenvectors of the total scatter matrix corresponding to zero
eigenvalues. It is obvious that V = [P Q] is a unitary matrix.

Since qi(i = 1, 2, . . . , s) is an eigenvector of ST correspond-
ing to zero eigenvalue, it follows that STqi = 0. Thus, we
have qT

i SBqi + qT
i SWqi = 0. Considering the fact that SB

and SW are both semipositive matrices, it can be concluded that
qT

i SBqi = 0 and qT
i SWqi = 0. By using [10, Th. 2], it follows

that qT
i SB = 0 and qT

i SW = 0. As a consequence, we have

SB = V V TSB

= PPTSB + QQTSB

= PPTSB + Q




qT
1 SB

...
qT

s SB




= PPTSB

and

SW = V V TSW

= PPTSW + QQTSW

= PPTSW + Q




qT
1 SW

...
qT

s SW




= PPTSW.

Theorem 1: Suppose P ∈ Rd×t to be the matrix of all unit
eigenvectors of the total scatter matrix ST corresponding to
nonzero eigenvalues and ϕ ∈ Rt×1 to be the eigenvector of the
matrix PT(SB − c · SW)P corresponding to the eigenvalue λ.
Then, Pϕ is the eigenvector of the matrix SB − c · SW corre-
sponding to the eigenvalue λ.

Proof: Since ϕ is the eigenvector of the matrix PT(SB −
c · SW)P corresponding to the eigenvalue λ, we have

PT(SB−c · SW)Pϕ=λϕ ⇒ PPT(SB−c · SW)Pϕ

=λPϕ ⇒ (PPTSB−c · PPTSW)Pϕ

=λPϕ.

From Lemma 1, it follows that (SB − c · SW)Pϕ = λPϕ.
Thus, we complete the proof of the theorem.
According to Theorem 1, we can calculate the MMSD dis-

criminant vectors in a high-dimensional input space in three
major steps: First, we calculate the matrix P of all unit eigen-
vectors of the total scatter matrix corresponding to nonzero
eigenvalues using singular value decomposition theorem as in
[11]; second, we map the high-dimensional input space into
the range of the total scatter matrix using PT : Rd → Rt,
x 
→ PTx; third, we perform eigendecomposition on the matrix
PT(SB − c · SW)P .

Algorithm 1 is a detailed description of the novel facial
feature-extraction algorithm based on MMSD.

Algorithm 1: Facial feature-extraction algorithm based
on MMSD

Input: Training samples x1,x2, . . . ,xN , class labels of these
samples l(x1), l(x2), . . . , l(xN ), parameter value c, and the
number of extracted features r

Output: The discriminant matrix of MMSD V
1) Compute the between-class scatter matrix SB, the with-

class scatter matrix SW, and the total scatter matrix ST.
2) Calculate the matrix P of all unit eigenvectors of ST

corresponding to nonzero eigenvalues using the singular
value decomposition theorem as in [11].

3) Work out the matrix U of the first r unit eigenvectors
of PT(SB − c · SW)P corresponding to the largest
eigenvalues.

4) Compute the discriminant matrix of MMSD using the
formula V = PU .
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Fig. 1. First seven eigenfaces of MMSD when the parameter c assumes the values of −1, 1, 10, 100, and 1000.

III. THEORETICAL ANALYSES OF MMSD
FEATURE-EXTRACTION METHOD

To further investigate the MMSD feature-extraction method,
we try to reveal its relations to other feature-extraction ap-
proaches. Section III-A reveals the relation between the MMSD
and principal component analysis (PCA) [12]. Section III-B
reveals the relation between the MMSD and Karhunen–Loève
(K–L) expansion. Section III-C reveals the relation between the
MMSD and NSM [13]. In addition, Section III-D discusses the
physical meaning of the parameter of MMSD.

A. Connection to PCA

Although MMSD is a supervised feature-extraction method,
it is closely related to a well-known unsupervised feature-
extraction approach PCA [12]. When the parameter c assumes
the value of −1, the generalized scatter difference matrix is
SB − (−1) · SW = SB + SW = ST, i.e., the total scatter ma-
trix. This implies that, when c = −1, the MMSD discriminant
vectors are, in fact, principal component directions.

In facial feature extraction, we can obtain eigenfaces of
MMSD by reverting the MMSD discriminant vectors to im-
ages. Fig. 1 displays the first seven eigenfaces of the MMSD
when the parameter c assumes the values of −1, 1, 10, 100,
and 1000. These eigenfaces are calculated on the training set,
which consists of the first five images of each individual from
the Olivetti Research Laboratory (ORL) face-image database
[14]. As shown earlier, the eigenfaces of MMSD are actually
Eigenfaces [15] when the parameter c assumes the value of −1,
and as shown in Fig. 1, the details in the MMSD eigenfaces
increase with the value of the parameter c.

B. Connection to K–L Expansion Based on the
Between-Class Scatter Matrix

When the parameter c assumes the value of zero, MMSD
degenerates into a feature-extraction method which derives its
discriminant vectors in the range of the between-class scatter
matrix. In fact, the MMSD is equivalent to the K–L expansion
whose generation matrix is the between-class scatter matrix
SB. Here, the discriminant vectors of MMSD are orthonormal
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eigenvectors of the matrix SB corresponding to the r largest
eigenvalues. It implies that the discriminant vectors of MMSD
are solely dependent on the objective (6) in this case.

C. Asymptotic Property of MMSD

The asymptotic property of MMSD is revealed by the fol-
lowing theorem.

Theorem 2: If SW is singular, the discriminant vectors of
MMSD are approaching the discriminant vectors of NSM when
the value of the parameter c is approaching infinity.

Proof: We only prove that the first discriminant vector of
MMSD is approaching the first discriminant vector of NSM
when the value of the parameter c is approaching infinity.
Other proofs are similar.

Let wb and wc be the unit eigenvectors of matrices SB,
(SB − c · SW) corresponding to the largest eigenvalues λb, λc,
respectively.

Since Sw is a singular matrix, there exists a nonzero unit
vector w0 such that SWw0 = 0. Considering the fact that SB

is a semipositive matrix, we have

λc = max
‖w‖=1

wT(Sb − c · Sw)w

≥wT
0 Sbw0 − c · wT

0 Sww0

=wT
0 Sbw0 ≥ 0. (11)

From the meaning of λc and wc, the following equation is
always true for any positive real number c:

(SB − c · SW)wc = λcwc. (12)

By combining equality (12), inequality (11), and the meaning
of λb, we obtain

wT
c SWwc =

1
c

(
wT

c SBwc − λc

)

≤ 1
c
wT

c SBwc

≤ 1
c
λb. (13)

Since the matrix SW is also semipositive, the following
inequality holds:

wT
c SWwc ≥ 0. (14)

By combining inequalities (13) and (14), we can
conclude that

lim
c→∞

wT
c SWwc = 0. (15)

Thus, we complete the proof of the theorem.

Fig. 2. Sample images from the subset of the FERET.

From the theorem, it is easy to understand that NSM is,
in fact, an asymptotic form of MMSD.

D. Physical Meaning of the Parameter

From the discussions in Sections III-B and III-C, we find
that, like C-LDA [16], MMSD derives its discriminant vectors
both in the range of the between-class scatter matrix and in the
null space of the within-class scatter matrix. However, MMSD
is much more flexible than C-LDA. The parameter c can be
used to adjust the balance between the two subspaces. When
c = 0, the discriminant vectors of the MMSD are solely from
the range of the between-class scatter matrix. With the increase
of the value of c from zero to infinite, the discriminant vectors
of MMSD are more and more from the null space of the within-
class scatter matrix. When the parameter c is approaching
infinity, the discriminant vectors of MMSD are solely from the
null space of the within-class scatter matrix.

IV. EXPERIMENTAL RESULTS

The proposed facial feature-extraction method was mainly
evaluated on the benchmark face-image database FERET. The
FERET face-image database is a result of the FERET program,
which was sponsored by the U.S. Department of Defense
through the DARPA program [17], [18]. It has become a
standard database for the evaluation of state-of-the-art face-
recognition techniques.

MMSD was evaluated on a subset of the FERET database.
This subset includes 1400 images of 200 individuals with seven
images of each individual and is composed of the images whose
names are marked with two character strings: “ba,” “bj,” “bk,”
“be,” “bf,” “bd,” and “bg.” The facial portion of each original
image was automatically cropped based on the location of the
eyes, and the cropped image was resized to 80 × 80 pixels
and preprocessed by histogram equalization, as in [19]. Sample
images from the subset are shown in Fig. 2.

In all the experiments, we used the nearest neighbor (NN)
classifier with Euclidean distance.

A. Effectiveness of MMSD Over the Number of Extracted
Features and the Value of the Parameter

Three images of each individual were randomly chosen for
training, while the remaining four images were used for testing.
Thus, the training sample set size was 600, and the testing sam-
ple set size was 800. In this way, we ran the system ten times
and obtained ten different training and testing sample sets.

Fig. 3 demonstrates the average recognition rates of MMSD
over various numbers of extracted features and different values
of the parameter c.
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Fig. 3. Average recognition rate of MMSD over the number of extracted
features and the value of the parameter c.

Fig. 4. Average recognition rate of various methods versus the number of
extracted features.

In Fig. 3, we find two facts: First, the effectiveness of the
MMSD is quite robust on the number of extracted features;
second, the effectiveness of the MMSD is sensitive to the value
of the parameter c.

B. Comparison of the Effectiveness of MMSD With the
Effectiveness of State-of-the-Art Facial Feature-Extraction
Methods With Varying Number of Extracted Features

The experimental design is the same as in Section IV-A.
To make NSM applicable, the PCA is first used to compress
a high-dimensional image space into the range of the total
scatter matrix. Fig. 4 displays curves of the average recogni-
tion rates of MMSD (c = 10), NSM, D-LDA, eigenface, and
Fisherface [20].

In Fig. 4, we find that the MMSD is much more effective than
the other four facial feature-extraction methods, and Fisherface
achieves its maximum value at 49.

Fig. 5. Average recognition rate of various methods versus the number of
principal components.

C. Further Comparison of MMSD With Fisherface
and Other Methods

According to the study in [19], the effectiveness of Fisherface
is heavily dependent on the number of principal components
used in the PCA stage. In this section, we compare the ef-
fectiveness of the MMSD with that of NSM, D-LDA, and
Fisherface when the number of principal components used
in the PCA stage varies from 50 to 400. The experimental
design is the same as in Section IV-A. The number of extracted
features for each method is 49. The value of the parameter c of
MMSD is ten.

Fig. 5 displays curves of the average recognition rates of
various feature-extraction methods over varying number of
principal components. We can see that the MMSD outperforms
the other three feature-extraction methods when there are more
than 100 principal components.

D. Comparison of the Effectiveness of MMSD With the
Effectiveness of State-of-the-Art Feature-Extraction Methods
Over Varying Number of Training Samples per Individual

According to the study in [21], the effectiveness of
D-LDA is heavily dependent on the number of training samples
per individual. In this section, we compare the effectiveness
of MMSD with that of NSM, D-LDA, eigenface, Fisherface,
and C-LDA when the number of training samples per indi-
vidual varies from two to six. The experiment consisted of
five tests of seven runs each. In each run of the ith test,
(i + 1) images of each individual were used for training, and
the remaining (6 − i) images were used for testing. Images
of each individual numbered 1 to (i + 1), 2 to (i + 2), . . . , 7
to i were used as training samples in the first, second,. . .,
seventh run, respectively. The numbers of the extracted features
for MMSD, NSM, D-LDA, Fisherface, eigenface, and C-LDA
in the ith test are 199, 199, 199, 199, 200i + 199, and 398,
respectively.
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Fig. 6. Average recognition rates of various feature-extraction methods versus
the numbers of training samples per individual.

TABLE I
MEANS AND STANDARD DEVIATIONS OF RECOGNITION

RATES OF MMSD AND MSD

Fig. 6 displays curves of the average recognition rates of vari-
ous feature-extraction methods over varying number of training
samples per individual. MMSD is again the most effective of
the facial feature-extraction approaches that were tested.

E. Comparison of the Effectiveness of MMSD With the
Effectiveness of MSD

The comparison of the effectiveness of MMSD with the
effectiveness of MSD is conducted on a small database ORL.
In ORL dataset, there are ten different images for each of 40
individuals. All images are grayscale and normalized with a
resolution of 112 × 92. In each of the ten runs, we use five
images of each person for training and the remaining five for
testing. The images of each person numbered 1 to 5, 2 to 6, . . .,
10 to 4 are used as training samples for the first, second,. . .,
and the tenth run, respectively. In the experiment, the number
of features extracted by MMSD is 39, and the classifier used in
combination with MMSD is the NN.

Table I lists the means and standard deviations of the recog-
nition rates of MMSD and MSD using various values of the
parameter c.

Experimental results indicate that the MMSD is more effec-
tive than the MSD on the ORL face-image database.

Fig. 7. Comparison of the efficiencies of MSD classifiers with MMSD + NN
classifiers on the ORL face-image database.

F. Comparison of the Efficiency of MMSD With the Efficiency
of MSD on the ORL Database

The chief motivation for extending the MSD to MMSD is to
promote efficiency. In this section, we compare the efficiency
of an MSD classifier with that of the MMSD in combination
with an NN classifier on the ORL database.

The experimental design is the same as in Section IV-E.
Fig. 7 displays the time (in seconds) taken by the MSD

classifier and MMSD in combination with an NN classifier for
pattern classification in each run on the ORL database. The
MMSD, in combination with the NN classifier, is much faster
than the MSD classifier.

G. Comparison of the Efficiency of MMSD With the Efficiency
of Other Facial Feature-Extraction Methods on the
FERET Database

In this section, we compare the efficiency of MMSD
with that of NSM, D-LDA, Fisherface, and C-LDA on the
FERET database. The experimental design is the same as in
Section IV-D.

Fig. 8 displays the average time (in seconds) taken by various
methods used for feature extraction in each test on the FERET
database. Although slower than D-LDA and Fisherface, MMSD
is faster than NSM and C-LDA.

V. CONCLUSION

In this paper, we present a novel subspace-based facial
feature-extraction method based on the MMSD discrimi-
nant criterion. Theoretical analysis and experimental studies
demonstrate that the MMSD feature-extraction method has
many advantages over conventional facial feature-extraction
approaches. First, it is elegant in theory, avoiding the singu-
larity problem by using a novel class separability measure.
Second, it is easy to compute. Although slower than D-LDA
and Fisherface, it is faster than NSM, C-LDA, and MSD.
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Fig. 8. Comparison of the efficiencies of MMSD with those of NSM, D-LDA,
Fisherface, and C-LDA on the FERET database.

Third, it is very effective in face recognition. Since it derives
discriminant vectors both in the range of the between-class
scatter matrix and in the null space of the within-class scatter
matrix, it outperforms the NSM, D-LDA, eigenface, Fisherface,
and C-LDA.
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